Case Study: High intensity neutrino target

JAS - 2014: Beam Loss and Accelerator Protection

Matteo Solfaroli

Oliver Stein

Prachi Chitnis

Rafael Montano

General requirements

- Design a target for a high intensity (10¹⁴ protons/pulse) neutrino beam at 200 GeV
- Goal: Target must survive!!
- Design a protection (and diagnostic) system for the target
- What about a target for neutron spallation (e.g. protons of 2 GeV, power of 5 MW)?

Safety and machine protection priorities

1. Human safety

Protect humans from any kind of health and radiation hazards

2. Environmental safety

Protect environment from radiation/chemical contamination

3. Machine protection

MPS for protecting the machine from any damage during operation

4. Target protection

System for protecting target during operation

System outline

09/01/15

Circular accelerator

$$\Leftrightarrow$$
 E_p = 200 GeV

- \Rightarrow Intensity = 10¹⁴ p/pulse
- \Leftrightarrow E_{beam} = 3.2 MJ
- \Leftrightarrow Repetition rate = 0.1 Hz
- \Rightarrow P = 320 kW
- $\Leftrightarrow \epsilon = ??$

Beam transfer line

- ♦ BPM for trajectory check
- Quadrupoles to change the beam focusing
- ♦ BLMs will give information about losses

Initial design: Gas cooled segmented carbon target

- ♦ Not negligible energy deposition
- ♦ Resistant material + easy cooling design and geometry
- → Targets fixed on copper (heat cond.) support
- Fragmentation and geometry optimization to increase cooling capacity
- ♦ IDEA: rotating target to avoid concentrated energy deposition

CNGS example

10 cm long carbon rods, $\emptyset = 5$ mm and/or 4mm

proton beam

Note:

- target rods thin / interspaced to "let the pions out"
- target shall be robust to resist the beam-induced stresses
- target needs to be cooled (particle energy deposition)

- ♦ Xenon as high Z gas
- → High pressure → high density (reduced interaction length)
- Gas acts as target and coolant at the same time

- ♦ Gas can withstand pressure shocks (no rigid internal structure)
- ♦ Solenoids for focusing
- ♦ Target is longer

- ★ Xenon nuclear interaction length:
 - \Rightarrow $\lambda_1 = 1.84 E^4 \text{ cm } @1 \text{ bar}$
 - \Rightarrow $\lambda_1 = 1.84 E^2 \text{ cm} @ 100 \text{ bars}$
- \Leftrightarrow L_{target} = 3 * $\lambda_1 \sim 6 \text{ m}$

- ♦ 10 gas tanks of 60 cm each
- ♦ Total target length about 10 m

- \diamondsuit Maximum allowed $\Delta T = 1000 \text{ K}$
- \Leftrightarrow C_{heat} = 158.32 J/(kg*K)
- \Rightarrow $\rho = 5.89 \text{ g/l } @1 \text{ bar, } 300 \text{ K}$
 - \Rightarrow $\rho = 589 \text{ g/l } @100 \text{ bar}$

- ♦ V ~ 50 liters
- \Leftrightarrow Cylindrical target \Rightarrow r = 15 cm
- → Total cooling power = 320 kW

Beam interlock System

Conclusions

- We have a really fancy target
- Gas targets seem to be a good alternative to solid ones:
 - They cope better with high temperature and energy deposition
 - Easier and more efficient cooling
 - Longer and have to be operated at high pressure
- In case of spallation source for neutron (protons at 2 GeV and 5 MW) we need to increase the cooling capacity
 - Maybe we can play with gas pressure?

RESERVE SLIDE 1

- Modern accelerators require an availability for providing beam for the users exceeding 90% or even 95%. An accelerator is highly complex and comprises many systems.
 - A target station needs to be highly available, specially due to
 - High radiation levels inside the station
 - Physical access can be very limited
 - Difficult to repair and replace the components
 - MTTR is very high as compared to other accelerator subsystems.
- Clarify terms such as reliability, availability, MTBF, MTTR, ...
 - **Reliability:** The ability of target station to generate a specified flux of neutrinos under nominal conditions.
 - Availability: The ratio of total time a target station generates specified neutrino flux to its total operation lifetime.
 - ➤ MTBF: The average amount of time that a target station generates operates before a failure occurs
 - MTTR: The average time required to repair the system

RESERVE SLIDE 2

- Do all accelerators require a protection system? NO
 - The target here requires protection system against:
 - High pressure buildup in the chamber of target
 - High temperature of gas target
 - Beam displacement from its center
 - Deformation and explosion of the chamber due to high pressure and temperature
- Sources of unavailability
 - Off center beam causing stress
 - Inefficient cooling of the target chamber
 - High pressure causing deformation to the target chamber
 - High pressure results in chamber bursting
 - Shock wave generation due to high energy deposition from beam
 - Radiation leakage outside the target station