Status of D6-brane Flux Models and their Effective Field Theories

Giovanni Villadoro

Harvard U.

Outline

- Short introduction
- Mini-review on known type-IIA vacua
- Consistency constraints in compactifications
- Constructing the EFT
- bulk sector
- vector fields
- chiral sector
- Leftover and conclusions

Renewed interests in type-IIA compactifications:

- New 4d classical vacua (more generic than in type-IIB and Heterotic cases)
- Improvement in understanding of generalized geometries
(i.e. non CY compactifications with fluxes and torsion...)
- $\mathrm{AdS}_{4} / \mathrm{CFT}_{3}$ in IIA/M-theory
(may provide non-perturbative description of IIA string in AdS backgrounds)
- Intersecting brane model building - phenomenology
(easy geometrical construction of chiral gauge theories)
- ...

Renewed interests in type-IIA compactifications:

- New 4d classical vacua (more generic than in type-IIB and Heterotic cases)
- Improvement in understanding of generalized geometries
(i.e. non CY compactifications with fluxes and torsion...)
- $\mathrm{AdS}_{4} / \mathrm{CFT}_{3}$ in IIA/M-theory
(may provide non-perturbative description of IIA string in AdS backgrounds)
- Intersecting brane model building - phenomenology
(easy geometrical construction of chiral gauge theories)

Final goal:

- Find a "reliable" string construction (aka vacuum) compatible with experiments -

Many ways to attack the problem:

- top-down
(start from the strings, find vacuum, stab. moduli...)

Many ways to attack the problem:

\author{

- top-down
}
(start from the strings, find vacuum, stab. moduli...)
- bottom-up
(start from the model, embed into branes, stab. moduli...)

Many ways to attack the problem:

- top-down
(start from the strings, find vacuum, stab. moduli...)
- bottom-up
(start from the model, embed into branes, stab. moduli...)
more control on the string side
less powerful from the phenomenology side and viceversa...

Many ways to attack the problem:

- top-down
(start from the strings, find vacuum, stab. moduli...)
- bottom-up
(start from the model, embed into branes, stab. moduli...)
more control on the string side
less powerful from the phenomenology side and viceversa...
key - "try to find a good compromise":
derive an EFT from string theory such that it allows
to implement both the constraints and the corrections from string theory
and
to model a successful low energy description

Mini-review on type-IIA 'classical' known vacua I

- Susy AdS $_{4}$:

- Many types:
- Toroidal Orbifolds ($\left.T^{6} / Z_{2} \times Z_{2}, T^{6} / Z_{3} \times Z_{3}, \ldots\right)$;

GV, Zwirner, DeWolfe et al, Camara, Font, Ibanez...

- Group manifolds ($S^{3} x S^{3}$, twisted tori...);
- Coset manifolds $\left(C P_{3}, S U(3) / U(1) x U(1), \ldots\right)$;

Behrndt, Cvetic, Lust, Tsimpis...

- All moduli stabilized;
- infinite number, with small g_{s} large V_{6};
- good for AdS/CFT;
- not good for phenomenology;

Mini-review on type-IIA 'classical' known vacua I

- Susy AdS

- Many types:
- Toroidal Orbifolds ($\left.T^{6} / Z_{2} \times Z_{2}, T^{6} / Z_{3} \times Z_{3}, \ldots\right)$;

GV, Zwirner, DeWolfe et al, Camara, Font, Ibanez...

- Group manifolds ($S^{3} x S^{3}$, twisted tori...);
- Coset manifolds $\left(C P_{3}, S U(3) / U(1) x U(1), \ldots\right)$;

Behrndt, Cvetic, Lust, Tsimpis...

- All moduli stabilized;
- infinite number, with small g_{s} large V_{6};
- good for AdS/CFT;
- not good for phenomenology;
- Non susy AdS $_{4}$:
- (twisted)-Toroidal Orbifolds (+fluxes+sources); Camara, Font, Ibanez...
- All moduli stabilized:
- good for phenomenology (uplifting with D-terms?, other F-terms?...);

Mini-review on type-IIA 'classical' known vacua II

...continue

- Susy Mink ${ }_{4}$:
- flat directions with geometrical fluxes;
- All moduli fixed with non-geometrical fluxes?

Aldazabal et al.

- large V_{6} and small g_{s} ? (Micu, Palti, Tasinato '07);
- not good for phenomenology;

Mini-review on type-IIA 'classical' known vacua II

...continue

- Susy Mink ${ }_{4}$:

- flat directions with geometrical fluxes;
- All moduli fixed with non-geometrical fluxes?

Aldazabal et al.

- large V_{6} and small g_{s} ? (Micu, Palti, Tasinato '07);
- not good for phenomenology;
- No-scale models:
- good for phenomenogy (after no-scale moduli stabilized radiatively...)
- Ω-dominated? (J-dominated? - non geom.)

Mini-review on type-IIA 'classical' known vacua II

...continue

- Susy Mink ${ }_{4}$:

- flat directions with geometrical fluxes;
- All moduli fixed with non-geometrical fluxes?

Aldazabal et al.

- large V_{6} and small g_{s} ? (Micu, Palti, Tasinato '07);
- not good for phenomenology;
- No-scale models:
- (twisted)-Toroidal Orbifolds (+fluxes+sources)
- good for phenomenogy (after no-scale moduli stabilized radiatively...)
- Ω-dominated? (J-dominated? - non geom.)
- dS4 vacua?
- Silverstein '07 (EFT?)

