Millions of Standard Models on Z_{6}^{\prime} ?

Florian Gmeiner

(NIKHEF, Amsterdam)

work with Gabriele Honecker

Outline

Introduction
Motivation
Intersecting Brane Models

Setup
Geometry
Spectrum

Results
General statistics
Standard models

Conclusions

Motivation

The Landscape

- How does the landscape look like? Which models are typical, which are rare?
- Are there common features and/or correlations between the properties of different low energy models?
- How can we make predictions for particle physics experiments?
- Is it possible to build something close to the (supersymmetric) standard model from string theory?
> Many different approaches - here: Intersecting D-branes.

Motivation

The Landscape

- How does the landscape look like? Which models are typical, which are rare?
- Are there common features and/or correlations between the properties of different low energy models?
- How can we make predictions for particle physics experiments?

String Phenomenology

- Is it possible to build something close to the (supersymmetric) standard model from string theory?
- Many different approaches - here: Intersecting D-branes.

IBMs

- Type IIA string theory on an orbifold background $\mathbb{R}^{3,1} \times T^{6} /(\Omega \mathcal{R} \times G), G$ being a discrete group.

- Orientifold projection \mathcal{R} leads to $O 6$-planes, wrapping 3 -cycles $\Pi_{O 6}$, RR charged.
- Introduce stacks of $N_{i} D 6$-branes wrapping cycles Π_{i} to cancel RR tadpoles.
- Matter arises at intersections of $\Pi_{i}, \Pi_{i}^{\prime}, \Pi_{O 6}$.

IBMs

Constraints

- Supersymmetry
\rightsquigarrow Branes have to wrap calibrated cycles.
- Tadpole cancellation

$$
\sum_{i} N_{i}\left(\Pi_{i}+\Pi_{i}^{\prime}\right)=L \Pi_{O 6}
$$

- K-theory

$$
\sum_{i} N_{i} \Pi_{i} \circ \Pi_{S p(2)} \equiv 0 \quad \bmod 2
$$

IBMs

Constraints

- Supersymmetry
\rightsquigarrow Branes have to wrap calibrated cycles.
- Tadpole cancellation

$$
\sum_{i} N_{i}\left(\Pi_{i}+\Pi_{i}^{\prime}\right)=L \Pi_{O 6}
$$

- K-theory

$$
\sum_{i} N_{i} \Pi_{i} \circ \Pi_{S p(2)} \equiv 0 \quad \bmod 2
$$

Spectrum

- Closed strings: $\mathcal{N}=1$ sugra, axion-dilaton, $h_{1,1}^{-}$Kähler $+h_{2,1}$ compl.str. moduli, $h_{1,1}^{+}$vector multiplets
- Open strings: $U(N) / S O(2 N) / S p(N)$ gauge groups + charged matter

Geometry

- Orbifold action $\theta: z^{i} \rightarrow e^{2 \pi i v_{i}} z^{i}$ with $v_{i}=\{1 / 6,1 / 3,-1 / 2\}$.
- Two shapes of tori compatible with \mathcal{R} :

- 4dim. bass of of tous ocles
\sim Bdim. basis of octes combine for tor frect.points on $T_{1} \times T_{3}$ and 1 -cocle of
\rightarrow Tadpore condions ractorise, 00 p'anes contribute only to torus part. - K-theory conditions always fullfilled - as in \mathbb{Z}_{6} case.

$T^{6} / \mathbb{Z}_{6}^{\prime}$

Geometry

- Orbifold action $\theta: z^{i} \rightarrow e^{2 \pi i v_{i}} z^{i}$ with $v_{i}=\{1 / 6,1 / 3,-1 / 2\}$.
- Two shapes of tori compatible with \mathcal{R} :

3-cycles

$$
\Pi=\frac{1}{2}\left(\Pi_{t o r u s}+\Pi_{e x c}\right) .
$$

- 4-dim. basis of torus-cycles
- 8-dim. basis of cycles combined from two-cycles wrapping θ^{3} fixed-points on $T_{1} \times T_{3}$ and 1-cycles on T_{2}.
- Tadpole conditions factorise, O6 planes contribute only to torus part.
- K-theory conditions always fullfilled - as in \mathbb{Z}_{6} case.

