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Lecture 2: KLN, Drell-Yan and its lessons



Summary of last time
✦ We reviewed QCD and its symmetries 

‣ local (“gauge”), and the nice role played by the covariant derivative (which brings in the gluons) 

‣ global flavor symmetry 

✦ We discussed its UV properties, and renormalization, and evidence for the hidden/confined color quantum 
number. 

✦ We reviewed the strong/weak coupling paradox, and how the running QCD coupling solves it. 

✦ We recalled the parton model, and introduced the parton distribution functions.
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Parton distribution functions
✦ Before concentrating on the computing the partonic cross sections, let us discuss the PDF’s. In the parton 

model they only depend on the momentum fraction. But we had seen that structure function depend 
logarithmically on Q, so we expect that PDF’s might also. Indeed that is the case, as we’ll see. How does one 
determine them? 

✦ Crucial at hadron colliders, must be known very accurately. But they cannot be computed from first principles.  

✦ Answer: use their universality, as follows.  
‣ We need to determine 11 PDF (5 quarks + antiquarks + gluon), and their uncertainties 

‣ Choose with care a set of measurements/observables [e.g. DIS structure functions, or hadron collider cross 
sections] Each is described as a PDF ⊗ partonic cross sections. We then have the set of equations 

!
‣ From the comparison one fits the φj/P(x,µ). 

✓ Various groups, employing slightly different approaches 
- MSTW, CTEQ, NNPDF, GJR, HERAPDF, ABKM… 

‣ If the partonic calculation is LO, NLO, NNLO etc, then the PDF thus fitted are also labelled LO, NLO etc. 
✓ NLO PDF’s must be used with NLO calculations. NNLO also ok, LO not
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Aside: PDF’s as operator matrix elements
✦ Although they cannot yet be fully computed from first principles, one can give a precise definition of 

PDF’s, in terms of operators. Essentially, these are counting operators (cf a†a in QM) 

!
!

‣ in a certain gauge. The non-perturbative part sits in the hadronic state in which this counting operator is 
inserted.  

‣ Benefit: once you have an operator, one can compute its renormalization, and derive an RG equation for it (just 
like for the coupling constant). This is in fact the DGLAP equation 
✓ There are other ways of deriving it. We will see another method later. 

‣ To do so, just replace the proton states with quark states (and keep the operator). At lowest order this is just 

!
‣ At next order it has the form 

!
- Plus distribution: 
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Parton distribution functions
✦ The logic is thus very similar to running coupling, we now have “running functions”: 

!
‣ DGLAP equations (we derive them later). Pij are the splitting functions, aka parton evolution kernels. They are 

now known to NNLO (3rd order) 

‣ Logic: determine the PDF’s at some scale Q, then compute them at all other scales by solving the DGLAP 
equations.  

✦ Note: 
‣ for LO PDF’s, use one-loop splitting and beta-function 

‣ for NLO PDF’s use two-loop splitting and beta-function, etc. 

‣ in 2004 the three-loop splitting functions [Moch, Vermaseren, Vogt] were computed, so also NNLO sets are now 
available (NNLO partonic cross sections for DIS, Drell-Yan etc were already available). 

✦ To determine the PDF’s from the equation 

!

✦ one must choose the data on the lhs well.
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Form of PDF’s

✦ Notice how evolving the sets to high scale narrows the uncertainty. 
‣ and how all PDF’s grow towards small x: driven by the gluon density in the evolution 

✦ Only u and d still show some bumps: a memory of them being partly valence quarks 

✦ For hadronic collisions one often makes out of the two PDF’s the parton luminosity  [for “simple enough” cross sections]
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Figure 3
MSTW08 (27) next-to-next-to-leading-order parton distribution functions at (a) Q2 = 10 GeV2 and
(b) Q2 = 104 GeV2.