From the compactification to the EFT

closed strings \rightarrow metric $[g(J, \Omega)$], dilaton $[\Phi$], [$B_{\text {NS }}$]-field, RR-fields [$C^{(p)}$], ...
open strings $\quad \rightarrow \quad \mathrm{D} 6-\mathrm{D} 6$ gauge sector $\left[A_{\mu}, Z^{k}\right]$, D6-D6' chiral sector [ϕ^{i}]

From the compactification to the EFT

closed strings \rightarrow metric $[g(J, \Omega)$], dilaton [Φ], [$B_{\text {NS }}$]-field, RR-fields [$\left.C^{(p)}\right], \ldots$
open strings $\rightarrow \quad \mathrm{D} 6-\mathrm{D} 6$ gauge sector $\left[A_{\mu}, Z^{\kappa}\right]$, D6-D6' chiral sector [ϕ^{i}]

N=1 4d Effective SUGRA determined by:

- Kahler function $G\left(q, q^{*}\right)=K\left(q, q^{*}\right)+\log |W(q)|^{2}$
- Gauge kinetic function $f_{\mathrm{AB}}(q)$
- Killing vectors $X(q)$

Most of the 4d EFT can be derived from dim.red. from 10d SUGRA EFT only partially known for generic background
Explicit formulae known for particular orbifolds

Consistency Constraints

RR-tadpole \Leftrightarrow RR Bianchi Id.

$$
d_{H} G=Q_{R R} \quad \Rightarrow \quad \omega G^{(2)}+H \wedge G^{(0)}=\Sigma\left[\pi_{6}\right]
$$

Consistency Constraints

RR-tadpole \Leftrightarrow RR Bianchi Id.

$$
d_{H} G=Q_{R R} \quad \Rightarrow \quad \omega G^{(2)}+H \wedge G^{(0)}=\Sigma\left[\pi_{6}\right]
$$

NSNS-tadpole \Leftrightarrow NSNS Bianchi Id.

$$
d_{H} d_{H}=0, \Rightarrow \omega \omega=0, \omega H=0
$$

with sources $d_{H} d_{H}=Q_{\text {NSNS }} \Rightarrow \omega \omega=\Sigma\left[\kappa_{5}\right], \omega H=\Sigma\left[v_{5}\right]$

Consistency Constraints

RR-tadpole \Leftrightarrow RR Bianchi Id.

$$
d_{H} G=Q_{R R} \quad \Rightarrow \quad \omega G^{(2)}+H \wedge G^{(0)}=\Sigma\left[\pi_{6}\right]
$$

NSNS-tadpole \Leftrightarrow NSNS Bianchi Id.

$$
d_{H} d_{H}=0, \Rightarrow \omega \omega=0, \omega H=0
$$

with sources $d_{H} d_{H}=Q_{\text {NSNS }} \Rightarrow \omega \omega=\Sigma\left[\kappa_{5}\right], \omega H=\Sigma\left[v_{5}\right]$
Localized tadpoles \Leftrightarrow loc. Bianchi Id.

$$
\begin{aligned}
& \text { calized tadpoles } \Leftrightarrow \text { loc. Bianchi Id. } \\
& \begin{array}{cc}
d_{H} Q_{R R}=0 \Rightarrow \omega\left[\pi_{6}\right]=0, H \wedge\left[\pi_{6}\right]=0 & \text { Freed, Witten, } \\
Q_{\text {NSNS }} G=0 \Rightarrow\left[v_{5}\right] \wedge G=0,\left[\kappa_{5}\right] G=0 & \text { Maldacena, Moore, Seiberg, } \\
(+ \text { branes on branes })
\end{array}
\end{aligned}
$$

Consistency Constraints

RR-tadpole \Leftrightarrow RR Bianchi Id.

$$
d_{H} G=Q_{R R} \quad \Rightarrow \quad \omega G^{(2)}+H \wedge G^{(0)}=\Sigma\left[\pi_{6}\right]
$$

NSNS-tadpole \Leftrightarrow NSNS Bianchi Id.

$$
d_{H} d_{H}=0, \Rightarrow \omega \omega=0, \omega H=0
$$

with sources $d_{H} d_{H}=Q_{\text {NSNS }} \Rightarrow \omega \omega=\Sigma\left[\kappa_{5}\right], \omega H=\Sigma\left[v_{5}\right]$
Localized tadpoles \Leftrightarrow loc. Bianchi Id.

$$
\begin{array}{lr}
d_{H} Q_{R R}=0 \Rightarrow \omega\left[\pi_{6}\right]=0, H \wedge\left[\pi_{6}\right]=0 & \text { Maldacena, Moore, S } \\
Q_{N S N S} G=0 \Rightarrow\left[\nu_{5}\right] \wedge G=0,\left[\kappa_{5}\right] G=0 & \text { GV, Zwirner } \\
(+ \text { branes on branes })
\end{array}
$$

Crucial for gauge (+susy) inv. of the EFT:

- classical: gauge inv. of W
- perturbative: cancellation of 1-loop anomalies
- non-perturbative: gauge inv. of instanton corrections

1. EFT for bulk fields

Kahler potential:
 $$
K=-\log \left(\frac{1}{3!} \int J \wedge J \wedge J\right)-2 \log \left(\frac{1}{3!} \int \Omega^{\prime} \wedge \bar{\Omega}^{\prime}\right)
$$

From dim. red. on $T^{6} / Z_{2} \times Z_{2} \Rightarrow$

$$
K=-\log \left(s u_{1} u_{2} u_{3}\right)-\log \left(t_{1} t_{2} t_{3}\right)+\ldots \quad \text { (twisted sector) } \quad \text { see Lust, Reffert, Stieberger... }
$$

1. EFT for bulk fields

Kahler potential:

$$
K=-\log \left(\frac{1}{3!} \int J \wedge J \wedge J\right)-2 \log \left(\frac{1}{3!} \int \Omega^{\prime} \wedge \bar{\Omega}^{\prime}\right)
$$

From dim. red. on $T^{6} / Z_{2} \times Z_{2} \Rightarrow$

$$
K=-\log \left(s u_{1} u_{2} u_{3}\right)-\log \left(t_{1} t_{2} t_{3}\right)+\ldots \text { (twisted sector) }
$$

see Lust, Reffert, Stieberger...