Spectrum

Chiral matter spectrum

$\left(\mathbf{A n t i}_{a}\right)$	$\frac{1}{2}\left(I_{a a^{\prime}}+I_{a O 6}\right)$
$\left(\mathbf{S y m}_{a}\right)$	$\frac{1}{2}\left(I_{a a^{\prime}}-I_{a O 6}\right)$
$\left(\mathbf{N}_{a}, \overline{\mathbf{N}}_{b}\right)$	$I_{a b}$
$\left(\mathbf{N}_{a}, \overline{\mathbf{N}}_{b}\right)$	$I_{a b^{\prime}}$

Spectrum

Chiral matter spectrum

$\left(\mathbf{A n t i}_{a}\right)$	$\frac{1}{2}\left(I_{a a^{\prime}}+I_{a O 6}\right)$
$\left(\mathbf{S y m}_{a}\right)$	$\frac{1}{2}\left(I_{a a^{\prime}}-I_{a O 6}\right)$
$\left(\mathbf{N}_{a}, \overline{\mathbf{N}}_{b}\right)$	$I_{a b}$
$\left(\mathbf{N}_{a}, \overline{\mathbf{N}}_{b}\right)$	$I_{a b^{\prime}}$

Full matter spectrum

$\left(\mathbf{A d j}_{a}\right)$		$1+\frac{1}{4} \sum_{k=1}^{N-1}\left\|I_{a\left(\theta^{k} a\right)}+I_{a\left(\theta^{k} a\right)}^{\mathbb{Z}_{2}}\right\|$
$\left(\mathbf{A n t i}_{a}\right)$	$\frac{1}{4} \sum_{k=0}^{N-1}$	$\left\|I_{a\left(\theta^{k} a^{\prime}\right)}+I_{a\left(\theta^{k} a^{\prime}\right)}^{\mathbb{Z}_{2}}+I_{a}^{\Omega \mathcal{R} \theta^{-k}}+I_{a}^{\Omega \mathcal{R} \theta^{-k+N}}\right\|$
$\left(\mathbf{S y m}_{a}\right)$	$\frac{1}{4} \sum_{k=0}^{N-1}$	$\left\|I_{a\left(\theta^{k} a^{\prime}\right)}+I_{a\left(\theta^{k} a^{\prime}\right)}^{\mathbb{Z}_{2}}-I_{a}^{\Omega \mathcal{R} \theta^{-k}}-I_{a}^{\Omega \mathcal{R} \theta^{-k+N}}\right\|$
$\left(\mathbf{N}_{a}, \overline{\mathbf{N}}_{b}\right)$		$\frac{1}{2} \sum_{k=0}^{N-1}\left\|I_{a\left(\theta^{k} b\right)}+I_{a\left(\theta^{k} b\right)}^{\mathbb{Z}_{2}}\right\|$
$\left(\mathbf{N}_{a}, \mathbf{N}_{b}\right)$		$\frac{1}{2} \sum_{k=0}^{N-1}\left\|I_{a\left(\theta^{k} b^{\prime}\right)}+I_{a\left(\theta^{k} b^{\prime}\right)}^{\mathbb{Z}_{2}}\right\|$

General statistics

- Number of solutions to constraining equations depends on geometry.
- Inclusion of exceptional cycles increases the number solutions drastically.
- But AA / BA and AB / BB are equivalent.
- $\mathcal{O}\left(10^{23}\right)$ inequivalent (?) solutions.

Total rank

- Distribution shows same behaviour for torus cycles as $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$.
- Exceptional cycles enhance large ranks.