A recent, thorough analysis of PDFs and luminosities (45) shows that the general features of
NNLO global PDF sets, at a scale of order of Q2 ≈ M 2

W , are the following [bearing in mind
that experimental information is not available outside the region 10−4 ! x ! 0.4 (Figure 1)].
Up and down quark and antiquark distributions are known to an accuracy better than ∼5% in
a wide range of x—roughly 10−4 ! x ! 0.3 for the up distribution, 10−4 ! x ! 0.1 for the
down and antiup distributions, and 10−4 ! x ! 0.01 for the antidown distribution—and the
three global sets agree well. For smaller values of x, uncertainties gradually expand, but there
remains good agreement between sets because the behavior in this region is driven mostly by
perturbative evolution, whereas, for larger values of x, uncertainties expand and widely different
behaviors are observed between sets. For x ≈ 0.5, uncertainties are likely to be larger than
10% and may be underestimated, especially as x increases. Strangeness is nominally known to
an accuracy of ∼10–15% in the region 0.003 ! x ! 0.1. However, note that strangeness is
determined largely by neutrino dimuon data (see Section 2.3.3), which are subject to various poorly
controlled systematics, and one of the three global sets does not independently parameterize the s
and s̄ distribution, whereas another has only a small number of parameters. Indeed, disagreement
between different sets is up to 30%. The gluon distribution is known with an accuracy that is
comparable to or marginally worse than that of light quarks, that is, ∼5% at small 10−4 ! x ! 0.1,
but rapidly deteriorates at larger x, where it is constrained only by jet data. As mentioned above,
here the agreement between global sets is not as good as one might hope, and discrepancies up
to the level of 1.5 to 2 σ between global fits are observed in the region around x ≈ 0.02, which is
relevant for Higgs boson production.

A comparison between NLO and NNLO PDFs suggests that uncertainties related
to higher-order corrections are smaller than 5% in the region where PDFs are cur-
rently determined. Therefore, the neglected theory uncertainties are likely to be smaller
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PDF input data
✦ What data to choose as inputs to fit to?  

‣ Those that single out particular parton distributions 
✓ DIS structure functions most sensitive to valence (u-ū etc) quarks. Prompt photon production sensitive to 

gluon density etc. 

‣ Those that provide extra information in certain x ranges (e.g. jet production gives large-x gluon information)

8
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Table 1 The main processes included in the MSTW08 global PDF analysis ordered in three
groups: fixed-target experiments, HERA, and the Tevatron

Process Subprocess Partons x range
ℓ±{p, n} → ℓ± X γ ∗q → q q , q̄ , g x ! 0.01
ℓ±n/p → ℓ± X γ ∗ d/u → d/u d/u x ! 0.01
pp → µ+µ− X uū, d d̄ → γ ∗ q̄ 0.015 " x " 0.35
pn/pp → µ+µ− X (ud̄ )/(uū) → γ ∗ d̄/ū 0.015 " x " 0.35
ν(ν̄) N → µ−(µ+) X W ∗q → q ′ q , q̄ 0.01 " x " 0.5
ν N → µ−µ+ X W ∗s → c s 0.01 " x " 0.2
ν̄ N → µ+µ− X W ∗ s̄ → c̄ s̄ 0.01 " x " 0.2
e± p → e± X γ ∗q → q g, q , q̄ 0.0001 " x " 0.1
e+ p → ν̄ X W +{d , s } → {u, c } d , s x ! 0.01
e± p → e± c c̄ X γ ∗c → c , γ ∗g → c c̄ c, g 0.0001 " x " 0.01
e± p → jet + X γ ∗g → q q̄ g 0.01 " x " 0.1
p p̄ → jet + X gg, qg, qq → 2 j g, q 0.01 " x " 0.5
p p̄ → (W ± → ℓ±ν) X ud → W , ūd̄ → W u, d , ū, d̄ x ! 0.05
p p̄ → (Z → ℓ+ℓ−) X uu, dd → Z d x ! 0.05

For each process, we provide an indication of its dominant partonic subprocesses, the primary partons that are probed, and
the approximate range of x constrained by the data. Abbreviation: PDF, parton distribution function.

