## Bernd Dehning <br> CERN BE/BI

## Specification

## CERN

CH-1211 Geneva 23
Switzerland

CERN Div./Group or Supplier/Contractor Document No. AB/BDI
EDMS Document No.
328146

## Functional Specification

## ON THE MEASUREMENT OF THE BEAM LOSSES IN THE LHC RINGS


#### Abstract

This functional specification is dedicated to the beam loss monitoring system (BLM) of the LHC main rings. Its use, both for machine protection and for machine operations and studies is considered. Taking into account the uses and the available information on quench and damage limits, the functional requirements are deduced.


## Content of Specification (selection)

3. Beam loss scenarios
4. Use of the blm's for machine protection
5. Use of the blm's for machine operation and studies
6.3 Setting of collimators and other movable targets
6.8 Beam and machine studies
6.9 Post-mortem analysis
6. Beam losses: dynamic range and time constants
7.3 Steady losses
7.3.3 Loss rates
7.4 Transient losses
7. Assumed quench and damage thresholds
8.1 Quench limit
8.1.1 Limit to the local heat deposition
8.2 Damage limit
8. Functional requirements for the BLM system
9.2 Layout \& number of locations to be monitored
9.4 Dynamic range, resolution and response time
9.5.1 Absolute precision or calibration of the loss scale
9.5.2 Resolution and relative precision of the monitors
9.6.1 Beam 1/beam 2 discrimination
9.6.2 Collimator to collimator discrimination
9.7 Data and data handling
9.7.1 Data processing for quench prevention
9.8 Post-mortem analysis
9.9 Reliability and radiation resistance

- Specification (location of monitors, time response, dynamic range, safety and reliability requirements)
- System overview
- Detector
- Acquisition chain
- Radiation tolerant electronics
- Parallel and voting for safety and reliability Requirements
- Reliability software
- Failsafe system, human errors
- Firmware updates
- Functional tests
- Data path
- Preventive actions
- Management of settings


## Loss Location Determination

- Aperture reduction is concentration location for particle impact
- Particle tracking shows location of losses at high beta values and reduced aperture
- Shower simulation show dominant secondary particle intensity at beginning of the MQ and at the downstream transition





## Location of Beam Loss Monitors

BLMs at quadrupole magnet


BLMs at final focussing magnet

$B L M$ at bending - bending magnet transition


BLM at collimator


## Magnet Quench Levels and Loss Measurement Ranges



To allow higher loss levels for short loss durations the concept of running sums is used

- The acquisition chain needs to have a dynamic range of 7 orders of magnitude
- 12 running sums are online calculated in range from 40 us to 83 seconds


## Dependability: Safety System Design Approach



## Redundancy - Survey - Functional Check I

F ( $\mathbf{t )}$ Probability that a failure occurs in the time 0 to $t$


The exponential failure probability leads to a constant failure rate

$$
\text { Failurerate }=\lambda
$$

## Redundancy - Survey - Functional Check II

## failure rate: Probability that a failure occurs at the time $t_{\text {, }}$ given that the system was operating before



## Redundancy - Survey - Functional Check II

failure rate: Probability that a failure occurs at the time $\mathrm{t}_{\text {, }}$, given that the system was operating before


## Redundancy - Survey - Functional Check II

failure rate: Probability that a failure occurs at the time $t$, given that the system was operating before


## Redundancy - Survey - Functional Check II

failure rate: Probability that a failure occurs at the time $t$, given that the system was operating before


## BLM System Information Flow



## BLM System Information Flow



## Ionisation Chamber

- Sensitivity 54 uC/Gy
- Time response
- Electron collection 150 ns
- Ion collection time $80 \%$ at 89 us (1 turn)
- Absolute calibration +- $30 \%$
- Dynamic (linear range)
- minimum current $<1 \mathrm{pA}$
- maximum current 10 mA
- Radiation tolerance (gain variation):
- 30 kGy $\Delta \sigma / \sigma<0.01$
- 100 MGy $\Delta \sigma / \sigma<0.05$


