MPS for a multipurpose, pulsed high intensity accelerator

Group 7

E. Breeding (ORNL), M. Kowalska (CERN), L. Lari (ESS), F. Rodriguez Mateos (CERN), F. Tao (SLAC)

Joint Accelerator School Newport CA, 12th November 2014

Design a MPS to protect the extractions of this accelerator (active and passive protection). Requirements of the system?

Additional constraints:

- Make sure that the beams cannot be sent to the wrong destination
- 2. Consider the commissioning phase

CASE STUDY DESCRIPTION (1/2)

CASE STUDY DESCRIPTION (2/2)

CHARACTERISTIC OF THE BEAM

	Ep [eV]	Np	E [J]	T [s]	P [W]
SE	3.00E+11	5.00E+13	2.40E+06	1.00E+01	2.40E+05
FE1	5.00E+11	3.00E+13	2.40E+06	-	-
FE2	2.50E+11	7.00E+13	2.80E+06	3.00E-02	9.33E+07

Slow Extraction

 $- N= 5x10^{13}p$; E=300 GeV; E beam = 2.4 MJ

Fast Extractions

 $- N = 3\&7x10^{13}p$; E=500&250 GeV; E beam = 2.4&2.8 MJ

IS ACTIVE PROTECTION REQUIRED?

YES

LINES, SINCE THE ENERGY OF M COULD CAUSE DAMAGE TO THE RACTION EQUIPMENT.

otons.

mm²,

 $10^{12} p.$

Damage onset is ~200 kJ

36 C <mark>7 and</mark>	Intensity / p+
A PART A	1.2×10 ¹²
/ 3	2.4×10 ¹²
C-	4.8×10 ¹²
B	7.2×10 ¹²
A B D	С
	6 cm
Marie San Tilan Cont	A REAL PROPERTY.

MPS REQUIREMENTS:

 To protect the extraction lines & the machine beam elements from failure of the extraction magnets (i.e. septum (SE) and kicker (FE)).

To protect the possible delicate targets.

- To avoid the mixing of the beams
 - i.e. right beam on the right target.

MPS Passive Protection DESIGN

- The MPS for the extraction lines & the machine should include at least:
 - Beam intercepting absorbers to catch the particles kicked incorrectly because of the extraction magnets failure (e.g. kicker not fired or asynchronously fired or power converter failure)
 - In the case of the extraction also absorbers to protect the septum itself.
- The MPS for the machine should include dump elements.

MPS ACTIVE PROTECTION DESIGN

- The MPS for the extraction lines should include at least:
 - Beam Loss Monitors (BLM)
 - Beam Current Monitors (BCM)
 - Beam Energy tracking system
 - MPS Controller
 - Timing Signal (Post Mortem)
 - Target Readiness Signal
 - Diluter Magnets (optional)
- The MPS for the machine should interface with the dump control system.

EXTRACTION PERMIT (ACTIVE PROTECTION)

i.e. right beam on the right target.

- Extraction permits for each line depend on
 - Powering of the kicker/septum magnets
 - Target readiness signal
 - Beam Current Measurement
 - Energy of the beam derived from the main bending current

WHERE?

in the main ring.

MPS CONTROLLER DIAGRAM

COMMISSIONING STRATEGY (ONLY OF EXTRACTION EQUIPMENT)

- Individual system tests of the extraction equipment & controls
- Powering & Beam Interlocks dry run
- Pilot beam to check the optics & trajectory (with BPMs)
- Instrumentation calibrations for the extraction lines with reduced beam power in accordance with the diagnostic specifications.
- Reduced power extraction checks, including asynchronous dump loss map validation.
- Full beam final check.

CONCLUSIONS

- A basic MPS for our case study was presented.
- The idea was to highlight the MPS main components that have TO BE PRESENT to allow the protection of the extraction lines.
- The major aspects for the commissioning of this MPS have been outline.

DECCDIDITION