2.3.4. The gluon. The determination of the gluon distribution is nontrivial because the gluon
does not couple to electroweak final states. It does, however, mix at LO through perturbative
evolution. Therefore, even for LO expressions for cross sections and structure functions, the
gluon does determine their scale dependence. Indeed,

∂

∂ ln Q2 F S
2 (x, Q2) =

∫ 1

x

dy
y

[
P S

qq

(
x
y
, αS(Q2)

)
F S

2 (y, Q2)

+ 2

( n f∑

i=1

e2
i

)

× P S
qg

(
x
y
, αS(Q2)

)
g(y, Q2)

]

+ O(α2
S), 43.

where we use F S
2 (x, Q2) to denote the singlet component (defined as in Equation 16) of the F2

structure function.
It follows that the gluon is determined mostly by scaling violations or by its coupling to

strongly interacting final states, namely jets. The main shortcoming of the determination from
scaling violations is that the gluon couples strongly only to other PDFs for sufficiently small x.
Specifically, at large x, P S

qg in Equation 14 rapidly becomes negligible in comparison to P S
qq . Thus,

the large-x gluon is probably affected by large uncertainties, which one can reduce only by looking
at hadronic ( jet) final states.

2.3.5. Global fits. In state-of-the-art global fits, information on PDFs is maximized through
a combination of experimental information on an array of different physical processes, which
constrain different PDFs, or combinations of PDFs, in various kinematic regions. Table 1 lists
the processes that are included in a typical present-day global fit (MSTW08) and the PDFs they
constrain. The CTEQ and NNPDF global fits, discussed below in Section 3, have similar features.
On the basis of this table and the above discussion, we conclude that:

1. Information on the overall shape of quarks and gluons at medium x, as well as on the
isosinglet–isotriplet separation, comes from fixed-target DIS data on proton and deuterium
targets (dominated by γ ∗ exchange).
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Theory of PDF set formation
✦ Some theoretical constraints: sum rules 

‣ Charge sum rule:  

‣ Momentum sum rule: 

✦ In principle, must solve 7x7 matrix evolution equation. But one can cleverly arrange this to have five 
independent equations, and one 2x2 equation. 
‣ Subtle issue: how to think about charm and bottom PDF’s? In principle they can be computed from the gluon 

and light flavor PDF’s. Also here different approaches, but won’t go into details.  

✦ Fitting: not easy. Use χ2 as goodness-of-fit  [Di = data, Ti = theory, V=exp. covariance matrix] 

✦   

✦ We need a probability measure on the space of functions (in principle ∞-dimensional). To make things 
tractable, groups choose some parametrization for initial PDF. Many choose a physically motivated form 
with a limited set of parameters 

✦ Can also choose a (very redundant) set of unbiased functions, with hundreds of parameters. But then 
minimization difficult.
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PDF uncertainties
✦ Two approaches to establish probability measure: 1) Hessian 2) Monte Carlo 

‣ Hessian: 1-σ confidence interval by moving parameters that make up χ2 to χ2min+T. Note that “tolerance” T=1 is 
theoretically correct, but problematic in practice 
✓ Advantage: compact representation of uncertainties. 
✓ Product: S0 central set, and then Npar 1-σ error Si sets. 

‣ Monte Carlo: create a large number of replica sets 
✓ E.g. by constucting data replica’s with the right average and covariance 
✓ Fit then PDF sets Sk to data replicas. 
✓ Now best fit is MC mean over sets Sk., also 1-σ straightforward 

‣ Both methods agree overall reasonably well. So far uncertainties based only on experimental ones. 

✦ Let us compare some best, most modern NNLO sets

10



Comparing NNLO PDF sets
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αS(M2)Z

Figure 2
αs (M 2

z ) values for which next-to-next-to-leading-order (NNLO) parton distribution functions (PDFs) are
provided by various groups. The larger symbols denote the values used in the other figures. The smaller
symbols denote alternative values. Most of the groups provide only the best-fit PDF set for each of these
values; the exception is NNPDF, which instead provides a full set for each value. The PDF uncertainties
provided by MSTW and CT at the reference value of αS, and by NNPDF for all values of αS, do not include
the αS uncertainty, although MSTW also provides additional sets that allow combined PDF + αS
uncertainties (114). JR and ABM provide only combined PDF + αS uncertainties.

corresponding NNLO gg luminosities. We use the αS values for each set depicted in Figure 2.
Note that all uncertainty bands are shown at the 68% confidence level, requiring the CT10
uncertainties (corresponding to a nominal 90% confidence level) to be divided by a factor of
1.64485. Similar plots, using a common value of αS(M 2