Chamber response


- 30 year of operation


Calibration

|  |  | $+10 \%$ Outer layer |
| :---: | :---: | :---: |
| Hy <br> Horizontal <br> cables <br> downstream | 1 | 1.32 |
|  | 2 | 1.14 |



## BLM System Information Flow



## Beam Loss Measurement System Layouts



Comment
Failsafe active state $=$ beam permit
Voting
Redundancy
CRC
Cyclic redundancy check

Safety gain
yes
yes
yes
yes

Availably gain
no
yes
yes
no

## The BLM Acquisition System



## Analog front-end FEE

- Current to Frequency Converters (CFCs)
- Analogue to Digital Converters (ADCs)
- Tunnel FPGAs: Actel's 54SX/A radiation tolerant.
- Communication links:

Gigabit Optical Links.

Real-Time Processing BEE

- FPGA Altera's Stratix EP1S40 (medium size, SRAM based)
- Mezzanine card for the optical links
- $\mathbf{3 \times 2} \mathbf{2 M B}$ SRAMs for temporary data storage
- NV-RAM for system settings and threshold table storage


## Efficiency and limits of LHC collimation system

Proton impact on primary collimator and observation of downstream losses (loss duration some seconds)


## Reliability: Fault Tree Analysis

- Definitions of failure modes (LHC 160)
- Three end effects:
- Damage risk: probability not to be ready in case of dangerous loss
- False alarm: probability to generate a false alarm
- Warning: probability generating a maintenance request due to a failure of a redundant component
- Probability of a failure mode is calculated given the failure rate, repair rate and the inspection rate


Used program: Isograph, includes component catalogue

## Example Approach of a Dependability Study

## Creating the reliability methodology



Vegard Joa Moseng , CERN

## Steps taken for a Failsafe System: Error-free Communication

The steps taken to ensure a reliable communication link:

- Double (redundant) optical link
- CRC-32 error check algorithm
- All single-bit errors.
- All double-bit errors.
- Any odd number of errors.
- Any burst error with a length less than the length of CRC.
- For longer bursts $\operatorname{Pr}=1.16415^{*} 10^{-10}$ probability of undetected error.
, 224 bits of data plus 32 bits of CRC remainder $=256$ bits
- $8 \mathrm{~b} / 10 \mathrm{~b}$ encoding
- Clock data recovery (CDR) - guarantees transition density.
- DC-balanced serial stream - ones and zeros are equal/DC is zero.
- Error detection - four times more characters.
- Special characters used for control - sync, frame.
. 256 bits of data are encoded in 320 bits $=64$ extra bits


## To avoid misplacement of electronic cards or threshold and masking tables

- Tunnel Card ID
- Unique number embedded in the FPGA (16bit)
- Included in every transmitted frame
- Compared with the one stored in settings DB
- Surface Card Serial number
- Unique number embedded in a IC (64bit)
- Compared with the one stored in setting DB


## Steps taken for a Failsafe System: System Failures

## To avoid loss of data

- Frame ID
- Surface FPGA checks for missing frames
- Incrementing number included at every transmission
- Optical link is always active
- 8b/10b encoding sends "commas" when no data
- Disconnection is detected in max $25 n \mathrm{n}$


## To ensure recognition of system failures and beam dump requests

- FPGA Outputs (Beam Dump signals) generate frequency
- At a dump request, reset, or failure the transmitted frequency will be altered
- Beam Permit lines are daisy-chained between cards
- Custom VME backplane
- Dummy cards on empty slots to close circuit


## Verification using Emulator Module




- In situ test of the TC in VME crate by emulation of output signals of CFC
- Arbitrary Tx data
- Comparison of different firmware versions
- Playback of measured data for analysis
- Tx errors
- CRC, CID, FID
- Wrong configuration
- Errors in physical layer
- Manual testing procedure
- Results read out in Expert application