Superpotential:

$$
W=\frac{1}{4} \int_{\mathcal{M}_{6}} e^{i J^{c}\left(\overline{\mathbf{G}}-i d_{H} \Omega^{\prime c}\right)} \quad \begin{aligned}
& J^{c} \equiv J+i B, \quad \Omega^{\prime c} \equiv \operatorname{Re} \Omega^{\prime}+i C^{(3)} \\
& d_{H} \equiv d+\omega+\bar{H} \quad \overline{\mathbf{G}}=\sum_{p=\text { even }} \bar{G}^{(p)}
\end{aligned}
$$

D2 domain wall argument: $\Delta W \sim \int \Delta G^{(6)}$ a la' Gukov Vafa Witten

$$
W=\int G^{(6)}
$$

with $G^{(6)}$ complexification of the solution of $d_{H} G=0$

Gauge kinetic function: (from DBI+WZ)

$$
f_{a b}=\delta_{a b} N_{a}\left(\operatorname{Re} \Omega_{\pi_{a}}^{\prime}+i \int_{\pi_{a}} C^{(3)}\right)=\delta_{a b} N_{a} \Omega_{\pi_{a}}^{\prime c}
$$

From dim. red. on $T^{6} / Z_{2} \times Z_{2} \Rightarrow$

$$
f=N T_{6}\left(m_{1} m_{2} m_{3} S-m_{1} n_{2} n_{3} U_{1}-n_{1} m_{2} n_{3} U_{2}-n_{1} n_{2} m_{3} U_{3}\right)
$$

Cremades, Ibanez, Marchesano '02

Gauge kinetic function: (from DBI+WZ)

$$
f_{a b}=\delta_{a b} N_{a}\left(\operatorname{Re} \Omega_{\pi_{a}}^{\prime}+i \int_{\pi_{a}} C^{(3)}\right)=\delta_{a b} N_{a} \Omega_{\pi_{a}}^{\prime c}
$$

From dim. red. on $T^{6} / Z_{2} \times Z_{2} \Rightarrow$

$$
f=N T_{6}\left(m_{1} m_{2} m_{3} S-m_{1} n_{2} n_{3} U_{1}-n_{1} m_{2} n_{3} U_{2}-n_{1} n_{2} m_{3} U_{3}\right)
$$

Cremades, Ibanez, Marchesano '02

Killing vectors: (of the gauging)

$$
\begin{aligned}
i X^{S} & =-2 N \mu_{6} n_{1} n_{2} n_{3}=-2 N \mu_{6} q^{0}, \\
i X^{U_{A}} & =2 N \mu_{6} n_{A} m_{B} m_{C}=2 N \mu_{6} q^{A},
\end{aligned}
$$

D-terms: $\left(=i K_{\mathrm{a}} X^{\mathrm{a}}\right) \quad \operatorname{Im} \widetilde{\Omega}_{\pi}=\frac{\sqrt{s u_{1} u_{2} u_{3}} D}{N T_{6}}$

$$
D=N \mu_{6}\left(\frac{n_{1} n_{2} n_{3}}{s}-\sum_{A=1}^{3} \frac{n_{A} m_{B} m_{C}}{u_{A}}\right)=N \mu_{6}\left(\frac{q^{0}}{s}-\sum_{A=1}^{3} \frac{q^{A}}{u_{A}}\right)
$$

D-terms: (= $\left.i K_{\mathrm{a}} X^{\mathrm{a}}\right)$

$$
\operatorname{Im} \widetilde{\Omega}_{\pi}=\frac{\sqrt{s u_{1} u_{2} u_{3}} D}{N T_{6}}
$$

$$
D=N \mu_{6}\left(\frac{n_{1} n_{2} n_{3}}{s}-\sum_{A=1}^{3} \frac{n_{A} m_{B} m_{C}}{u_{A}}\right)=N \mu_{6}\left(\frac{q^{0}}{s}-\sum_{A=1}^{3} \frac{q^{A}}{u_{A}}\right)
$$

...but from DBI reduction on generic configurations

$$
\begin{gathered}
\operatorname{Re} f=\quad N T_{6} \sqrt{\left(\operatorname{Re} \widetilde{\Omega}_{\pi}\right)^{2}+\left(\operatorname{Im} \widetilde{\Omega}_{\pi}\right)^{2}} \\
V_{D}=\frac{1}{2} \frac{1}{N T_{6} \operatorname{Re} \widetilde{\Omega}_{\pi}} D^{2} \frac{2}{\sqrt{1+\left(\frac{\operatorname{Im} \widetilde{\Omega}_{\pi}}{\operatorname{Re} \widetilde{\Omega}_{\pi}}\right)^{2}}+1}
\end{gathered}
$$

D-terms: $\left(=i K_{\mathrm{a}} X^{a}\right)$

$$
\operatorname{Im} \widetilde{\Omega}_{\pi}=\frac{\sqrt{s u_{1} u_{2} u_{3}} D}{N T_{6}}
$$

$$
D=N \mu_{6}\left(\frac{n_{1} n_{2} n_{3}}{s}-\sum_{A=1}^{3} \frac{n_{A} m_{B} m_{C}}{u_{A}}\right)=N \mu_{6}\left(\frac{q^{0}}{s}-\sum_{A=1}^{3} \frac{q^{A}}{u_{A}}\right)
$$

...but from DBI reduction on generic configurations

$$
\begin{gathered}
\operatorname{Re} f=\quad N T_{6} \sqrt{\left(\operatorname{Re} \widetilde{\Omega}_{\pi}\right)^{2}+\left(\operatorname{Im} \widetilde{\Omega}_{\pi}\right)^{2}} \\
V_{D}=\frac{1}{2} \frac{1}{N T_{6} \operatorname{Re} \widetilde{\Omega}_{\pi}} D^{2} \frac{2}{\sqrt{1+\left(\frac{\operatorname{Im} \widetilde{\Omega}_{\pi}}{\operatorname{Re} \widetilde{\Omega}_{\pi}}\right)^{2}}+1}
\end{gathered}
$$

Right SUGRA results only in the 2-der. limit
i.e.

$$
\left|\frac{\operatorname{Im} \widetilde{\Omega}_{\pi}}{\operatorname{Re} \widetilde{\Omega}_{\pi}}\right| \ll 1
$$

GV, Zwirner '06
lesson for anti-D-branes....

