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Motivation

The Landscape
I How does the landscape look like? Which models are typical, which

are rare?
I Are there common features and/or correlations between the

properties of different low energy models?
I How can we make predictions for particle physics experiments?

String Phenomenology
I Is it possible to build something close to the (supersymmetric)

standard model from string theory?
I Many different approaches – here: Intersecting D-branes.
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IBMs

I Type IIA string theory on an orbifold background
R3,1 × T6/(ΩR×G), G being a discrete group.

R(3,1)I

O6D6 D6’

σ

M

I Orientifold projection R leads to O6-planes, wrapping 3-cycles ΠO6,
RR charged.

I Introduce stacks of Ni D6-branes wrapping cycles Πi to cancel RR
tadpoles.

I Matter arises at intersections of Πi ,Π′i ,ΠO6.



IBMs
Constraints

I Supersymmetry
 Branes have to wrap calibrated cycles.

I Tadpole cancellation∑
i

Ni(Πi + Π′i) = L ΠO6.

I K-theory ∑
i

NiΠi ◦ΠSp(2) ≡ 0 mod 2.

Spectrum
I Closed strings: N = 1 sugra, axion-dilaton, h−1,1 Kähler + h2,1

compl.str. moduli, h+
1,1 vector multiplets

I Open strings: U (N ) / SO(2N ) / Sp(N ) gauge groups + charged
matter
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T 6/Z′6
Geometry

I Orbifold action θ : z i → e2πivi z i with vi = {1/6, 1/3,−1/2}.
I Two shapes of tori compatible with R:

3-cycles
Π = 1

2
(Πtorus + Πexc) .

I 4-dim. basis of torus-cycles
I 8-dim. basis of cycles combined from two-cycles wrapping θ3

fixed-points on T1 × T3 and 1-cycles on T2.
I Tadpole conditions factorise, O6 planes contribute only to torus part.
I K-theory conditions always fullfilled - as in Z6 case.
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Spectrum
Chiral matter spectrum
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General statistics
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I Number of solutions to constraining equations depends on geometry.
I Inclusion of exceptional cycles increases the number solutions

drastically.
I But AA / BA and AB / BB are equivalent.
I O(1023) inequivalent (?) solutions.



Total rank
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I Distribution shows same behaviour for torus cycles as Z2× Z2.
I Exceptional cycles enhance large ranks.



Single gauge group factors
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I Distribution scales for bulk models ∼ (L + 1−N ) L4

N2 - as found for
Z2×Z2 by Douglas,Taylor.

I Inclusion of exceptional cycles gives ∼ nL+1−N
e

L4

N2 - exponential
fall-off.



Standard models

U (3)a ×U (2)b ×U (1)c ×U (1)d

particle n

QL χab + χab′

uR χa′c

dR χa′c′

L χbd + χb′d

eR χcd′ + χSymd

QY = 1
6 Qa + 1

2 Qc + 1
2 Qd

L
e R

Q uL R

SU(2) U(1)

U(1)

SU(3)

I Different constructions (U (1)Y assignments) have been searched
for, but only these have been found.

I O(1015) three generation models.



Chiral exotics
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I Absolute number of chiral exotics

ξ =
∑
v,h

∣∣∣χvh − χv′h
∣∣∣ .

I O(107) three generation models without chiral exotics.



Higgs families
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I This gives an upper limit on Higgs families, it could also be
non-chiral lepton pairs (can be differentiated by B-L charge, if
U (1)B−L is massless).

I Correlation between number of exotics and number of Higgs.
I Example with 9 (Hu + Hd).



Hidden sector
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I Models without hidden sector exist with 18 or 21 Higgs families.
I All of them have a massless B − L, chiral spectra look identical - are

these really independent models?



Example
Chiral matter
[C ] = 3×

[
(3,2)(0,0)

1/6,1/3 +
(
3,1

)(1,0)
1/3,−1/3 +

(
3,1

)(−1,0)
−2/3,−1/3 + (1,1)(1,1)

1,1 + (1,1)(−1,1)
0,1

+ 2× (1,2)(0,−1)
−1/2,−1 + (1,2)(0,1)

1/2,1 + 6×
(
1,2

)(−1,0)
−1/2,0 + 6×

(
1,2

)(1,0)
1/2,0 + 3×

(
1,1A

)(0,0)
0,0

]
≡ 3×

[
QL + dR + uR + eR + νR + 2× L + L

]
+ 18×

[
Hd + Hu

]
+ 9× S ,

Non-chiral matter
[V ] = 2× (8,1)(0,0)

0,0 + 10× (1,3)(0,0)
0,0 + 26× (1,1)(0,0)

0,0 +
[

(3,2)(0,0)
1/6,1/3

+ 3×
(
3,1

)(0,1)
1/3,2/3 + 3×

(
3,1

)(0,−1)
−2/3,−4/3 + (3− x + 1m)× (1,1)(2,0)

1,0 + (1 + 2m)× (3A,1)(0,0)
1/3,2/3

+ (9 + 1m)× (1,3S)(0,0)
0,0 + 2m ×

(
1,2

)(−1,0)
−1/2,0 + 2m ×

(
1,2

)(1,0)
1/2,0 + 2m × (1,2)(0,−1)

−1/2,−1

+ 1m × (1,2)(0,1)
1/2,1 + 1m × (1,1A)(0,0)

0,0 + 1m × (1,1)(1,−1)
0,−1 + 1m × (1,1)(1,1)

1,1 + c.c.
]
.

Remarks
I Massless U (1)Y and U (1)B−L = 1

3 U (1)a + U (1)d .
I "m" reps. become massive after brane displacement.
I Since U (1)b aquires a mass absorbing a neutral closed string field,

(Hu + Hd), (L + L̄) and S are vector-like.
I µ-term perturbatively forbidden, as well as ν2

R and L2H 2
u .
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Conclusions

Summary
I Systematic study of all possible compactifications on T6/Z′6.
I Complete matter spectra are computable algebraically (chiral and

non-chiral).
I Out of O(1023) models we found O(1015) with a sm gauge group,

out of which O(107) have no chiral exotics.

Open questions
I It is not clear if all models are truely independent solutions or

connected by further symmetries. The fact that many have identical
chiral properties suggests strongly that this is the case.

I More detailed analysis (Yukawa couplings, gauge couplings at lower
energies, etc.) should be interesting.

I How to deal with the excess of Higgs families?
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