## Verification of FPGA Functionality

- Exhaustive verification of the behavior of the Threshold Comparator block in FPGA
- Check all permutations and their ability to trigger a beam dump request
- Flash modified threshold table to FPGA targeting one table field at each iteration.
- 16 cards/crate
- 16 detectors/TC card
- 12 integration windows/detector
- 32 beam energy levels
- 98'304 test cases/crate
- VME readout check
- The same test case repeated 500'000 times
- Automatic procedure should ensure that beam permit inhibit could be issued by every channel and for every threshold



## Beam Permit Line Checks

- Check the beam permit lines inside and between crates
- Check results are saved in the database
- Exhaustive test yearly for every threshold (beam energy and integration time dependent)



## Check of Acquisition Chain (Modulation of HV)



## High Voltage Modulation Results

Connectivity check measurements (100x) on BLMQI monitors (Ionization chambers in the arcs)





## BLM System Information Flow



## BLM System Information Flow



## Reliability: Comparison of Back-End Settings with Database

Corruption in frontend are more likely as in reference database, therefore =>


- Setting storage in Oracle database
- Settings:
- Threshold values
- Voltages, currents, phase limits
- Serial numbers
- Software version numbers
- If comparison negative and after retry, manual intervention ( $n$ o beam permit)

Request for comparison issued by Back-End Acquisition (counter), most reliable (no software layers in between)

## BLM System Information Flow



## BLM System - Online Display

- Extensively used for operation verification and machine tuning
- 1 Hz update and logging (12 integration times, 40 us to 83 s )



## BLM System - Online Display

- Extensively used for operation verification and machine tuning
- 1 Hz update and logging (12 integration times, 40 us to 83 s )
- Integration times < 1s: maximum during the last second => loss duration can be reconstructed (20\% accuracy)



## Post Mortem Data

- Loss in a bending magnet
- Loss exceeds threshold $=>$ abort of beam
- Rolling buffer stopped

PM application: BLM data of 0.082 sec online available

Longer PM buffer: BLM data of 1.72 sec offine available



## Combined Flow of Measurements and Settings



- Measurements and settings (thresholds, monitor names, ...) are combined in VME crate (Back-End Acquisition \& Control)
- Measurements and setting a joint in the FPGA memory (16 channels)
- Large decentralized structure
- Data flow path identical for both
- Display and logged data are coherently treated
- Reduction of number failure modes due to flow over same path


## Noise and Fast Database Access

- Important for availability (false dumps) and dynamic range
- Main source of noise: long cables (up to 800 m in straight section)
- Aim: factor 10 between noise and threshold
- Thresholds decrease with increasing energy
- noise reduction before 7 TeV operation
- Single pair shielded cables, noise reduction: > factor 5
- Development of kGy radiation hard readout to avoid long cables

Noise estimate in design phase with test , installations at comparable locations


## BLM System Information Flow



## Daily Checks

## If $>=\mathbf{1 0}$ errors/link within $\mathbf{2 4 h}$, send warning and start monitoring this link in more detail

## Cases:

a) constantly low error rate
b) increasing error rate: critical, take action!
Daily Optical Link Check Results


Temperature and failure rate


## Survey of BLM thresholds

## Purpose.

- Detect unwanted/unknown changes
- Detect changes done by EICs

Example of weekly report:



## Detailed Analysis of Modulation Result - Preventive Action

Example: Connectivity Check - Results from Shape Analysis $\qquad$

|  | Hardware | C |  |  | Gain |  |  | Phase |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Channel | conn. | conn. |  | min | meas. | max | min | meas. | max |
| BLMQI.04R6.B1E10_MQY | 6.R.01.02 | True | True | 73 | 2628 | 3772 | 4880 | 46 | 66 | 84 |
| LMQI.18R6.B2I30_MQ | 6.R. 07.01 | True | True | 87 | 2823 | 3973 | 5241 | 45 | 63 | 81 |
| LLMQI.18R6.B1E10_M | 6.R. 07.02 | True | True | 92 | 2881 | 4052 | 5351 | 45 | 63 | 81 |