2. EFT for the D6-D6 sector

Kahler potential: for arbitrary configuration of D6-branes
From dim.red. of DBI action (involving highly non-trivial field-redefinition) (assuming $S_{D B I}=\Sigma_{k} S_{D B I}\left(D 6_{k}\right)$ from dim. red. on $T^{6} / Z_{2} \times Z_{2}$)

2. EFT for the D6-D6 sector

Kahler potential: for arbitrary configuration of D6-branes
From dim.red. of DBI action (involving highly non-trivial field-redefinition) (assuming $S_{D B I}=\Sigma_{k} S_{D B I}\left(D 6_{k}\right)$ from dim. red. on $T^{6} / Z_{2} \times Z_{2}$)

$$
K=-\log \left[t_{1} t_{2} t_{3}\left(s+\sum_{A=1}^{3} p_{A}^{a} \frac{z_{A}^{i_{a} 2}}{t_{A}}\right) \prod_{A=1}^{3}\left(u_{A}-p_{0}^{a} \frac{z_{A}^{i_{a} 2}}{t_{A}}+\sum_{B, C=1}^{3} d_{A B C} p_{B}^{a} \frac{z_{C}^{i_{a}}{ }^{2}}{t_{C}}\right)\right]
$$

up to quadratic fluctuations it gives:

$$
K=-\log \left(t_{1} t_{2} t_{3} s u_{1} u_{2} u_{3}\right)+p_{0}^{a} \sum_{A=1}^{3} \frac{z_{A}^{i_{a} 2}}{t_{A} u_{A}}-\sum_{A=1}^{3}\left(p_{A}^{a} \frac{z_{A}^{i_{a} 2}}{s t_{A}}+\sum_{B, C=1}^{3} d_{A B C} p_{B}^{a} \frac{z_{A}^{i_{a} 2}}{t_{A} u_{C}}\right)+\mathcal{O}\left(z^{4}\right)
$$

2. EFT for the D6-D6 sector

Kahler potential: for arbitrary configuration of D6-branes
From dim.red. of DBI action (involving highly non-trivial field-redefinition)
(assuming $\mathrm{S}_{\mathrm{DBI}}=\Sigma_{\mathrm{k}} \mathrm{S}_{\mathrm{DBI}}\left(\mathrm{D} 6_{\mathrm{k}}\right)$ from dim. red. on $T^{6} / Z_{2} \mathrm{x} Z_{2}$)
$K=-\log \left[t_{1} t_{2} t_{3}\left(s+\sum_{A=1}^{3} p_{A}^{a} \frac{z_{A}^{i_{a} 2}}{t_{A}}\right) \prod_{A=1}^{3}\left(u_{A}-p_{0}^{a} \frac{z_{A}^{i_{a} 2}}{t_{A}}+\sum_{B, C=1}^{3} d_{A B C} p_{B}^{a} \frac{z_{C}^{i_{a} 2}}{t_{C}}\right)\right]$
up to quadratic fluctuations it gives:

$$
K=-\log \left(t_{1} t_{2} t_{3} s u_{1} u_{2} u_{3}\right)+p_{0}^{a} \sum_{A=1}^{3} \frac{z_{A}^{i_{a} 2}}{t_{A} u_{A}}-\sum_{A=1}^{3}\left(p_{A}^{a} \frac{z_{A}^{i_{a} 2}}{s t_{A}}+\sum_{B, C=1}^{3} d_{A B C} p_{B}^{a} \frac{z_{A}^{i_{a} 2}}{t_{A} u_{C}}\right)+\mathcal{O}\left(z^{4}\right)
$$

Notice that $z_{A}=\operatorname{Re} Z_{A}$
i.e. there are Giudice-Masiero-like terms (like in Heterotic) good for μ-terms

For special configuration of D6-branes (or equiv. magnetized branes) results are already present in the literature - (Lust, Stieberger..., Kors, Nath...Font, Ibanez...)

For special configuration of D6-branes (or equiv. magnetized branes) results are already present in the literature - (Lust, Stieberger..., Kors, Nath...Font, Ibanez...)

In several cases these results seem not to agree with ours, in particular $O\left(z^{2}\right)$ coefficients are not constant but proportional to

$$
\left(m_{A}^{2}+n_{A}^{2}\right) \sqrt{\frac{\Upsilon_{B} \Upsilon_{C}}{\Upsilon_{A}}} \quad \Upsilon_{A}=\frac{m_{A}^{a 2}}{u_{B}^{\prime} u_{C}^{\prime}}+\frac{n_{A}^{a 2}}{s^{\prime} u_{A}^{\prime}}
$$

For special configuration of D6-branes (or equiv. magnetized branes) results are already present in the literature - (Lust, Stieberger..., Kors, Nath...Font, Ibanez...)