Z) = 0.118, can be found in Reference 45.
The relevant values of

√
ŝ = M W ,Z are indicated for the q q̄ luminosities, and the relevant

values of
√

ŝ = M H , 2mt (for M H = 126 GeV and mt = 173.18 GeV) are indicated for the
gg luminosities. The three global fits (MSTW08, CT10, and NNPDF2.3) agree fairly well, but
there is more variation for the other sets, confirming that the dominant factor in determining the
features of the PDFs is the choice of data set. There is little difference between the luminosities
computed with NNPDF2.3 and those computed with NNPDF2.3noLHC, so the impact of the
LHC data is moderate. In Section 4, we show that this is often, but not always, the case. The
NLO trend between groups is similar to the NNLO trend; an exception is HERAPDF at large
ŝ values, wherein the HERAPDF1.5 NLO set (39) has a much larger q q̄ luminosity, and a much
softer gg luminosity, than that of other NLO PDF groups.

These luminosities are the basic input to LHC phenomenology, as discussed below. Cur-
rent recommendations (46) to use global fits for LHC searches and calibration, discussed in
Sections 1 and 4, were based on similar, more detailed comparisons between luminosities and
PDFs performed in 2010 (42). However, the situation is much better now than in 2010, when only
MSTW08 had an NNLO PDF set from a global fit, and differences at NLO between MSTW08,
CTEQ6.6, and NNPDF2.0 were larger because of, for example, the use of a less flexible gluon
parameterization in CTEQ6.6 and the lack of inclusion of terms suppressed by powers of the
charm quark mass in NNPDF2.0.
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a  NNLO gg luminosity at the LHC (√s = 8 TeV) 

b  NNLO gg luminosity at the LHC (√s = 8 TeV) 

Figure 5
Next-to-next-to-leading-order (NNLO) gg luminosity functions taken as the ratio to MSTW08.
(a) MSTW08 versus CT10 versus NNPDF2.3noLHC versus NNPDF2.3. (b) MSTW08 versus ABM11
versus HERAPDF1.5 versus JR09.

for a vast array of Standard Model processes. Many of them are already leading to new, significant
constraints on PDFs, and others hold the promise to do so in the very near future; the knowledge
of PDFs has played a significant role in the discovery of a Higgs boson–like particle (1, 2). In this
section, we confront LHC data with the predictions of various PDF sets for some key Standard
Model total cross sections, specifically the production of W, Z, and Higgs bosons and top quark
pairs; then we discuss methods for combining the predictions made by use of the PDF sets from
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Figure 5
Next-to-next-to-leading-order (NNLO) gg luminosity functions taken as the ratio to MSTW08.
(a) MSTW08 versus CT10 versus NNPDF2.3noLHC versus NNPDF2.3. (b) MSTW08 versus ABM11
versus HERAPDF1.5 versus JR09.

for a vast array of Standard Model processes. Many of them are already leading to new, significant
constraints on PDFs, and others hold the promise to do so in the very near future; the knowledge
of PDFs has played a significant role in the discovery of a Higgs boson–like particle (1, 2). In this
section, we confront LHC data with the predictions of various PDF sets for some key Standard
Model total cross sections, specifically the production of W, Z, and Higgs bosons and top quark
pairs; then we discuss methods for combining the predictions made by use of the PDF sets from
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gg luminosities!
at 8 TeV, relative to !
MSTW08
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Figure 8
Next-to-next-to-leading-order (NNLO) (a) Z0, (b) W+/W−, (c) tt̄, and (d ) gg → H cross sections from MSTW08, CT10, and
NNPDF2.3, combined either by taking the envelope of the three predictions or from the statistical combination of 100 random
predictions from each group. Abbreviation: NNLL, next-to-next-to-leading logarithmic.

4.2.1. Light flavors. The strongest constraint on light-flavor PDFs at the LHC comes from the
combination of rapidity distributions for the production of various gauge bosons. As mentioned
several times above, a rapidity distribution entirely fixes the LO parton kinematics. If full infor-
mation on the correlation between different processes is retained, a global fit including all of them
effectively uses the information provided by all the various cross-section ratios that are sensitive
to different PDF combinations, such as Equations 45 and 46 or, equivalently, the asymmetry

σW + − σW −

σW + + σW −
≈ uv(x1) − dv(x1)

u(x1) + d (x1)
. 47.