Connectivity check on 2010-10-21 19:00:27

Example: Summary on Connectivity Check Measurement Results



## BLM System Information Flow



Now: C++ program and SVN storage Future: all values and functional dependence in ORACLE

## Beam Abort Threshold Table Concept



200 Families

4000 Channels

- Two layers
- entry layer (stage tables)
- validated layer (final tables)
- Concept of Master and Applied table - Comparison of Threshold values (Applied < Master)
- Master: less frequent changes
- Applied: change of thresholds possible with user interface


## BLM System Information Flow



## Concluding Remarks

- Key issue to high reliability and availability, survey, parallel system and functional tests =>
Test need to be regularly executed and automatically leading to beam permit inhibit if needed
- Reliability and availability needs to be considered from the beginning of a design
- LHC: PhD thesis on reliability (path has been followed during project)
- System reliability and availability is strongly depending on management of settings, creation of settings and preventive action
- Issue of LHC design: protection and measurement functionality are implemented in same FPGA
- Critical, because of upgrades are more often needed for the measurement functionality compared to protection functionality
- New: modular FPGA design and locking of critical parts


## Literature

- http://cern.ch/blm
- LHC
- Reliability issues, thesis, G. Guaglio
- Reliability issues, R. Filippini et al., PAC 05
- Front end electronics, analog, thesis, W. Friesenbichler
- Front end electronics, analog-digital, E. Effinger et al.
- Digital signal treatment, thesis, C. Zamantzas
- Balancing Safety and Availability for an Electronic Protection System, S. Wagner et al., to be published, ESREL 2008


## Reserve Slides

## BLM Published Data - Event triggered Data Buffers

| BLM Buffer <br> (IC \& SEM) |  | Integratio <br> n Time | Buffer Length |
| :--- | :--- | :--- | :--- |
| Post Mortem | $40 \mu \mathrm{~s}$ | 80 ms online 1.72s offline |  |
| Collimation <br> Buffer | 2.6 ms | 80 ms |  |
| Extraction <br> Validation Buffer | $40 \mu \mathrm{~s}$ | 80 ms |  |
| Capture Data <br> ( 2 modes) | Injection Quality Check <br> (IQC) - 8 crates only | $40 \mu \mathrm{~s}$ | 20 ms |
| Study (event triggered: for <br> example UFO study) | $80 \mu \mathrm{~s}$ | Dynamical, currently up <br> to 350 ms |  |


| Event <br> triggered | Sampling Rate | Integratio <br> n Time | Buffer Length |
| :--- | :--- | :--- | :--- |
| Post Mortem | 0.2 ns | $\approx 2 \mathrm{~ns}$ | 1 ms |

## Hardware Failures (since Feb. 2010)

- Mostly, onset of system degradation detected by regular offline checks before malfunction
- Number of failures regarded manageable (no availability issue)


1 VME Power Supply, out of 25

## Fault Statistic

Table 4: Hardware interventions due to channel degradation or failure since february 2010

| Element | Details | Number | Out of total installed |
| :--- | :--- | :---: | :---: |
| IC | bad soldering | 12 | 3600 |
| tunnel electronics | noisy analogue component (CFC) | 7 | 359 |
| tunnel electronics | bad soldering | 2 | 720 |
| tunnel electronics | low power optical transmitter (GOH) | 9 | 1500 |
| tunnel electronics | damaged connector | 1 | 1500 |
| surface electronics | weak optical receiver | 12 | 1500 |
| surface electronics | failed SRAM | 2 | 350 |
| VME64x Crate | failed CPU RIO3 | 3 | 25 |
| VME64x Crate | failed power supply | 1 | 25 |