In several cases these results seem not to agree with ours, in particular $O\left(z^{2}\right)$ coefficients are not constant but proportional to

$$
\left(m_{A}^{2}+n_{A}^{2}\right) \sqrt{\frac{\Upsilon_{B} \Upsilon_{C}}{\Upsilon_{A}}} \quad \Upsilon_{A}=\frac{m_{A}^{a 2}}{u_{B}^{\prime} u_{C}^{\prime}}+\frac{n_{A}^{a 2}}{s^{\prime} u_{A}^{\prime}}
$$

however they simplify (and agree with our results) when we notice that

$$
\left(m_{A}^{2}+n_{A}^{2}\right) \sqrt{\frac{\Upsilon_{B} \Upsilon_{C}}{\Upsilon_{A}}}=\left(\frac{p_{0}}{s^{\prime}}-\frac{p_{A}}{u_{A}^{\prime}}-\frac{p_{B}}{u_{B}^{\prime}}-\frac{p_{C}}{u_{C}^{\prime}}\right)+\mathcal{O}\left(\frac{\operatorname{Im} \Omega_{\pi_{a}}^{\prime}}{\operatorname{Re} \Omega_{\pi_{a}}^{\prime}}\right) \begin{aligned}
& \text { these terms must be } \\
& \text { discarded for consistency }
\end{aligned}
$$

For special configuration of D6-branes (or equiv. magnetized branes) results are already present in the literature - (Lust, Stieberger..., Kors, Nath...Font, Ibanez...)

In several cases these results seem not to agree with ours, in particular $O\left(z^{2}\right)$ coefficients are not constant but proportional to

$$
\left(m_{A}^{2}+n_{A}^{2}\right) \sqrt{\frac{\Upsilon_{B} \Upsilon_{C}}{\Upsilon_{A}}} \quad \Upsilon_{A}=\frac{m_{A}^{a 2}}{u_{B}^{\prime} u_{C}^{\prime}}+\frac{n_{A}^{a 2}}{s^{\prime} u_{A}^{\prime}}
$$

however they simplify (and agree with our results) when we notice that

$$
\left(m_{A}^{2}+n_{A}^{2}\right) \sqrt{\frac{\Upsilon_{B} \Upsilon_{C}}{\Upsilon_{A}}}=\left(\frac{p_{0}}{s^{\prime}}-\frac{p_{A}}{u_{A}^{\prime}}-\frac{p_{B}}{u_{B}^{\prime}}-\frac{p_{C}}{u_{C}^{\prime}}\right)+\mathcal{O}\left(\frac{\operatorname{Im} \Omega_{\pi_{a}}^{\prime}}{\operatorname{Re} \Omega_{\pi_{a}}^{\prime}}\right) \begin{aligned}
& \text { these terms must be } \\
& \text { discarded for consistency }
\end{aligned}
$$

Notice also that mixed $O\left(z^{2} z^{2}\right)$ terms do not agree in the $N=2$ limit with the prepotential proposed by Ferrara, Minasian, Sagnotti,... Antoniadis et al... connected with ρ-problem, see below...

Superpotential:

from dim.red. + DBI fluctuations
agrees with the domain-wall argument: $W=\int G^{(6)}$ (with $G^{(6)}$ complexification of the solution of $d_{H} G=Q_{R R}$)

Superpotential:

from dim.red. + DBI fluctuations
agrees with the domain-wall argument: $W=\int G^{(6)}$
(with $G^{(6)}$ complexification of the solution of $d_{H} G=Q_{R R}$)

$$
W=\frac{1}{4} \int_{\mathcal{M}_{6}} e^{i J^{c}}\left(\overline{\mathbf{G}}-i d_{H} \Omega^{c}\right)+\frac{1}{4} \int_{\pi_{a}} \omega_{Y M}^{c}
$$

$$
\omega_{Y M}^{c}=Z^{i_{a}} \wedge \omega Z^{i_{a}}+\frac{2}{3} i f_{i_{a} i_{b} i_{c}} Z^{i_{a}} \wedge Z^{i_{b}} \wedge Z^{i_{c}}
$$

$$
Z^{i^{a}}=\left[Z_{1}^{i_{1}} \frac{a_{1}^{a} d x^{5}+m_{1}^{a} d x^{6}}{\sqrt{\left(m_{1}^{a}\right)^{2}+\left(n_{1}^{a}\right)^{2}}}+Z_{2}^{i_{i}} \frac{n_{2}^{a} d x^{7}+m_{2}^{a} d x^{8}}{\sqrt{\left(m_{2}^{a}\right)^{2}+\left(n_{2}^{a}\right)^{2}}}+Z_{3}^{i a} \frac{n_{3}^{a} d x^{9}+m_{3}^{a} d x^{10}}{\sqrt{\left(m_{3}^{a}\right)^{2}+\left(n_{3}^{a}\right)^{2}}}\right]
$$

Superpotential:

from dim.red. + DBI fluctuations

agrees with the domain-wall argument: $W=\int G^{(6)}$
(with $G^{(6)}$ complexification of the solution of $d_{H} G=Q_{R R}$)

$$
W=\frac{1}{4} \int_{\mathcal{M}_{6}} e^{i J^{c}}\left(\overline{\mathbf{G}}-i d_{H} \Omega^{c}\right)+\frac{1}{4} \int_{\pi_{a}} \omega_{Y M}^{c}
$$

$$
\omega_{Y M}^{c}=Z^{i_{a}} \wedge \omega Z^{i_{a}}+\frac{2}{3} i f_{i_{a} i_{b} i_{c}} Z^{i_{a}} \wedge Z^{i_{b}} \wedge Z^{i_{c}}
$$

$$
Z^{i_{a}}=\left[Z_{1}^{i_{1}} \frac{a_{1}^{a} d x^{5}+m_{1}^{a} d x^{6}}{\sqrt{\left(m_{1}^{a}\right)^{2}+\left(n_{1}^{a}\right)^{2}}}+Z_{2}^{i_{2}} \frac{n_{2}^{a} d x^{7}+m_{2}^{a} d x^{8}}{\sqrt{\left(m_{2}^{a}\right)^{2}+\left(n_{2}^{a}\right)^{2}}}+Z_{3}^{i a} \frac{n_{3}^{a} d x^{9}+m_{3}^{a} d x^{10}}{\sqrt{\left(m_{3}^{a}\right)^{2}+\left(n_{3}^{a}\right)^{2}}}\right]
$$

in agreement with Martucci, Marchesano, Camara, Grana but valid also for susy-breaking and/or non-Mink vacua, automatically holomorphic

