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® Finding string backgrounds giving rise to de Sitter vacua/ modular
inflation is important to make contact with pheno/cosmo.
® Although some examples are known, is in general difficult to find

explicit realizations

r . _ _
Purpose of this talk: perform a general analysis (from the 4D effective
N=1 sugra point of view) on the possibility of

(I) obtaining vacua with broken susy and a non-negative vacuum energy

(Il) obtaining a successful model of modular inflation

OUTLINE: |. de Sitter vacua

¥  derivation of the constraints
¥ some examples

2. modular inflation

¥  derivation of the constraints
¥ some examples

3. conclusions




N=1 SUGRA

4 From a 4D eff. Lagrangian approach moduli fields are chiral
multiplets of an N=1 SUGRA, and in terms of the complex scalar
fields ¢" in the chiral multiplet

Liin = gi;00'0¢’  and V =¢% (Gi;G'G7 - 3)

with - o
G = K(¢,¢) + log W () + log W ()

that is invariant under Kahler transformations
(K,W) = (K+A+ A, e W)
and also gi; = 0;0;G

4 Also G' = —e “/?F' = —F"/my3 , are the order parameters of

susy breaking




N=1 SUGRA

4 We want to find local minima in which:

F'#£0 and V >0

4 The stationary condition (V,;V = 0) implies that:
eC (Gz- + Gk GV =0
ViG; = Gij — GGy

4 The stability condition requires that the matrix of second
derivatives is positive definite:

_( Vi; Vi
VU_(‘/w Vw‘) =Y

l Find K and W such that these conditions are satisfied! '




String Compactifications

4 K and W will depend on the details of the compactification

4 For W one can have contributions from flux/torsion and/or
non-perturbative effects

W = Wflua: + Wn.p. — ngk¢z¢3¢k + Aie_aiqSi
4 One could think that its form is generic enough to find dS
vacua...
¢ but this is not the case

** there is a necessary condition for the existence of stable dS vacua which
is independent of the superpotentiall




Constraints on dS vacua

,
Vi = €% (Gis + ViGrV;G* — Riznn G"G™) + (Gi — G;G;) V

V;" = GG (ZVZ-GJ- + Gkvzijk) + (VZG] — GZGJ) V

® One could use V,;V G, to tune, for example V;; = 0

® Then use V,;G, to tune the eigenvalues of Vi; to be positive

% But for Vi; the projection G'V ;G is fixed by the stationarity
conditon: G*V.G. = -G, +e¢ “G,V

The stability of the mass matrix requires that:
A= VGG = (295G GT = RigpgG'GIGPG) > 0

(mass of the sgoldstino non-tachyonic)




Constraints on dS vacua

4 The stability condition can be rewritten as follows:

1=t (- (TG G @) > 0

sign does not depend on rescalings of G"

sign depends on rescalings of G*

where | o )
o= |5 (955 9mn + Gir Gmg) — Rigmn | ' VGG

4 Thus this condition can be rewritten as follows:
2

. _ 2 <
O = GGE 3 Ry >0 » Rf>3

R = Rizmpg fUfIfP 9 (sectional curvature)
Gz’

"= Jere

(unit vector in the G" direction)




Simple Examples

2
U:§(GXGx>2>O (RX:0>

® K=XX |
always possible to obtain dS vacua

2 (n—3)(GTGr)?, (Rp=>)

n >3 to obtain dS vacua

O

~ _ | dS vacua always possible
®@ K=-nlLog(T+T)+ XX |
aligning G* with G*




No-Scale Models

4 We can particularize our condition for no-scale models
K'K; =3
4 From the no-scale condition it follows that:
o(K") = 0;0(K") =0

** the direction G; x K; corresponds to a family of stationary points of ¢
with 0 = (0

-
Therefore there are two possibilities:

G'=K IS a maximum —3 dS vacua NOT POSSIBLE

G" = K' is not a maximum —>» dS vacua POSSIBLE
(depending on W)




