MPS DESIGN HI ACCELERATOR - GROUP 8

Introduction & requirements

Development of a MPS for:

- providing beam to various targets
- acceleration of different intensities
- extraction at set of different energies
- implementation of slow extraction
- implementation of single turn fast extraction
- implementation of four consecutive fast extractions

Beam parameters

Extraction type	SE (T1, T2, T3)	FE1 (TF1)	FE2 (TF2)
Intensity [10 ¹³ p]	5	3	7
Momentum [GeV/c]	300	500	250
Stored beam energy [MJ]	2.4	2.4	2.8
Extraction duration	10 s	1 turn	30 ms

Modes of operation

- subsequent execution of three different cycles
- resulting in supercycle with length of 30 s
- long flat top for slow extraction (spill over 10 s)
 - debunched beam
- short flat tops for fast extractions
 - bunched beam with different spacings

Extraction elements

Slow extraction				
element	purpose			
sextupoles	excitation of a 3 rd order resonance			
quadrupoles	tune change towards q=0.33			
dipole magnets	closed local orbit bumps			
electrostatic septum	kick large amplitude particles			
magnetic septum	kick into extraction line			

	0.3	
4 -03 -02	0.2	02 03
	-02	
27 2	-0.3	

Fast extractions					
element	purpose				
dipole magnets	closed local orbit bumps				
kicker	kick the beam at a defined moment				
magnetic septum	additional kick into extraction line				

Assumptions

- External beam dump implemented (for ring)
- Injector provides adequate bunch structure and intensities

- Ring system diagnostics available
 - Beam energy monitoring
 - Beam position monitors
 - Beam profile monitors
 - Beam current monitors
 - Beam loss monitors

Design approach for MPS

MP contributes to operational availability by:

- Protecting equipment from beam-induced damage.
- Protecting equipment from damage due to a wrong configuration.
- Minimizing the number of false beam trips leading to unnecessary downtime.
- Shortening maintenance times by minimizing activation of equipment.
- Providing tools for a consistent and congruent failure tracing throughout the machine.

Follow IEC61508, IEC61511 where applicable

Hazards

Hazards

- Fast beam losses: beam can severely damage equipment (in microseconds, milliseconds) (like magnets, vacuum chamber, instrumentation)
 - Faulty extraction due to equipment failure
 - Extraction at wrong energy
 - Extraction line not ready/failures in line
 - Beam size too small at target
- Long-term beam losses (over seconds, minutes):
 - Activation of equipment (hands-on maintenance)

Approach to mitigate hazards

- Allow extraction only once all devices and extraction lines are ready → active monitoring
- Passive devices for faults that cannot be mitigated by active monitoring
 - At extraction point (if kickers do not work correctly)
 - In extraction lines (if beam is mis-steered)
- Beam monitoring inside extraction lines
- Post-mortem: analyze data to assure extraction was as intended

Safe-beam mode

Safe-beam mode

- Probe-beam is safe for extraction line: lowintensity beam
- If probe-beam successfully delivered, flag "previous extraction o.k." is set for that line
- Beam with intensity above probe beam needs "previous extraction o.k." from preceding extraction (probe beam, high intensity beam)
- Flag lost if problem in extraction
- Need to get flag back with probe-beam

Tune-up dump

 Located before experimental area (allows users to set up experiment during tuning)

 Tune-up dump only to be used for beam up to medium intensity

Commissioning

- Test all interlocks before first beam
- Run with probe-beam
 - Always safe
 - Test that beam delivery system is working
 - Test systems (interlocks, diagnostics, etc.)
- Ramp up to medium intensity; deliver beam to tune-up dump or experimental areas
 - Test all diagnostic systems
- Then ramp up to full intensity; deliver beam to experimental areas

Beam Interlock System as vital part of MPS

Master truth table (defining destinations) - I

BIS Input Systems – Part 1	S	E	F	1	FE	2
Safe beam flag	0	1	0	1	0	1
Previous extraction o.k. *	1	X	1	X	1	X
Ring beam dump o.k. *	1	1	1	1	1	1
SE line and SE line target o.k. *	1	1	0	0	0	0
FE1 line and FE1 line target o.k. *	0	0	1	1	0	0
FE2 line and FE2 line target o.k.*	0	0	0	0	1	1
Beam intensity and energy ring o.k. for SE Line *	1	x	0	X	0	Х
Beam intensity and energy ring o.k. for FE1 Line *	0	X	1	X	0	X
Beam intensity and energy ring o.k. for FE2 Line *	0	x	0	X	1	Х

Master truth table (defining destinations) - I

BIS Input Systems – Part 1	S	Ε	F	1	F	= 2
Safe beam flag	0	1	0	1	0	1
Previous extraction o.k. *	1	X	1	Х	1	X
Ring beam dump o.k. *	1	1	1	1	1	1
SE line and SE line target o.k. *	1	1	0	0	0	0
FE1 line and FE1 line target o.k. *	0	0	1	1	0	0
FE2 line and FE2 line target o.k.*	0	0	0	0	1	1
Beam intensity and energy ring o.k. for SE Line *	1	x	0	x	0	X
Beam intensity and energy ring o.k. for FE1 Line *	0	x	1	x	0	X
Beam intensity and energy ring o.k. for FE2 Line *	0	x	0	х	1	Х

Master truth table (defining destinations) - II

BIS Input Systems – Part 2	S	E	FI	E1	FE	2
Beam instrumentation ring (BCMs, BLMs, BPMs,) *	1	X	1	×	1	X
Collimation ring o.k. *	1	1	1	1	1	1
Insertable devices (wire scanners, grids, slits) out	1	x	1	x	1	Х
Insertable devices (wire scanners, grids, slits) in	0	x	0	x	0	X
Vacuum ring o.k. & all valves open *	1	1	1	1	1	1
RF system o.k. *	1	1	1	1	1	1
Magnet and powering system o.k. *	1	1	1	1	1	1
Timing system o.k.	1	1	1	1	1	1
Beam permit	1	1	1	1	1	1

Truth table for FE1 line and target

FE1 line and target	Safe beam	Full intensity
Vacuum o.k.	1	1
BPMs o.k.	X	1
BLMs o.k.	X	1
BCMs o.k.	X	1
Target o.k.	X	1
Tuning dump o.k.	1	0
Insertable devices (wire scanners, grids, slits) in	X	0
Insertable devices (wire scanners, grids, slits) out	X	1
Kicker magnets for FE line o.k. and synchronized	1	1
Septum magnet	1	1
Passive Protection Devices	X	1
Extraction permit for FE1 line	1	1

Conclusion

Conclusion