Single gauge group factors

- Distribution scales for bulk models $\sim(L+1-N) \frac{L^{4}}{N^{2}}$ - as found for $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ by Douglas,Taylor.
- Inclusion of exceptional cycles gives $\sim n_{e}^{L+1-N} \frac{L^{4}}{N^{2}}$ - exponential fall-off.

Standard models

$U(3)_{a} \times U(2)_{b} \times U(1)_{c} \times U(1)_{d}$	
particle	n
Q_{L}	$\chi^{a b}+\chi^{a b^{\prime}}$
u_{R}	$\chi^{a^{\prime} c}$
d_{R}	$\chi^{a^{\prime} c^{\prime}}$
L	$\chi^{b d}+\chi^{b^{\prime} d}$
e_{R}	$\chi^{c d^{\prime}}+\chi^{\mathbf{S y m}_{d}}$
$Q_{Y}=\frac{1}{6} Q_{a}+\frac{1}{2} Q_{c}+\frac{1}{2} Q_{d}$	

- Different constructions $\left(U(1)_{Y}\right.$ assignments) have been searched for, but only these have been found.
- $\mathcal{O}\left(10^{15}\right)$ three generation models.

Chiral exotics

- Absolute number of chiral exotics

$$
\xi=\sum_{v, h}\left|\chi^{v h}-\chi^{v^{\prime} h}\right| .
$$

- $\mathcal{O}\left(10^{7}\right)$ three generation models without chiral exotics.

Higgs families

- This gives an upper limit on Higgs families, it could also be non-chiral lepton pairs (can be differentiated by B-L charge, if $U(1)_{B-L}$ is massless).
- Correlation between number of exotics and number of Higgs.
- Example with $9\left(H_{u}+H_{d}\right)$.

Hidden sector

\mathbf{s}	$\left\{\mathbf{N}_{\mathbf{i}}\right\}$	\# models
0		61,440
1	1	147,456
	3	442,368
2	2,1	$2,433,024$
3	$1,1,1$	$4,055,040$

- Models without hidden sector exist with 18 or 21 Higgs families.
- All of them have a massless $B-L$, chiral spectra look identical - are these really independent models?

Example

Chiral matter

$$
\begin{aligned}
{[C]=3 \times[} & (\mathbf{3}, \mathbf{2})_{\mathbf{1} / \mathbf{6}, \mathbf{1} / \mathbf{3}}^{(0,0)}+(\overline{\mathbf{3}}, \mathbf{1})_{\mathbf{1} / \mathbf{3},-\mathbf{1 / \mathbf { 3 }}}^{(1,0)}+(\overline{\mathbf{3}}, \mathbf{1})_{-\mathbf{2} / \mathbf{3},-\mathbf{1} / \mathbf{3}}^{(-1,0)}+(\mathbf{1}, \mathbf{1})_{\mathbf{1}, \mathbf{1}}^{(1,1)}+(\mathbf{1}, \mathbf{1})_{\mathbf{0}, \mathbf{1}}^{(-1,1)} \\
& \left.+2 \times(\mathbf{1}, \mathbf{2})_{-\mathbf{1} / \mathbf{2}, \mathbf{1}}^{(0,-1)}+(\mathbf{1}, \mathbf{2})_{\mathbf{1} / \mathbf{2}, \mathbf{1}}^{(0,1)}+6 \times(\mathbf{1}, \overline{\mathbf{2}})_{-\mathbf{1} / \mathbf{2}, \mathbf{0}}^{(-1,0)}+6 \times(\mathbf{1}, \overline{\mathbf{2}})_{\mathbf{1} / \mathbf{2}, \mathbf{0}}^{(1,0)}+3 \times(\mathbf{1}, \mathbf{1} \bar{A})_{\mathbf{0}, \mathbf{0}}^{(0,0)}\right] \\
\equiv 3 \times & {\left[Q_{L}+d_{R}+u_{R}+e_{R}+\nu_{R}+2 \times L+\bar{L}\right]+18 \times\left[H_{d}+H_{u}\right]+9 \times S, }
\end{aligned}
$$

- Massless $U(1)_{Y}$ and $U(1)_{B-L}=\frac{1}{3} U(1)_{a}+U(1)_{d}$.
- "m" rens become massive after brane displacement
- Since $U(1)_{b}$ aquires a mass absorbing a neutral closed string field, $\left(H_{n}+H_{d}\right),(L+\bar{L})$ and S are vector-like.

