Isometries and Approximate Flavor Symmetries in Local Models

Anshuman Maharana

DAMTP, University of Cambridge

CERN String Phenomenology Workshop, 2008

- Continuous Global Symmetries and Hyperweak Interactions in String Compactifications, arXiv:0805.4037
 C.Burgess, J.Conlon, J.Hung, S.Kom, AM, F.Quevedo
- J.P. Conlon, AM, F.Quevedo, T. Wiseman
- Numerical Ricci-flat metrics on K3, hep-th/0506129
 M.Headrick, T.Wiseman

Related Work

- Wave Functions and Yukawa Couplings in Local String Compactifications, arXiv:0807.0789
 - J. Conlon, AM, F. Quevedo

Motivation/Introduction

 Some of the biggest puzzles of the Standard Model lie in the Yukawa couplings; hierarchy in the particle masses and the CKM matrix.

Motivation/Introduction

- Some of the biggest puzzles of the Standard Model lie in the Yukawa couplings; hierarchy in the particle masses and the CKM matrix.
- Will describe a scenario for generating approximate flavor symmetries in models where SM is realized by D-branes wrapping certain localized cycles of the compactification.

Motivation/Introduction

- Some of the biggest puzzles of the Standard Model lie in the Yukawa couplings; hierarchy in the particle masses and the CKM matrix.
- Will describe a scenario for generating approximate flavor symmetries in models where SM is realized by D-branes wrapping certain localized cycles of the compactification.

Local Models

- Many features of the physics of the Standard Model can be addressed in the local setting.
- Can think of various modules for global issue like cosmology, moduli fixing, SUSY breaking ...
- Various local metrics/properties of singularities known explicitly.

Yukawas in Local Models

 Yukawa couplings in models involving magnetized D7 branes arise from dimensional reduction of the interaction term

$$\mathcal{L}_{\mathsf{yuk}} = \int d^8x \ \bar{\psi} \Gamma^M[A_M, \psi]$$

• Superpotential involves triple overlaps of solutions to appropriately twisted Dirac and Yang Mills equations on the surface being wrapped by the branes.

Local Models and Yukawas

 Yukawa couplings in models involving magnetized D7 branes arise from dimensional reduction of the interaction term

$$\mathcal{L}_{\mathsf{yuk}} = \int d^8x \ \bar{\psi} \Gamma^M[A_M, \psi]$$

- Superpotential involves triple overlaps of solutions to appropriately twisted Dirac and Yang Mills equations on the surface being wrapped by the branes.
- A flavor symmetry can be generated if the local geometry has an isometry.
- Natural mechanism for the symmetry to be broken in a mild fashion.

Wavefunctions

J. Conlon, AM, F. Quevedo

• Wavefunctions for magnetized D7 branes wrapping $\mathbb{P}1 \times \mathbb{P}1$, $\mathbb{P}2$ (with a Fubini Study metric) embedded in a Calabi Yau

$$-\mathbb{P}1$$
:

$$\psi_{\mathbf{k}} = \frac{z^{\mathbf{k}}}{(1+z\overline{z})^{M/2}} \qquad \mathbf{k} \le \mathbf{M}$$

- ℙ2 :

$$\psi_{kn} = \frac{z_1^k z_2^n}{(1 + z_1 \bar{z}_1 + z_2 \bar{z}_2)^{M/2}} \qquad k + n \le M$$

and complex conjugates.

 There are selection rules for a Yukawa to be non-vanishing, gamma functions

$$Y_{\text{m}_{1}\text{n}_{1}\text{p}_{1},\text{m}_{2}\text{n}_{2}\text{p}_{2}}^{\text{k}_{1}\text{l}_{1},\text{k}_{2}\text{l}_{2}} \propto \frac{1}{R_{1}^{2}} \frac{\Gamma(k_{1}+l_{1})\Gamma(s-k_{1}-l_{1})}{\Gamma(s)}$$

 $s = m_{1} + n_{1} + p_{1}$

- Compact Calabi-Yaus, with holonomy group equal to SU(3) do not have any continuos isometries.
- Isometries can be present in non-compact geometries
 - Conifold : $SU(2) \times SU(2) \times U(1)$.
 - EH_3 , Resolution of $\mathbb{C}^3/\mathbb{Z}_3$ singularity : $U(3)/\mathbb{Z}_3$

- Compact Calabi-Yaus, with holonomy group equal to SU(3) do not have any isometries.
- Isometries can be present in non-compact geometries
 - Conifold : $SU(2) \times SU(2) \times U(1)$.
 - EH_3 , Resolution of $\mathbb{C}^3/\mathbb{Z}_3$ singularity : $U(3)/\mathbb{Z}_3$
- The isometries are broken by as a result of compactification, continue to remain approximate symmetries of the local geometry; but broken badly by the bulk.