Note that many sources of systematics (such as the normalization) are common to these cross
sections and cancel in the ratio. Thus, the availability of full correlations leads to potentially much
more precise results. Given that the LHC energy is being increased in stages, it is also possible to
form ratios or double ratios between measurements at different energies, further increasing the
potential for precision (132).
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QCD and e+e- collisions
✦ But before turning to hadronic collisions in more details, let us review what QCD does in a simpler setting. 

✦ The cleanest place to study and test QCD is at a e+e- collider, where QCD is only active in the final state. 
We saw already the importance of the R ratio in establishing the number of colors. 

✦ But the R ratio just involves a total cross section: nothing is asked of the final state. It often has an 
interesting structure, possibly reflecting certain diagrams. 

!

!

!

!

✦ Two classes of observables do take structure into account 
‣ Jet cross sections  (more on these later) 

‣ Event shapes
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Event shapes - Thrust
✦ There are many. A famous one is Thrust (maximum directed momentum) 

!
- Exercise: show that T=1/2 for spherical final states, and T=1 for two very narrow jets. 

‣ Reaction  

!
‣ Phase space measure  

!
‣ Squaring the two diagrams and integrating over ϕ and χ 

!
‣ Integrating over θ 

!
✓ Notice divergences near x1 or x2 near 1. But it is not always possible to reach there.
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Thrust
✦ For this 3-parton final state, we have 

✦ Picture of available phase space 
✓ In each subtriangle, one x is the largest 

✦ Consider first T=x2 (x1 is identical) 

!

!

!

✦ For T=x3 one finds 

!
‣ Integrate this from T=2/3 to 1, find probability that gluons is the most energetic particle 

!
‣ Decreases with increasing Q2. Probability for (anti)quark to be most energetic is 
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Some other event shapes
✦ Define extra two axes orthogonal to thrust axis: major (max. energy flow perp) and minor 

‣ In thrust-major plane: looks like 3 jet event. In thrust-minor plane: looks more like 2-jet event 

‣ Oblateness: difference of energy flow along major and minor axes 

‣ there are many others. Check out: http://mcplots.cern.ch
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Back to e+e-

✦ Recall the formula for the 3-parton (qgq̄) final state 

!

✦ If we wish to compute the NLO QCD correction to the total cross section, we must integrate this over x1 
and x2 (=E1/E, E2/E). 
‣ but there is an obvious problem if these x’s are near 1. What kinematic limit does that correspond to? 

‣ x1=1 means that the quark takes half the cm energy, leaving only half the anti-quark plus gluon. It would work 
out well if the gluon wasn’t there. The gluon can imitate “not being there” by having either zero energy and 
momentum (infrared), or by being perfectly collinear with the massless antiquark 

!
‣ Clearly these are divergent situations 

✓ Infrared divergence (p3µ→0) and collinear divergence (p3µ→zp2µ) 

‣ Let us see how the occur in practice. We regularized UV divergence using dimensional regularization 

‣ It turns out DimReg can also be used for IR and COL divergences
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General comment about LO and NLO
✦ For the cross section one must compute |M|2. How do the one-loop and the one-emission graph fit into 

this? Consider a process with a 2-particle final state,  e.g. 

✦ Then we have 

!

!

✦ At NLO, the loop amplitude enters through the interference with the lowest order amplitude: 

!

✦ For the radiative contribution (aka bremstrahlung) we have a 3-particle final state, enters cross section as 
a pure qure 

!

✦ Total contribution at order g2 enters as a pure square 

!

✦ Good to keep in mind.
17
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Final state IR and COL divergences
✦ To use DimReg, we should really have written the final state phase space measure also in n=4-2ε 

dimensions 

!

✦ Then we find 

!

✦ which yields 

!

✦ Double and single poles in ε!! From IR and COL regios of phase space. How do they cancel? Do they 
cancel?  
‣ Spoiler: no fixing by renormalization of couplings etc.
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Virtual contribution
✦ But this is not the only contribution to NLO, we also need the virtual contribution. The result of the doing 

the loop integral in n-dimensions is 

!

✦ We just found 

!

✦ Add up and add the LO contribution 

!

✦ The IR and COL divergent just cancelled! All we had to do was add the real and virtual contributions. 