Example

Chiral matter

$$
\begin{aligned}
{[C]=3 \times } & {\left[(\mathbf{3}, \mathbf{2})_{\mathbf{1} / \mathbf{6}, \mathbf{1} / \mathbf{3}}^{(0,0)}+(\overline{\mathbf{3}}, \mathbf{1})_{\mathbf{1} / \mathbf{3},-\mathbf{1} / \mathbf{3}}^{(1,0)}+(\overline{\mathbf{3}}, \mathbf{1})_{-\mathbf{2} / \mathbf{3},-\mathbf{1} / \mathbf{3}}^{(-1,0)}+(\mathbf{1}, \mathbf{1})_{\mathbf{1}, \mathbf{1}}^{(1,1)}+(\mathbf{1}, \mathbf{1})_{\mathbf{0}, \mathbf{1}}^{(-1,1)}\right.} \\
& \left.+2 \times(\mathbf{1}, \mathbf{2})_{-\mathbf{1} / \mathbf{2}, \mathbf{1}}^{(0,-1)}+(\mathbf{1}, \mathbf{2})_{\mathbf{1} / \mathbf{2}, \mathbf{1}}^{(0,1)}+6 \times(\mathbf{1}, \overline{\mathbf{2}})_{-\mathbf{1} / \mathbf{2}, \mathbf{0}}^{(-1,0)}+6 \times(\mathbf{1}, \overline{\mathbf{2}})_{\mathbf{1} / \mathbf{2}, \mathbf{0}}^{(1,0)}+3 \times(\mathbf{1}, \mathbf{1} \bar{A})_{\mathbf{0}, \mathbf{0}}^{(0,0)}\right] \\
& +3 \times\left[Q_{L}+d_{R}+u_{R}+e_{R}+\nu_{R}+2 \times L+\bar{L}\right]+18 \times\left[H_{d}+H_{u}\right]+9 \times S
\end{aligned}
$$

Non-chiral matter

$$
\begin{aligned}
{[V]=} & 2 \times(\mathbf{8}, \mathbf{1})_{\mathbf{0}, \mathbf{0}}^{(0,0)}+10 \times(\mathbf{1}, \mathbf{3})_{\mathbf{0}, \mathbf{0}}^{(0,0)}+26 \times(\mathbf{1}, \mathbf{1})_{\mathbf{0}, \mathbf{0}}^{(0,0)}+\left[(\mathbf{3}, \mathbf{2})_{\mathbf{1} / \mathbf{6}, \mathbf{1} / \mathbf{3}}^{(0,0)}\right. \\
& +3 \times(\overline{\mathbf{3}}, \mathbf{1})_{\mathbf{1} / \mathbf{3}, \mathbf{2} / \mathbf{3}}^{(0,1)}+3 \times(\overline{\mathbf{3}, \mathbf{1}})_{-\mathbf{2} / \mathbf{3},-\mathbf{4} / \mathbf{3}}^{(0,-1)}+\left(3-x+1_{m}\right) \times(\mathbf{1}, \mathbf{1})_{\mathbf{1}, \mathbf{0}}^{(2,0)}+\left(1+2_{m}\right) \times\left(\overline{\mathbf{3}}_{A}, \mathbf{1}\right)_{\mathbf{1} / \mathbf{3}, \mathbf{2} / \mathbf{3}}^{(0,0)} \\
& +\left(9+1_{m}\right) \times\left(\mathbf{1}, \mathbf{3}_{S}\right)_{\mathbf{0}, \mathbf{0}}^{(0,0)}+2_{m} \times(\mathbf{1}, \overline{\mathbf{2}})_{-\mathbf{1} / \mathbf{2}, \mathbf{0}}^{(-1,0)}+2_{m} \times(\mathbf{1}, \overline{\mathbf{2}})_{\mathbf{1} / \mathbf{2}, \mathbf{0}}^{(1,0)}+2_{m} \times(\mathbf{1}, \mathbf{2})_{-\mathbf{1} / \mathbf{2},-\mathbf{1}}^{(0,-1)} \\
& \left.+1_{m} \times(\mathbf{1}, \mathbf{2})_{\mathbf{1} / \mathbf{2}, \mathbf{1}}^{(0,1)}+1_{m} \times\left(\mathbf{1}, \mathbf{1}_{A}\right)_{\mathbf{0}, \mathbf{0}}^{(0,0)}+1_{m} \times(\mathbf{1}, \mathbf{1})_{\mathbf{0},-\mathbf{1}}^{(1,-1)}+1_{m} \times(\mathbf{1}, \mathbf{1})_{\mathbf{1}, \mathbf{1}}^{(1,1)}+c . c .\right]
\end{aligned}
$$