D-terms:

- D6-D6 sector uncharged under $U(1)$ part

$$
D_{a}=\frac{q_{a}^{0}}{s^{\prime}}-\sum_{A=1}^{3} \frac{q_{a}^{A}}{u_{A}^{\prime}}=\frac{q_{a}^{0}}{s+\sum_{A=1}^{3} p_{A}^{a} \frac{z_{a}^{i_{A} 2}}{t_{A}}}-\sum_{A=1}^{3} \frac{q_{a}^{A}}{u_{A}-p_{0}^{a} \frac{z_{a}^{i_{a}} t_{A}}{t_{A}}+\sum_{B, C=1}^{3} d_{A B C} p_{B}^{a} \frac{\left.z_{a}^{i_{a}}\right)^{2}}{t_{C}}}
$$

- Only non-abelian D-term

$$
D_{i_{a}}=i K_{Z_{A}^{i_{b}}}\left(X_{i_{a}}\right)_{A}^{i_{b}}=Q_{A}^{a} f_{i_{a} j_{a} k_{a}} \frac{z_{A}^{j_{a}} \zeta_{A}^{k_{c}}}{t_{A}} \quad Q_{A}^{a}=\frac{p_{0}^{a}}{u_{A}^{\prime}}-\frac{p_{A}^{a}}{s^{\prime}}-\frac{p_{B}^{a}}{u_{C}^{\prime}}-\frac{p_{C}^{a}}{u_{B}^{\prime}}
$$

D-terms:

- D6-D6 sector uncharged under $U(1)$ part

$$
D_{a}=\frac{q_{a}^{0}}{s^{\prime}}-\sum_{A=1}^{3} \frac{q_{a}^{A}}{u_{A}^{\prime}}=\frac{q_{a}^{0}}{s+\sum_{A=1}^{3} p_{A}^{a} \frac{z_{a}^{i_{a} 2}}{t_{A}}}-\sum_{A=1}^{3} \frac{q_{a}^{A}}{u_{A}-p_{0}^{a} \frac{z_{a}^{i_{a}}}{t_{A}}+\sum_{B, C=1}^{3} d_{A B C} p_{B}^{a} \frac{i_{a}^{i_{a}}}{t_{0}}}
$$

- Only non-abelian D-term

$$
D_{i_{a}}=i K_{Z_{A}^{i_{b}}}\left(X_{i_{a}}\right)_{A}^{i_{b}}=Q_{A}^{a} f_{i_{a} j_{a} k_{a}} \frac{z_{A}^{j_{a}} \zeta_{A}^{k_{c}}}{t_{A}} \quad Q_{A}^{a}=\frac{p_{0}^{a}}{u_{A}^{\prime}}-\frac{p_{A}^{a}}{s^{\prime}}-\frac{p_{B}^{a}}{u_{C}^{\prime}}-\frac{p_{C}^{a}}{u_{B}^{\prime}}
$$

Gauge kinetic function:

$$
f_{a} \propto \Omega_{\pi_{a}}^{\prime c}=\Omega_{\pi_{a}}^{c}+\sum_{b} \int_{\pi_{a}} Z^{i_{b}} \phi^{i_{b}}\left[\pi_{b}\right]=\Omega_{\pi_{a}}^{c}+\sum_{b}(\text { non hol. }) \times I_{a b}
$$

dual to the type-IIB " ρ-problem":

- solution 1: (Berg, Haack, Kors '04) - 1-loop from open strings (see Akerblom et al. '07 for IIA)
- solution 2: (Baumann et al. '06) - tree level from closed-strings inter-brane backreaction

D-terms:

- D6-D6 sector uncharged under $\mathrm{U}(1)$ part

$$
D_{a}=\frac{q_{a}^{0}}{s^{\prime}}-\sum_{A=1}^{3} \frac{q_{a}^{A}}{u_{A}^{\prime}}=\frac{q_{a}^{0}}{s+\sum_{A=1}^{3} p_{A}^{a} \frac{z_{a}^{i_{A} 2}}{t_{A}}}-\sum_{A=1}^{3} \frac{q_{a}^{A}}{u_{A}-p_{0}^{a} \frac{z_{a}^{i_{a}} t_{A}}{t_{A}}+\sum_{B, C=1}^{3} d_{A B C} p_{B}^{a} \frac{\left.z_{a}^{i_{a}}\right)^{2}}{t_{C}}}
$$

- Only non-abelian D-term

$$
D_{i_{a}}=i K_{Z_{A}^{i_{i}}}\left(X_{i_{a}}\right)_{A}^{i_{b}}=Q_{A}^{a} f_{i_{a} j_{a} k_{a}} \frac{z_{A}^{j_{a}} \zeta_{A}^{k_{c}}}{t_{A}} \quad Q_{A}^{a}=\frac{p_{0}^{a}}{u_{A}^{\prime}}-\frac{p_{A}^{a}}{s^{\prime}}-\frac{p_{B}^{a}}{u_{C}^{\prime}}-\frac{p_{C}^{a}}{u_{B}^{\prime}}
$$

Gauge kinetic function:

$$
f_{a} \propto \Omega_{\pi_{a}}^{\prime c}=\Omega_{\pi_{a}}^{c}+\sum_{b} \int_{\pi_{a}} Z^{i_{b}} \phi^{i_{b}}\left[\pi_{b}\right]=\Omega_{\pi_{a}}^{c}+\sum_{b}(\text { non hol. }) \times I_{a b}
$$

dual to the type-IIB " ρ-problem":

- solution 1: (Berg, Haack, Kors '04) - 1-loop from open strings (see Akerblom et al. '07 for IIA)
- solution 2: (Baumann et al. '06) - tree level from closed-strings inter-brane backreaction

Conclusions:
EFT is known up to quadratic fluctuations, higher-power terms only partially known, not under control...