✦ This is in fact a very general phenomenon, and it known as the KLN theorem.
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Kinoshita-Lee-Nauenberg theorem
✦ Theorem not only for QCD, but very generally for quantum mechanical transition probabilities 

✦ In essence it says that if one computes the transition probability not just to one very specific state, but to a 
collection of degenerate states  [E-ΔE, E+ΔE] one gets a finite answer. 
‣ Clearly, a state of just 2 quarks and a state with 2 quarks plus a soft or collinear gluon are degenerate. 

‣ This is why inclusive, or semi-inclusive cross sections are finite 

‣ But is also why we look at jets.  
✓ A quark with a correction and a quark with a soft of collinear gluon are part of the same jet 

- so a jet defines a collection of degenerate states 

- also event shapes are infrared-safe 

!
!
!
!

✦ Now we turn to hadronic collisions.

20



Drell-Yan
✦ Production of lepton pair in hadronic collision, either through photon, W or Z 

!

!

!

✦ Storied physics background (next slide) 

✦ These days: often a “theory” laboratory. All the key complications without many external legs. Higgs 
production is just “Drell-Yan with initial state gluons”. 

✦ To illustrate typical issues in QCD higher-order calculations, we shall compute Drell-Yan to NLO. 
‣ Infrared and collinear divergences, KLN theorem, factorization
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Drell-Yan history

22

Discovery of the J/Psi Particle

The Process: p + Be → e+ e-  X

at  BNL   AGS

very narrow width 
⇒ long lifetime

J/Psi discovery!
at BNL AGS and SLAC in ‘74

To predict DY cross section!
could use the PDF’s from DIS. !
This worked well.

p+N→Υ (bb̄)+X!
bottom discovery ‘77!
Fermilab E288 exp.

p+p̄→W/Z+X!
W/Z discovery ‘83!
at CERN UA1/UA2

Not discovery but a nice peak!

Last but not least: !
Drell-Yan with gluons



Recall: LO and higher order amplitudes
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Drell-Yan at LO
✦ Process: production of lepton pair of invariant mass Q2, plus anything else. Leading order partonic cross 

section 

!

!
‣ Comes from one diagram 

!
!
!
!

- Exercise: can you motivate each element of this formula?
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NLO Drell-Yan: virtual diagrams

✦ Time here from right to left (apologies). 6 diagrams, but we are in luck 
‣ Sum of three “counterterm contributions” = 0   

- because QCD corrections should not affect the electric charge of the quark 

‣ Self-energy diagrams = 0, leaves only triangle graph (leftmost one). We suspect (from the e+e- case) that the 
loop integral will produce IR and COL divergences/ 
✓ Indeed we find 

!
!
!

✓ Observe again double and single pole
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512 Perturbative quantum chromodynamics

Exercise 17.5 Using the n-dimensional Lenard identity in problem ?? show
that

K =
2α

3πŝ

(
4πe−γE

−q2

)−ε/2 1− 17
24ε+ 53

72ε
2

1 + ε/2
) exp(−

3

8
ε2ζ(2)) . (1)

It is important to calculate all factors in dimensional regularization, as we will use
K also in higher order calculations. Our task is now to evaluate the higher order
corrections to (17.46) as a series in the strong coupling αs. Let us write the partonic
cross section in general as

dσij

dŝ
=
∑

n

αn
s

dσ(n)
ij

dŝ
, (17.52)

where the indices run over all possible quark, antiquark and gluon channels (the
latter are possible beyond the leading order). We first consider the quark-antiquark
channel and calculate the processes involving the virtual corrections to the Born
reaction as well, the counterterm contributions and the gluon bremsstrahlung pro-
cesses, see fig. 17.9. Clearly, the produced leptons do not couple to the gluon. The

(a)

(b)

(c)

!Fig. 17.9 The Feynman diagrams for the first order QCD corrections to the partonic Drell-Yan
reaction in the quark-antiquark collisions producing an off-shell photon. Shown are (a)
loop contributions (b) counterterm contributions, and (c) radiative graphs. The
leptons into which the photon decays are not shown.

first order QCD corrections to the lowest order invariant amplitude involve Feyn-
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NLO Drell-Yan: real diagrams
✦ Now there are two diagrams, with a gluon radiated of either incoming quark. Result 

!

!

✦ We see a single pole, but no double pole! Trouble with KLN? 