Massless

* " ${ }^{2}$ " reps. become massive after brane displacement.

Example

Chiral matter

$$
\begin{aligned}
{[C]=} & {\left[(\mathbf{3}, \mathbf{2})_{\mathbf{1} / \mathbf{6}, \mathbf{1} / \mathbf{3}}^{(0,0)}+(\overline{\mathbf{3}}, \mathbf{1})_{\mathbf{1} / \mathbf{3},-\mathbf{1} / \mathbf{3}}^{(1,0)}+(\overline{\mathbf{3}}, \mathbf{1})_{-\mathbf{2} / \mathbf{3},-\mathbf{1} / \mathbf{3}}^{(-1,0)}+(\mathbf{1}, \mathbf{1})_{\mathbf{1}, \mathbf{1}}^{(1,1)}+(\mathbf{1}, \mathbf{1})_{\mathbf{0}, \mathbf{1}}^{(-1,1)}\right.} \\
& \left.+2 \times(\mathbf{1}, \mathbf{2})_{-\mathbf{1} / \mathbf{2},-\mathbf{1}}^{(0,-1)}+(\mathbf{1}, \mathbf{2})_{\mathbf{1} / \mathbf{2}, \mathbf{1}}^{(0,1)}+6 \times(\mathbf{1}, \overline{\mathbf{2}})_{-\mathbf{1} / \mathbf{2}, \mathbf{0}}^{(-1,0)}+6 \times(\mathbf{1}, \overline{\mathbf{2}})_{\mathbf{1} / \mathbf{2}, \mathbf{0}}^{(1,0)}+3 \times(\mathbf{1}, \mathbf{1} \bar{A})_{\mathbf{0}, \mathbf{0}}^{(0,0)}\right] \\
\equiv & 3 \times\left[Q_{L}+d_{R}+u_{R}+e_{R}+\nu_{R}+2 \times L+\bar{L}\right]+18 \times\left[H_{d}+H_{u}\right]+9 \times S
\end{aligned}
$$