- Compact Calabi-Yaus, with holonomy group equal to SU(3) do not have any isometries.
- Isometries can be present in non-compact geometries
 - Conifold : $SU(2) \times SU(2) \times U(1)$.
 - EH_3 , Resolution of $\mathbb{C}^3/\mathbb{Z}_3$ singularity : $U(3)/\mathbb{Z}_3$
- The isometries are broken by as a result of compactification, continue to remain approximate symmetries of the local geometry; but broken badly by the bulk.
- In the limit $\mathcal{V} \to \infty$, symmetry restored. Breaking parameter goes as inverse volume, *stable* against quantum corrections.

- Compact Calabi-Yaus, with holonomy group equal to SU(3) do not have any isometries.
- Isometries can be present in non-compact geometries
 - Conifold : $SU(2) \times SU(2) \times U(1)$.
 - EH_3 , Resolution of $\mathbb{C}^3/\mathbb{Z}_3$ singularity : $U(3)/\mathbb{Z}_3$
- The isometries are broken by as a result of compactification, continue to remain approximate symmetries of the local geometry; but broken badly by the bulk.
- In the limit $\mathcal{V} \to \infty$, symmetry restored. Breaking parameter goes as inverse volume, *stable* against quantum corrections.
- The breaking and its effect on Yukawas can be studied explicitly by numerics.

Numerical Metrics on K3 - Headrick and Wiseman

- One parameter family of K3
 - Start with a square T4 of volume b^4 , orbifold by $\mathbb{Z}2$.
 - Blow up sixteen the fixed points, to a $\mathbb{P}1$ of volume πa^2 . (blow up parameter is the same for all of the singularities).
 - Scan the Kahler cone within this parameter space,

$$\alpha = \frac{4\pi a^2}{b^2} \qquad 0 < \alpha < 1$$

Numerical Metrics on K3 - Wiseman and Headrick

- One parameter family of K3
 - Start with a square T4 of volume b^4 , orbifold by $\mathbb{Z}2$.
 - Blow up sixteen the fixed points, to a $\mathbb{P}1$ of volume πa^2 . (blow up parameter is the same for all of the singularities).
 - Scan the Kahler cone within this parameter space,

$$\alpha = \frac{4\pi a^2}{b^2} \qquad 0 < \alpha < 1$$

Orbifold Limit and Eguchi-Hanson Geometry

$$ds^{2} = \frac{dr^{2}}{f(r)} + \frac{r^{2}f(r)}{4}(d\psi + \cos\theta d\phi)^{2} + \frac{r^{2}}{4}(d\theta^{2} + \sin^{2}\theta d\phi^{2})$$

$$f(r) = 1 - (\frac{a}{r})^4$$
, $r > a$,

- $-SO(3) \times U(1)$ isometry
- minimal area two sphere at r = a has a round metric.

Log (base10) of the Ricci scalar of on minimal area $\mathbb{P}1$ for $\alpha = 0.13, 0.28, 0.50, 0.79, 0.85, 0.92$

- Numerical studies to obtain quantitative understanding of the hierarchy generated
 - nature of singularity
 - moduli dependence

Nature of Symmetries

- Banks and Dixon: No continuous exact global symmetries arise in string compactifications
- In string theory symmetries arise from the world sheet. World sheet currrent genrates the conserved charge

$$Q = \frac{1}{2\pi i} \int [dz j(z) - d\bar{z}\bar{j}(z)]$$

The operators

$$j\bar{\partial}X^{\mu}\exp(ik.X), \qquad \bar{j}\partial X^{\mu}\exp(ik.X)$$

have conformal dimension (1,1) for $k^2 = 0$.

• Thus one can write vertex operator for gauge bosons

$$V = \int d^2z \ j\bar{\partial}X^{\mu} \exp(ik.X), \qquad \int d^2z \ \bar{j}\partial X^{\mu} \exp(ik.X)$$

which couple to the currents.

- What happens when we put in the open string sector ?
- Open string vertex operators involve integration over the boundary.
- $\partial X^{\mu} \exp(ik.X)$ has the right conformal dimensions for $k^2 = 0$, no room to insert currents.

- What happens when we put in the open string sector ?
- Open string vertex operators involve integration over the boundary.
- $\partial X^{\mu} \exp(ik.X)$ has dimensions (1,0) for $k^2 = 0$ no room to insert currents.
- Any current associated with a worldsheet charge must be gauged in the closed string sector.

Approximate Global Symmetry at Low Energies

- Two scales for KK modes
 - Scale associated with the local geometry, $\frac{1}{R_s}$
 - Scale associated with the bulk, $\frac{1}{R_b}$
- Isometries are restored in the limit of $R_b \to \infty$, with R_s held fixed.
- In this limit bulk KK modes become massless, the symmetry is gauged by the bulk KK gauge bosons.