3. EFT for the D6-D6' sector

(not from supergravity)

Kahler potential: from string amplitudes (Lust et al... Bertolini et al...)

$$
K_{i j}^{a b}=\delta_{i j} S^{-\alpha} \prod_{I=1}^{3} U_{I}^{-\left(\beta+\xi \theta_{a b}^{T}\right)} T_{I}^{-\left(\gamma+\zeta \theta_{a b}^{t}\right)} \sqrt{\frac{\Gamma\left(\theta_{a b}^{1}\right) \Gamma\left(\theta_{a b}^{2}\right) \Gamma\left(1+\theta_{a b}^{3}\right)}{\Gamma\left(1-\theta_{a b}^{1}\right) \Gamma\left(1-\theta_{a b}^{2}\right) \Gamma\left(-\theta_{a b}^{3}\right)}},
$$

3. EFT for the D6-D6' sector

(not from supergravity)

Kahler potential: from string amplitudes (Lust et al... Bertolini et al...)

$$
K_{i j}^{a b}=\delta_{i j} S^{-\alpha} \prod_{I=1}^{3} U_{I}^{-\left(\beta+\xi \theta_{a b}^{t}\right)} T_{I}^{-\left(\gamma+\zeta \theta_{a b}^{t}\right)} \sqrt{\frac{\Gamma\left(\theta_{b}^{1}\right) \Gamma\left(\theta_{a b}^{2}\right) \Gamma\left(1+\theta_{a b}^{3}\right)}{\Gamma\left(1-\theta_{a b}^{1}\right) \Gamma\left(1-\theta_{a b}^{2}\right) \Gamma\left(-\theta_{a b}^{3}\right)},}
$$

recently proposed (by Akerblom et al. '07)

$$
K_{i j}^{a b}=\delta_{i j} S^{-\frac{1}{4}} \prod_{J=1}^{3} U_{J}^{-\frac{1}{4}} T_{J}^{-\left(\frac{1}{2} \pm \frac{1}{2} \operatorname{sign}\left(I_{a b}\right) \theta_{a b}^{J}\right)} \sqrt{\frac{\Gamma\left(\theta_{a b}^{1}\right) \Gamma\left(\theta_{a b}^{2}\right) \Gamma\left(1+\theta_{a b}^{3}\right)}{\Gamma\left(1-\theta_{a b}^{1} \Gamma\left(1-\theta_{a b}^{2}\right) \Gamma\left(-\theta_{a b}^{3}\right)\right.}},
$$

still to be confirmed...

3. EFT for the D6-D6' sector

(not from supergravity)

Kahler potential: from string amplitudes (Lust et al... Bertolini et al...)

$$
K_{i j}^{a b}=\delta_{i j} S^{-\alpha} \prod_{I=1}^{3} U_{I}^{-\left(\beta+\xi \theta_{a b}^{I}\right)} T_{I}^{-\left(\gamma+\zeta \theta_{a b}^{I}\right)} \sqrt{\frac{\Gamma\left(\theta_{a b}^{1}\right) \Gamma\left(\theta_{a b}^{2}\right) \Gamma\left(1+\theta_{a b}^{3}\right)}{\Gamma\left(1-\theta_{a b}^{1} \Gamma\left(1-\theta_{a b}^{2}\right) \Gamma\left(-\theta_{a b}^{3}\right)\right.}},
$$

recently proposed (by Akerblom et al. '07)

$$
K_{i j}^{a b}=\delta_{i j} S^{-\frac{1}{4}} \prod_{J=1}^{3} U_{J}^{-\frac{1}{4}} T_{J}^{-\left(\frac{1}{2} \pm \frac{1}{2} \operatorname{sig}\left(I_{a b}\right) \theta_{a b}^{J}\right)} \sqrt{\frac{\Gamma\left(\theta_{\theta b}^{1}\right) \Gamma\left(\theta_{a b}^{2}\right) \Gamma\left(1+\theta_{a b}^{3}\right)}{\Gamma\left(1-\theta_{a b}^{1}\right) \Gamma\left(1-\theta_{a b}^{2}\right) \Gamma\left(-\theta_{a b}^{3}\right)}},
$$

still to be confirmed...

Superpotential:

$$
W=Y_{i j k} \phi^{i} \phi^{j} \phi^{k}+\mu_{1 i j k} \phi^{i} \phi^{j} Z^{k}+\mu_{2 i j} \phi^{i} \phi^{j}+\ldots
$$

$Y_{i j k}$ from w.s. instantons,
(~IIB perturbative calculus)

$$
Y_{i j k}=h_{q u} \sigma_{a b c} \prod_{r=1}^{n} \vartheta\left[\begin{array}{l}
\delta^{(r)} \\
\phi^{(r)}
\end{array}\right]\left(\kappa^{(r)}\right)
$$

Cremades, Ibanez, Marchesano, Cvetic, Papadimitriou

3. EFT for the D6-D6' sector

(not from supergravity)

Kahler potential: from string amplitudes (Lust et al... Bertolini et al...)