Non-chiral matter

$$
\begin{aligned}
{[V]=} & 2 \times(\mathbf{8}, \mathbf{1})_{\mathbf{0}, \mathbf{0}}^{(0,0)}+10 \times(\mathbf{1}, \mathbf{3})_{\mathbf{0}, \mathbf{0}}^{(0,0)}+26 \times(\mathbf{1}, \mathbf{1})_{\mathbf{0}, \mathbf{0}}^{(0,0)}+\left[(\mathbf{3}, \mathbf{2})_{\mathbf{1} / \mathbf{6}, \mathbf{1} / \mathbf{3}}^{(0,0)}\right. \\
& +3 \times(\overline{\mathbf{3}}, \mathbf{1})_{\mathbf{1} / \mathbf{3}, \mathbf{2} / \mathbf{3}}^{(0,1)}+3 \times(\overline{\mathbf{3}}, \mathbf{1})_{-\mathbf{2} / \mathbf{3},-\mathbf{4} / \mathbf{3}}^{(0,-1)}+\left(3-x+1_{m}\right) \times(\mathbf{1}, \mathbf{1})_{\mathbf{1}, \mathbf{0}}^{(2,0)}+\left(1+2_{m}\right) \times\left(\overline{\mathbf{3}}_{A}, \mathbf{1}\right)_{\mathbf{1} / \mathbf{3}, \mathbf{2} / \mathbf{3}}^{(0,0)} \\
& +\left(9+1_{m}\right) \times\left(\mathbf{1}, \mathbf{3}_{S}\right)_{\mathbf{0}, \mathbf{0}}^{(0,0)}+2_{m} \times(\mathbf{1}, \overline{\mathbf{2}})_{-\mathbf{1} / \mathbf{2}, \mathbf{0}}^{(-1,0)}+2_{m} \times(\mathbf{1}, \overline{\mathbf{2}})_{\mathbf{1} / \mathbf{2}, \mathbf{0}}^{(1,0)}+2_{m} \times(\mathbf{1}, \mathbf{2})_{-\mathbf{1} / \mathbf{2},-\mathbf{1}}^{(0,-1)} \\
& \left.+1_{m} \times(\mathbf{1}, \mathbf{2})_{\mathbf{1} / \mathbf{2}, \mathbf{1}}^{(0,1)}+1_{m} \times\left(\mathbf{1}, \mathbf{1}_{A}\right)_{\mathbf{0}, \mathbf{0}}^{(0,0)}+1_{m} \times(\mathbf{1}, \mathbf{1})_{\mathbf{0},-\mathbf{1}}^{(1,-1)}+1_{m} \times(\mathbf{1}, \mathbf{1})_{\mathbf{1}, \mathbf{1}}^{(1,1)}+c . c .\right]
\end{aligned}
$$

Remarks

- Massless $U(1)_{Y}$ and $U(1)_{B-L}=\frac{1}{3} U(1)_{a}+U(1)_{d}$.
- " m " reps. become massive after brane displacement.
- Since $U(1)_{b}$ aquires a mass absorbing a neutral closed string field, $\left(H_{u}+H_{d}\right),(L+\bar{L})$ and S are vector-like.
- μ-term perturbatively forbidden, as well as ν_{R}^{2} and $L^{2} H_{u}^{2}$.

Conclusions

Summary

- Systematic study of all possible compactifications on $T^{6} / \mathbb{Z}_{6}^{\prime}$.
- Complete matter spectra are computable algebraically (chiral and non-chiral).
- Out of $\mathcal{O}\left(10^{23}\right)$ models we found $\mathcal{O}\left(10^{15}\right)$ with a sm gauge group, out of which $\mathcal{O}\left(10^{7}\right)$ have no chiral exotics.

Open questions

- It is mot clear if all models are truely independent solutions or connected by further symmetries. The fact that many have identical chiral properties suggests strongly that this is the case.
- More detailed analysis (Yukawa couplings, gauge couplings at lower energies, etc.) should be interesting.
- How to deal with the excess of Higgs families?

Conclusions

Summary

- Systematic study of all possible compactifications on $T^{6} / \mathbb{Z}_{6}^{\prime}$.
- Complete matter spectra are computable algebraically (chiral and non-chiral).
- Out of $\mathcal{O}\left(10^{23}\right)$ models we found $\mathcal{O}\left(10^{15}\right)$ with a sm gauge group, out of which $\mathcal{O}\left(10^{7}\right)$ have no chiral exotics.

Open questions

- It is not clear if all models are truely independent solutions or connected by further symmetries. The fact that many have identical chiral properties suggests strongly that this is the case.
- More detailed analysis (Yukawa couplings, gauge couplings at lower energies, etc.) should be interesting.
- How to deal with the excess of Higgs families?