Approximate Global Symmetry at Low Energies

- Two scales for KK modes
 - Scale associated with the local geometry, $\frac{1}{R_s}$
 - Scale associated with the bulk, $\frac{1}{R_b}$
- Isometries are restored in the limit of $R_b \to \infty$, with R_s held fixed.
- In this limit bulk KK modes become massless, the symmetry is gauged by the bulk KK gauge bosons.
- Away from the decompactification limit,
 - Symmetry broken.
 - Gauge boson massive.
- Symmetry is gauged in the higher dimensional effective field theory.

Approximate Global Symmetry at Low Energies

- Two scales for KK modes
 - Scale associated with the local geometry, $\frac{1}{R_s}$
 - Scale associated with the bulk, $\frac{1}{R_b}$
- Isometries are restored in the limit of $R_b \to \infty$, with R_s held fixed.
- In this limit bulk KK modes become massless, the symmetry is gauged by the bulk KK gauge bosons.
- Away from the decompactification limit,
 - Symmetry broken.
 - Gauge boson massive.
- Symmetry is gauged in the higher dimensional effective field theory.
- In the four dimensional low energy effective action we do have a continous (approximate) global symmetry.

Large Volume Models

- A class of compactifications in IIB string theory with all moduli fixed.
- Underlying Calabi-Yau has $h_{21}>h_{11}$, atleast one blow up mode.
- For $W_0 = \mathcal{O}(1)$, Exponentially large volume,

$$\mathcal{V} \sim e^{a/g_s}$$

ullet Standard Model is necessarily a local construction, with D7 branes wrapping one of the blown up cycles.

Large Volume Models

- A class of compactifications in IIB string theory with all moduli fixed.
- Underlying Calabi-Yau has $h_{21}>h_{11}$, atleast one blow up mode.
- For $W_0 = \mathcal{O}(1)$, Exponentially large volume,

$$\mathcal{V} \sim e^{a/g_s}$$

- ullet Standard Model is necessarily a local construction, with D7 branes wrapping local cycles.
- Susy broken predominantly F term of the volume modulus,

$$m_{3/2} = \frac{W_0}{\mathcal{V}}$$

Hierarchy problem solved by $\mathcal{V}\approx 10^{15}, \text{ i.e } M_\text{S}\approx 10^{11} \text{GeV}$

Soft masses,

$$rac{M_{\sf Soft}}{M_{KK}} \sim rac{1}{\mathcal{V}^{1/3}} \ll 1$$

Thus the can safely integrate out the KK gauge bosons, leaving a (approximate) global symmetry in low energies.

• Size of the standard model cycle (R_s) set by SM couplings. Recall R_b was fixed to get the right SUSY breaking scale.

$$rac{R_s}{R_b}pprox$$
 0.01

• Thus for *Large Volume Models* the mechanism relates the electroweak hierarchy to the hierarchy in fermion masses.

 Although, compact Calabi-Yaus do not have any isometries, there can be regions where the local geometry does possess an approximate symmetry.

- Although, compact Calabi-Yaus do not contain any isometries, there can be regions where the local geometry does possess an approximate symmetry.
- The low energy interactions for open strings sensitive only to the local geometry, for D-branes wrapping cycles in the regions of the isometry; the MSSM will have an approximate symmetry.

- Although, compact Calabi-Yaus do not contain any isometries, there can be regions where the local geometry does possess an approximate symmetry.
- The low energy interactions for open strings sensitive only to the local geometry, for D-branes wrapping cycles in the regions of the isometry; the MSSM will have an approximate symmetry.
- The symmetry will be gauged, by the bulk Kaluza-Klein modes. For models in which the $M_{\rm Soft} \ll M_{KK}$, Kaluza-Klein modes can be integrated out. The MSSM will possess an approximate continuous golbal symmetry (possibly non-abelian).

- Although, compact Calabi-Yaus do not contain any isometries, there can be regions where the local geometry does possess an approximate symmetry.
- The low energy interactions for open strings sensitive only to the local geometry, for D-branes wrapping cycles in the regions of the isometry; the MSSM will have an approximate symmetry.
- The symmetry will be gauged, by the bulk Kaluza-Klein modes. For models in which the $M_{\rm Soft} \ll M_{KK}$, Kaluza-Klein modes can be integrated out. The MSSM will possess an approximate continuous golbal symmetry (possibly non-abelian).
- For Large Volume Models, mechanism correlates the weak scale with the hierarchy in fermion masses.

- Although compact Calabi-Yaus do not contain any isometries, there can be regions where the local geometry does possess an approximate symmetry.
- The low energy interactions for open strings sensitive only to the local geometry, for D-branes wrapping cycles in the regions of the isometry; the MSSM will have an approximate symmetry.
- The symmetry will be gauged, by the bulk Kaluza-Klein modes. For models in which the $M_{\rm Soft} \ll M_{KK}$, Kaluza-Klein modes can be integrated out. The MSSM will possess an approximate continuous golbal symmetry (possibly non-abelian).
- For Large Volume Models, mechanism correlates the weak scale with the hierarchy in fermion masses.
- Dependence on nature of singularity, moduli to be explored numerically.