## Quench and Damage Levels

Quadrupole and bending magnet thresholds



## Specifications

- Time resolution $1 / 2$ turn, 40 us
- Average calculation loss:
- 12 values, 40 us to 83 s
- Max amplitude $23 \mathrm{~Gy} / \mathrm{s}$
- Min amplitude
- $1 \mathrm{E}-4 \mathrm{~Gy} / \mathrm{s} @ 40 \mathrm{us}$
- 3E-7 Gy/s @ 1.3 s
- Dynamic
- 2E5 @ 40 us
- ~ 1 E8 @ 1.3 s
- Damage level
- $2000 \mathrm{~Gy} / \mathrm{s} @ 1 \mathrm{~ms}$
- All channels could be connected to the interlock system
- Thresholds
- Loss duration dependent, 12 values
- Energy dependent, 32 values
- About 1.5 E6 thresholds


## Functional Tests Overview

Functional tests before installation
Barcode check
Current source test
Radioactive source test
HV modulation test
Beam inhibit lines tests
Threshold table data base comparison Offset to check connectivity (10 pA test)

Double optical line comparison
System component identity check


Inspection frequency: beam

Specification: Beam Loss Durations and Protection Systems

LOSS DURATION PROTECTION SYSTEM

| Ultra-fast loss | Passive Components |
| :---: | :---: |
| 4 turns (356 $\mu$ ) |  |
| Fast losses | + BLM (damage and quench prevention) |
| 10 ms |  |
| Intermediate losses | QPS (damage protection only) |
| 10 s Slow losses |  |
| 100 s Steady state losses | + Cryogenic System |

Since not active protection possible for ultra-fast losses => passive system
Classification loss signals to be used for functional and technical specification

## Combiner card inside the LHC BLM system



Software Overview, Management of Settings


Displays
Measurement



## Safety given by:

- Comparison of settings at DB and front-end
- Safe transmission of settings

1. Modular design of data base very useful (if changes are needed limited impact)
2. MTF: history of equipment e.g. ionisation chamber, electronic cards, ...
3. Layout: description of links between equipment
4. LSA: reference for all data needed in the front-end (some imported from MTF and Layout)
5. Storage of data in frontend in FPGA memory (even here corruptions observed)
6. Master for comparison is the front-end (this allows immediate beam inhibit)
7. Design very early defined in PhD thesis on reliability (root was followed during project)
8. Issue of design: protection and measurement functionality are implemented in same front-end (review remark).
9. Critical, because of upgrades are more often needed on measurement functionality compared to protection functionality
10. New design: locking of FPGA firmware, which has protection functionality (partial solution)
11. Occupation of FPGA by firmware too large, first estimate of occupation will be about 30\% for new BLM systems

## LSA Data Base Structure



300 families
4000 channels

Two layers

- entry layer (stage tables)
- validated layer (final tables)

Concept of Master and
Applied table - Comparison
of Threshold values
(Applied < Master)

- Master: less frequent changes
- Applied: change of thresholds possible with user interface


## Results and conclusions

- Beam based quench tests and model comparisons made for different loss durations and beam energies
- For short and steady state loss durations sufficient prediction accuracy is reached
- For intermediate loss durations model improvements are required and in preparation
- Measurement errors could be reduced by increased sampling and time stamping of magnet coil voltage measurements, usage of higher upper limit loss monitors, ...
- The operation of LHC at the beam loss limits will require accurate setting of beam aborts thresholds == more quench tests envisaged