$$
K_{i j}^{a b}=\delta_{i j} S^{-\alpha} \prod_{I=1}^{3} U_{I}^{-\left(\beta+\xi \theta_{a b}^{I}\right)} T_{I}^{-\left(\gamma+\zeta \theta_{a b}^{I}\right)} \sqrt{\frac{\Gamma\left(\theta_{a b}^{1}\right) \Gamma\left(\theta_{\theta b}^{2}\right) \Gamma\left(1+\theta_{a b}^{3}\right)}{\Gamma\left(1-\theta_{a b}^{1} \Gamma\left(1-\theta_{a b}^{2}\right) \Gamma\left(-\theta_{a b}^{3}\right)\right.}},
$$

recently proposed (by Akerblom et al. '07)

$$
K_{i j}^{a b}=\delta_{i j} S^{-\frac{1}{4}} \prod_{J=1}^{3} U_{J}^{-\frac{1}{4}} T_{J}^{-\left(\frac{1}{2} \pm \frac{1}{2} \operatorname{sig}\left(I_{a b}\right) \theta_{a b}^{J}\right)} \sqrt{\frac{\Gamma\left(\theta_{\theta b}^{1}\right) \Gamma\left(\theta_{a b}^{2}\right) \Gamma\left(1+\theta_{a b}^{3}\right)}{\Gamma\left(1-\theta_{a b}^{1}\right) \Gamma\left(1-\theta_{a b}^{2}\right) \Gamma\left(-\theta_{a b}^{3}\right)}},
$$

still to be confirmed...

Superpotential:

$$
W=Y_{i j k} \phi^{i} \phi^{j} \phi^{k}+\mu_{1 i j k} \phi^{i} \phi^{j} Z^{k}+\mu_{2 i j} \phi^{i} \phi^{j}+\ldots
$$

$Y_{i j k}$ from w.s. instantons,
(~IIB perturbative calculus)

$$
Y_{i j k}=h_{q u} \sigma_{a b c} \prod_{r=1}^{n} \vartheta\left[\begin{array}{l}
\delta^{(r)} \\
\phi^{(r)}
\end{array}\right]\left(\kappa^{(r)}\right)
$$

Cremades, Ibanez, Marchesano, Cvetic, Papadimitriou

Killing vectors: known (gauge transformation properties of chiral fields)
Gauge kinetic functions: (corrections are higher order, from threshold....)

Extra interesting ingredients:

- KK5-monopoles:
- $\omega \omega \neq 0$ (alternative description of twisted sector, stabilization, ...)
- Phenomenology ($N=1$ configurations)
- dual to D6-branes
- D6-KK5 intersecting models \rightarrow KK6 M-theory configuration
- May help with dS vacua? (Silverstein '07)

Extra interesting ingredients:

- KK5-monopoles:
- $\omega \omega \neq 0$ (alternative description of twisted sector, stabilization, ...)
- Phenomenology ($N=1$ configurations)
- dual to D6-branes
- D6-KK5 intersecting models \rightarrow KK6 M-theory configuration
- May help with dS vacua? (Silverstein '07)
- Non-geometrical fluxes:
- how far one can go with EFT?

Extra interesting ingredients:

- KK5-monopoles:
- $\omega \omega \neq 0$ (alternative description of twisted sector, stabilization, ...)
- Phenomenology ($N=1$ configurations)
- dual to D6-branes
- D6-KK5 intersecting models \rightarrow KK6 M-theory configuration
- May help with dS vacua? (Silverstein '07)
- Non-geometrical fluxes:
- how far one can go with EFT?
- Add Coisotropic branes (non-commuting fluxes) in EFT;

Extra interesting ingredients:

- KK5-monopoles:
- $\omega \omega \neq 0$ (alternative description of twisted sector, stabilization, ...)
- Phenomenology ($N=1$ configurations)
- dual to D6-branes
- D6-KK5 intersecting models \rightarrow KK6 M-theory configuration
- May help with dS vacua? (Silverstein '07)
- Non-geometrical fluxes:
- how far one can go with EFT?
- Add Coisotropic branes (non-commuting fluxes) in EFT;
- Other important subjects not discussed here:
- α^{\prime}, g_{s} corrections to EFT (threshold corrections...);
- Non-perturbative corrections (E2-instantons...);
- Inflation...

Conclusions:

- The EFT of the bulk sector is sufficently known for several compactifications (Orbifolds, twisted tori, coset spaces....)

Conclusions:

- The EFT of the bulk sector is sufficently known for several compactifications (Orbifolds, twisted tori, coset spaces....)
- EFT for untwisted sector (vector sector)
- mainly known up to quadratic fluctuations on orbifolds,
- calculable in many other compactifications from DBI
- still unknown above quadratic fluctuations (up to special cases)

Conclusions:

- The EFT of the bulk sector is sufficently known for several compactifications (Orbifolds, twisted tori, coset spaces....)
- EFT for untwisted sector (vector sector)
- mainly known up to quadratic fluctuations on orbifolds,
- calculable in many other compactifications from DBI
- still unknown above quadratic fluctuations (up to special cases)
- EFT for twisted fields (chiral sector)
- it is partially known for orbifolds (still some open questions)
- it is not known for other compactifications

Conclusions:

- The EFT of the bulk sector is sufficently known for several compactifications (Orbifolds, twisted tori, coset spaces....)
- EFT for untwisted sector (vector sector)
- mainly known up to quadratic fluctuations on orbifolds,
- calculable in many other compactifications from DBI
- still unknown above quadratic fluctuations (up to special cases)
- EFT for twisted fields (chiral sector)
- it is partially known for orbifolds (still some open questions)
- it is not known for other compactifications
- Soft terms are partially known (rely on the info above) for special cases
- deserve a more careful study

Conclusions:

- The EFT of the bulk sector is sufficently known for several compactifications (Orbifolds, twisted tori, coset spaces....)
- EFT for untwisted sector (vector sector)
- mainly known up to quadratic fluctuations on orbifolds,
- calculable in many other compactifications from DBI
- still unknown above quadratic fluctuations (up to special cases)
- EFT for twisted fields (chiral sector)
- it is partially known for orbifolds (still some open questions)
- it is not known for other compactifications
- Soft terms are partially known (rely on the info above) for special cases
- deserve a more careful study

Next step - Start putting everything together....