Heterotic Models

4 We consider a class of models which arises in compactifications
of the heterotic string on Calabi-Yau threefolds

4 The Kahler potential for the Kahler moduli is:

1 A o _
K=—logV,  with V:gdijk(Tz—sz)(Tj+T9)(T’“+T’“)

so that we get
4
3

0O —

(GG)° + K GG dijpg" dgmn G G

4 Example 1: K3-fibrations with a large P, base

K=—1log(Th+T1) —log(diap(To+ To)(Tp+ Tp))

o< —(2G1G1—GGy)? < 0




Heterotic Models

4 Example 2: generic two field model. One can compute:

1 A
< 4K 02
=704 (det g)3 C]

where

A= —27<d%11d§22 — 3di19diy + 4din1digy + 4di 5da2s — 6 d111d112d122d222>

is the discriminant of the cubic polynomial defined by the volume

% Also C =0 for G = K!

-
oc>0 forA<O0!

(for example for di12 = di22 = 0)




Orientifold Models

4 We consider now orientifold compactifications of type IIB

4 The Kahler potential for the Kahler moduli is:

1 ..
K =-2logV, with Y = 18 d”kvivjvk

where now the Kahler moduli are defined in an implicit way:
1
T+ T = 3 d”kvjvk

4 Example 1: K3-fibrations with a large P base = o <0

A
_ . o B 4K 31112
4 Example 2: two field model mmlip 0 = ;¢ (det g)”[C]

c>0 forA >0

il
(for example for d''! = 222 — () we get the opposite sign!




Subleading corrections

(

Subleading corrections
to the Kahler potential may
improve the situation when

o<0

-
Example: o’ corrections K = —log(V +¢)

N\

2
f(l | 4 ) breaks the no-scale

o ~ 1209 | 3m§/2 condition !

One can get o > 0 depending on the sign of f
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Summarising: In a given model characterised by K

[

o(G") >0

then, it is always possible to build dS vacua provided
that there is enough freedom to tune W

* Now, can we say something about slow-roll inflation ?

Inflation

!




Modular Inflation

Consider a model with several complex scalars ¢’ spanning a space
with a metric 9i7 . Then, for a given potential V' :

Slow-roll dynamics:

Multi-field slow-roll conditions:

VVV,V

<1 & 1= min eigenvalue{N} <1

€




One can say much about € and 77 = min eigenvalue { N}

€

VIV, V 1 ( ViV V. ViV;V )

V2 N = Vv VZVJ'V vaj—v

(I)  €:can be made arbitrarily small by tuning G V,L-Gj

(2) V;V;V :canbe adjusted as desired by tuning V; V ; G

(3) V,;V:V :Mostof its eigenvalues can be made arbitrarily
J " L
large & positive by adjusting viGj




One can say much about € and 77 = min eigenvalue { N}

N=—

NG

"WV, 1 ( Vv,V V'V;V )

ViV,V V'V,V

s

@ € : can be made arbitrarily small by tuning (37 V.G,

(2) V;V;V :canbe adjusted as desired by tuning V; V ; G

(3) V,;V:V :Mostof its eigenvalues can be made arbitrarily
J " L
large & positive by adjusting viGj



One can say much about € and 77 = min eigenvalue { N}

ViVV,V AR A Y
- vy (e S

(I) € :can be made arbitrarily small by tuning GY V.G,

@ V;V ;V : can be adjusted as desired by tuning V; V ; G,

(3) V,;V:V :Mostof its eigenvalues can be made arbitrarily
J " L
large & positive by adjusting viGj




One can say much about € and 77 = min eigenvalue { N}

vvvw 1
V2 V V'V, V

(I) € :can be made arbitrarily small by tuning G V,L-Gj

(2) V;V;V :canbe adjusted as desired by tuning V; V ; G

V V =V : Most of its eigenvalues can be made arbitrarily
large & positive by adjusting V/ ; G




One can say much about € and 77 = min eigenvalue { N}

vvvw 1
V2 V V'V, V

(I) € :can be made arbitrarily small by tuning G V,L-Gj

(2) V;V;V :canbe adjusted as desired by tuning V; V ; G

V V =V : Most of its eigenvalues can be made arbitrarily
large & positive by adjusting V/ ; G

One exception: Projection of V;V;V along (+; is restricted by K !