| No | Date | Regime | Method | Type | Temp. <br> $[\mathrm{K}]$ | $I / I_{\text {nom }}$ <br> $[\%]$ | beam energy <br> $[\mathrm{TeV}]$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2008.09 .07 | short | kick | dipole | 1.9 | 6 | 0.45 |
| 2 | 2011.07 .03 | short | collimation | - | - | - | 0.45 |
| 3 | 2013.02 .15 | short | collimation | quadrupole | 4.5 | $46 / 58$ | 0.45 |
| 4 | 2010.11 .01 | intermediate | wire scanner | dipole | 4.5 | 50 | 3.5 |
| 5 | 2013.02 .16 | intermediate | orbit bump | quadrupole | 1.9 | 54 | 4 |
| 6 | 2010.10 .06 | steady-state | dyn. orbit bump | quadrupole | 1.9 | $?$ | 0.45 |
| 7 | 2010.10 .17 | steady-state | dyn. orbit bump | quadrupole | 1.9 | $?$ | 3.5 |
| 8 | 2011.05 .08 | steady-state | collimation | - | - | - | 3.5 |
| 9 | 2011.12 .06 | steady-state | collimation | - | - | - | 3.5 |
| 10 | 2013.02 .15 | steady-state | collimation | - | - | - | 4 |
| 11 | 2013.02 .16 | steady-state | orbit bump | quadrupole | 1.9 | 54 | 4 |



## Particle Shower in the Cryostat



- Impact position varied along the MQ
- Black impact position corresponds to peak proton impact location
- Position of detectors optimized
- to catch losses:
- Transition between MB - MQ
- Middle of MQ
- Transition between MQ - MB
- to minimize uncertainty of ratio of energy deposition in coil and detector
- Beam I - II discrimination

Good probability that losses are seen by two BLM detectors

LHC Ionisation Chamber Signal by Particle Composition


## Comparison of Reliability Tools

| Tool | Pros | Cons |
| :--- | :--- | :--- |
| Spreadsheet | Previously used by SNS, good <br> source of data | Interface difficult to use, <br> lack of visualization, error <br> prone |
| AvailSim (free) | Previously used for ILC, many <br> accelerator specific concepts | No GUI |
| Sapphire (semi-commercial) | Widely used by NASA and <br> nuclear industries, developed <br> by Idaho National Lab | Newest version (8) only US <br> government organizations |
| ReliaSoft (commercial) | Good GUI, widely used, SNS <br> uses it | File format is proprietary |
| Isograph (commercial) | Good GUI, open file format | Lacks some GUI features |

Lit: S. Bhattacharyya, IPAC12

## Why CVD Diamond?

- BLM ionisation chambers too big to be installed inside CMS - 9 cm diameter, 60 cm long
- CVD Diamond is now standard choice at other experiments - installed CDF, BaBar, Belle, ZEUS
- Relative flux monitors

1. Nano second response time
2. Large dynamic range
3. Operation at $\mathbf{1 . 8}$ Kelvin

Radiation hard-tolerant beyond LHC nominal luminosity close to IP Low maintenance. Sonstant operating conditions, relatively insensitive to environmental conditions, compact size
Linear response to particle flux


CDF pCVD diamonds at $\mathrm{r}=3 \mathrm{~cm}$ and $\mathrm{r}=10.7 \mathrm{~cm}$


## Ionisation Characteristics in 500 um sCVD

## Generated charge



Courtesy to E. Griesmayer

LHC: 152 bunches, 150ns bunch spacing (3/10/2010 12h48)


LHC: 152 bunches, 150ns bunch spacing (3/10/2010 12h48)


LHC: 152 bunches, 150ns bunch spacing (3/10/2010 12h48)


## LHC tunnel card

- Not very complicated design "simple"
- Large Dynamic Range (8 orders)
- Current-to-Frequency Converter (CFC)
- Analogue-to-Digital Converter
- Radiation tolerant ( $500 \mathrm{~Gy}, 110^{7} \mathrm{p} / \mathrm{s} / \mathrm{cm}^{2}$ )
- ADC custom ASIC
- Triple module redundancy


100 ns 100 ns to 100 s


## Current to Frequency Converter


circuit limited by:

1. leakage currents at the input of the integrator (<2 pA)
2. fast discharge with current source (<500 ns)

## Advanced Current to Frequency Converter Principle

LHC current to frequency converter:

1. only positive signals (limitation in case of signal under shoots)
2. 500 Gy radiation tolerance

|  | Parameter | Value | Units |
| :--- | :--- | :--- | :--- |
| ASIC | Comments |  |  |
|  | six decades |  | positive and negative currents |
|  | nine decades |  | (indirect measurement) |
| Linearity error | 1 | nA | (user selectable, minimum value) |
| Integration window | 40 | $\%$ | relative error $\Delta I / I$ |
| Total integrated dose | $1 \times 10^{4}$ | Gy | in 20 years |
|  |  |  |  |
|  |  | $\mathrm{CMOS} 0.25 \mu \mathrm{~m}$ |  |


$\mathbf{f}=\mathbf{I}_{\text {input }} /\left(\mathbf{I}_{\text {ref }} * \mathbf{T}_{\text {ref }}\right)$
Six decades to be covered with a direct measurement $\rightarrow 20$ bit



## Advanced Current to Frequency Converter Principle

LHC current to frequency converter:

1. only positive signals (limitation in case of signal under shoots)
2. 500 Gy radiation tolerance

|  | Parameter | Value | Units |
| :--- | :--- | :--- | :--- |
| ASIC | Comments |  |  |
|  | six decades |  | positive and negative currents |
|  | nine decades |  | (indirect measurement) |
| Linearity error | 1 | nA | (user selectable, minimum value) |
| Integration window | 40 | $\%$ | relative error $\Delta I / I$ |
| Total integrated dose | $1 \times 10^{4}$ | Gy | in 20 years |
|  |  |  |  |
|  |  | $\mathrm{CMOS} 0.25 \mu \mathrm{~m}$ |  |


$\mathbf{f}=\mathbf{I}_{\text {input }} /\left(\mathbf{I}_{\text {ref }} * \mathbf{T}_{\text {ref }}\right)$
Six decades to be covered with a direct measurement $\rightarrow 20$ bit



## Advanced Current to Frequency Converter Principle

LHC current to frequency converter:

1. only positive signals (limitation in case of signal under shoots)
2. 500 Gy radiation tolerance

|  | Parameter | Value | Units |
| :--- | :--- | :--- | :--- |
| ASIC | Comments |  |  |
|  | six decades |  | positive and negative currents |
|  | nine decades |  | (indirect measurement) |
| Linearity error | 1 | nA | (user selectable, minimum value) |
| Integration window | 40 | $\%$ | relative error $\Delta I / I$ |
| Total integrated dose | $1 \times 10^{4}$ | Gy | in 20 years |
|  |  |  |  |
|  |  | $\mathrm{CMOS} 0.25 \mu \mathrm{~m}$ |  |


$\mathbf{f}=\mathbf{I}_{\text {input }} /\left(\mathbf{I}_{\text {ref }} * \mathbf{T}_{\text {ref }}\right)$
Six decades to be covered with a direct measurement $\rightarrow 20$ bit



## Advanced Current to Frequency Converter Principle

LHC current to frequency converter:

1. only positive signals (limitation in case of signal under shoots)
2. 500 Gy radiation tolerance


$\mathbf{f}=\mathbf{I}_{\text {input }} /\left(\mathbf{I}_{\text {ref }} * \mathbf{T}_{\text {ref }}\right)$
Six decades to be covered with a direct measurement $\rightarrow 20$ bit


## Fully Differential Current to Frequency Converter Principle

Discrete components: not radiation tolerant


1. Specifications:
2. Dynamic range 7 orders integration window 2 us 1 nA to 200 mA
3. Dynamic range 9 orders integration window 1 s 10 pA to 200 mA

A status signal selects in which branch of a fully deferential stage the input current is integrated.
3. Two comparators check the differential output voltage against a threshold, whenever is exceeded, the status signal changes to the complementary value ( $0!1$ or $1!0$ ) and the input current is integrated in the other branch.

Bidirectional digitalisation; optical and Ethernet link