✦ No. To see this, express the functions of x in terms of “plus-distributions” 

!
‣ Now do get double pole  

✦ Use, and add to virtual. Result
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ŝ

⌘�"/2�(1 + "/2)

�(1 + ")

⇥
n4

"

⇣

(1 + x2)



1

1� x

�

+

+
3

2
�(1� x)

⌘

+ 4(1 + x2)



ln(1� x)

1� x

�

+

� 2(1 + x2)
lnx

1� x
+ (4⇣(2)� 8)�(1� x) +O(")

o



NLO Drell-Yan: sum of real and virtual
✦ Again, now expressed in terms of the splitting function Pqq(x). 

!

!

!
‣ Even with KLN helping, there is a remaining divergence! 

✓ Initial state collinear divergence 

‣  How to get rid of it? 

‣ Answer: very analogous to use of Z-factor for renormalization of coupling. Renormalize the PDF’s as 

!
‣ To first order 

!
✓ This new divergence cancels the above one. 

‣ Notice: this new contribution shows no information about this being the Drell-Yan process
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QCD Factorization
✦ What you just witnessed is called “factorization”. It turns out: 

‣ For any process this removes the remaining initial state collinear divergence! 
✓ Works to all orders  [Collins, Soper Sterman] 
✓ KLN theorem helps cancel all IR and all final state collinear divergences 

✦ As a result, the “renormalized” PDF depends on µF. How? It obeys now the DGLAP equation. 

✦ Why does KLN not solve this?  
‣ Answer: the initial state is precisely defined, there is no set of degenerate initial states! 

✦ What is the physical picture behind this? 

!

✦ Consider the indicated propagator. If the gluon is very collinear, the virtuality of that line is very small. 
‣ Therefore, that state could be very long-lived: the gluon could have been radiated off long, long before the hard 

scattering. The very collinear gluon thus should be grouped with the proton.
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Upshot and NLO status
✦ Congratulations, you have now really understood (?) hadronic collisions.  

✦ For other reactions the story is precisely the same! [The formula’s are a lot longer] 

✦ The whole NLO calculational approach has been automatized 
‣ Tremendous progress 

‣ Efforts/codes:  aMC@NLO, POWHEG-Box, many others…
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Fixed order as Monte Carlo integral
✦ Monte Carlo integration 

‣ directly extendable to a multi-dimensional (order 5-30) 

!

✦ xi  must be random numbers from uniform distribution 
‣ For each event (“x”) the weight changes 

‣ Weight  W = |M|2 times jacobians → Fill histogram for each “event” {xi} 
✓ Likely final states have large weight and v.v. 

✦ “Event generation”: can we similate such functions where all events have weight 1, but more likely ones 
occur often, etc. 
‣ Just like Nature. 

✦ Two unweightings 
‣ Hit-and-miss, and the veto-algorithm
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Elementary MC
✦ Unweighting (sampling a distribution) 

‣ Hit and miss : an exercise. 

‣ Veto algorithm 

✦ Consider a process in which branchings take place (radioactive decays, or parton showers).  
‣ f(t): chance of branching for time t. Then probability for branching at time t 

!
‣ Δ(t): probability that no branching has occurred until t. [“Sudakov form factor”] 

!
‣ Prototype for parton shower! How to imitate this function with random points? Depends: 

✓ If I can find the primitive F(t) of f(t), then 
- pick a random number between 0 and 1 

- compute t = F-1 ( F(0)-ln R ) 

✓ If I cannot, find an upper bound g(t) > f(t), and use the veto algorithm
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Standard Veto Algorithm
✦ Example  

‣ f(t) = t ,  F-1(x) = (2x)(1/2),  g(t) = t+1, G the primitive of g 

‣ Algorithm 

1. start with i=0,  t0=0 

2. i++, then select ti according to t = G-1 ( G(ti-1)-ln R ), ti > ti-1. 

3. compare a new R with f(ti)/g(ti). If f(ti)/g(ti) < R, return to 2 

4. otherwise accept ti.  

‣ Result: nice agreement between analytical and veto-algorithm result
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Veto algorithm: An example
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The red line is the function
P (t) = ln(t + 1) exp {�(t + 1) ln(t + 1) + t}.
The histogram is obtained by using the Veto algorithm with the
g(t) from equation (29).

20 / 57