Constraints on Modular Inflation

4 Note that for any given unit vector u; = Z c(k)w{k) we get that:
k

uINfuJ — Z ’C(k)IQ)\(k) > min{)\(k)} =1
’f }
eigenvalues of N

4 We can get a bound on 711 projecting N into the direction

G,

ur = (e—iafi7 6?;04]‘%) where fZ — \/GTGIC

4 Doing this we get

) vvvff‘7 Re{e vvvffj}
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Constraints on Modular Inflation

4 This projection is given by:

vvvff7 2, 1
Tz

where

M3 /o

4 Then we get that:

ngnmaxz_

v (VVViVY 145, .,
+1+7®+ g 7

R(f') = Rizpq ' 7 f7 f1

(holomorphic sectional curvature)




f

Thus, to have successful slow-roll inflation, a given model requires
a Kahler geometry satisfying the condition:

A (gl 2 0
U(f)Zgﬁ

¥ This condition implies a strong restriction on the
Kahler potential

W The condition for getting a scale of inflation much

bigger than the gravitino scale is more difficult to
realise

W If this condition is satisfied one still needs to tune
W to adjust 77 to its appropriate value




(

Thus, to have successful slow-roll inflation, a given model requires
a Kahler geometry satisfying the condition:

2/3 i 4> 1 (e omg, < H)
0 if v<1 (iemyp>H)

¥ This condition implies a strong restriction on the
Kahler potential

W The condition for getting a scale of inflation much

bigger than the gravitino scale is more difficult to
realise

W If this condition is satisfied one still needs to tune
W to adjust 77 to its appropriate value




Simple Examples

r

o K=XX == R(f)=0 = o(f")=2/3

_ Here the condition can be satisfied for arbitrary 7

(@ K=—-nlog(T+T) == R(f')=2/n

2 ( 3) The condition can only

R
n

! = (f') =3 be satisfied for n > 3(1 + ~)

(@ K=—nlog(T+T)+ XX

One may align the fZ in the X direction to satisfy our condition.

.

(@ K= —nlog(T+T — XX) ==l R(f")=2/n

_This case is identical to the one givenby /K = —n log(T +T)




CY String Models

4 Let’s apply this to the Kahler moduli
sector in models emerging as CY
compactifications of string theory

® No-scale property K*K, = 3
@ Kahler geometry restricted

® Hence 4(f") restricted

® k=K"/V3
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CY String Models

® K3-fibrations: no inflation possible

® Generic two-field models: inflation ok for arbitrary
(depending on the sign of Al)

® There are direction for which &(f*) > 2/3
so models with H > m3 /> are possible

® Subleading corrections can improve the situation, but...
K'K;~3+0() =i  6(k')~0(0)

so only models with 7 small are possible




CONCLUSIONS |

4 In general, stable dS vacua with broken susy are only granted in
models where a non-vanishing F* = ms3,,G" exists such that:

2

o(G) >0 i Ri<g3

¢ This condition is necessary and sufficient for a generic enough W

4 For large-volume string compactifications G; o K; corresponds
to a family of stationary points of 0 with 0 = ()

4 If these turn out to be maxima...

¥ no vacua, unless subleading corrections are taken into account!

4 For two field CY models there can be vacua, depending on the
value of A !




CONCLUSIONS I

4 The problem of obtaining slow-roll inflation in string theory is closely
related to the characterisation of dS vacua:

. 2 2 1
(Af(fZ)Z ] — — Rf<——

314+~ 31+~
** Models admitting dS vacua are good models to accommodate inflation as well !

4 The condition to realise slow-roll inflation becomes stronger as the
parameter v = H”/m3,, grows

4 For no-scale models subleading corrections can provide with models
of inflation, but with H < m3 /9

4 For two field CY models, models of inflation with 1 > m3 /> can be
build depending on the sign of A !




