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Lecture 4: !
All orders in QCD: resummation



So far
✦ We have discussed the structure of fixed order calculations in perturbative QCD 

‣ PDF’s: what they mean and how they are made 

‣ LO: methods for computation, e.g. spinor helicity methods, MHV amplitudes, recursion relations 

‣ NLO: divergences, how they are consistently removed 

✦ We also discussed the basics of the parton shower, and reviewed (superficially) how it is used in Monte 
Carlo’s. 
‣ Monte Carlo’s can produce an arbitrary number of partons, but that does not make them NNN…NLO accurate 

‣ Yet they should get some of the all-order soft and collinear physics right. 

✦ This lecture: how can we say something systematic about all-order predictions, even though we cannot 
compute arbitrarily higher orders exactly? 
‣ Aka: “Resummation”
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Perturbative series in QFT

✦ Typical perturbative behavior of observable 
‣ α is the coupling of the theory (QCD, QED, ..) 

‣ L is some numerically large logarithm 

‣ “1” =  π2, ln2, anything no 

‣ Notice: effective expansion parameter is αL2. Problem occurs if is this >1!! 

‣ Possible fix: reorganize/resum terms such that  

!
!
!
!
!

✦ Notice the definition of LL, NLL, etc
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LL, NLL,.. and matching to fixed order
✦ This is nomenclature you see very often: leading-log, next-to-leading log, etc 

‣ Here is the schematic overview of accuracy in resummation 

!
!
!
!

‣ This is a systematic expansion in αs in the exponent 
✓ If we can find the coefficients cn, dn, en, C0, C1 etc 

‣ It is directly clear how to combine this with an exact NLO or NNLO calculation 
✓ Expand the resummed version to the next order in αs . Add the NLO and resummed, but subtract the order αs - 

expanded resummed result, to avoid double counting. 

!
!

- generalization to NNLO is obvious 

✦ But what can L be the logarithm of?
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Benefits of resummation
✦ It can rescue predictive power 

‣ when perturbative series converges poorly 

‣ and can predict terms in next order when they are not known exactly yet  (“approximate NNLO”) 
✓ by expanding the resummed cross section to that order 

✦ Better physics description (small pT e.g., more later) 

✦ Lessens the renormalization/factorization scale uncertainty, 
‣ the inclusive top quark cross section 

‣ the Higgs cross section
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NNLO-NNLL inclusive cross section 
✦ A milestone in QCD, with clear benefits. Logarithm is “threshold logarithm” 
‣ precision top physics is here 
‣ new calculational methods developed 
‣ use for gluon density at large x, and αs
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N3LL resummation for Higgs production
✦ Logarithm is threshold logarithm 
‣ Nice progression, especially with exponentiated constants 
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Figure 2. Our best prescription for the resummation, namely A-soft2 described in Sect. 3.3, plotted as a
function of the renormalization scale µR. The factorization scale is µF = mH. We show fixed-order results
as well as resummed ones. The plot on the left is obtained with the overall constant ḡ0, while the one on
the right with its exponentiated version ¯G0, as defined in Eq. (3.10).

We now move to resummation. In order to study the effect of different logarithmic orders, we
show in Fig. 2 the resummation at LL, NLL, NNLL and N3LL accuracy4, always matched to the
same NNLO contribution, as a function of µR, for fixed µF = mH. We also show, for comparison,
LO, NLO and NNLO curves. The fixed order results have been computed using the code ggHiggs,
while for the resummation we have written a new code called ResHiggs. The plots show our
best prediction, A-soft

2

, with ḡ

0

(left panel) and its exponentiated version ¯

G

0

(right panel). It is
interesting to observe that exponentiating ḡ

0

leads to a flatter resummed result, thereby suggesting
that its exponentiation is probably improving the convergence of the series. We also observe that,
in any case, the N3LL result is very similar in both cases over a wide range of scales, so the
exponentiation of ḡ

0

does not change significantly the final result, as we have anticipated at the
end of Sect. 3.3. In both cases, we note that the inclusion of soft-gluon resummation at N3LL
significantly reduces the µR scale uncertainty of fixed-order results and of previous resummed orders.

In Fig. 3 we concentrate on NNLO+N3LL and also show the effect of varying µF. Since the
resummation involves only the gg channel, the resummed result depends more significantly on the
scale µF, although formally such dependence is of order ↵3

s

with respect to the Born cross section.
Over a range of roughly a factor of 2 about µR = mH/2 the results with (right panel) or without (left
panel) exponentiation of ḡ

0

are very similar, while they differ (and are more sensitive to µF) for more
extreme choices of µR (especially at small µR). In these regions, the result obtained exponentiating
ḡ

0

looks more sensible and stable, suggesting, once again, that exponentiating ḡ

0

provides a more
stable result. Moreover, we notice that NNLO+N3LL result with µF = mH/ 2 barely depends on
µR. We also observe that resummed curves for different values of µF approximately coincide for a
value of µR slightly smaller than mH/2.

In Fig. 4 we show the same plots as in Fig. 3, but this time obtained with the  -soft
2

prescription.
Since now the constant function in front of the exponential is g

0

rather than ḡ

0

, we can expect a
result different from that of A-soft

2

, when g

0

is not exponentiated (left panel). However, the result
with G

0

(right panel) is very similar to the analogous result with A-soft
2

. It follows that  -soft
2

provides an acceptable alternative to our best choice A-soft
2

, provided that G

0

is used, i.e with g

0

4We are adopting Notation*, see Table 1, so N3LL is the currently highest possible accuracy.
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Resummation of what logarithm?
✦ So many variables, so many logs,…
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1st example of double logs: thrust

✦ Near T=1 the final state looks like two very narrow jets 
‣ emission must then be either very soft, and/or very collinear. Large logs:    

!
‣ Data (ALEPH) vs fixed order and vs resummation
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2nd example of double log: recoil logs
✦ Eg. pT of Z-bosons produced at Tevatron    

‣ Z-boson gets pT from recoil agains (soft) gluons 

‣ Visible logs (argument made of measured quantities) 
✓ 1 emission: with gluon very soft: divergent 

- virtual: large negative bin at pT=0 

‣ The turn-over at pT around 5  GeV is only explained by resummation, not by finite order calculations

11

0

4

8

12

16

20

24

28

0 5 10 15 20 25 30 35 40 45 50

qT-space (Ellis-Veseli)
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Divergence near pT=0
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Physics near small pT
✦ At finite order 

!
‣ hence the real divergence toward pT near zero 

✦ Resummed 
!
✓ this is also the effective behaviour of the parton shower there 

✦ Notice: 
‣ finite order oscillates wildly near small pT, and may be negative 

‣ resummed is positive, and it tracks the data well 

✦ Physics of resummed answer: 
‣ probability of the process not to emit at small pT is vanishingly small 

✓ There is violent acceleration of color charges after all..
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3rd example of double log: threshold logs
✦ Logarithm of “energy above threshold Q2” 

‣ “Invisible” logs”: argument made up of integration variables 

‣ Typical effect: enhancement of cross section
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Threshold log rule of thumb
✦ Why do they increase the cross section? (N large = near threshold) 

!

!

✦ In words: 
‣ The hadronic cross section is a product/convolution of PDF’s and the partonic cross section 

‣ In both factors emissions may, and should occur.  
✓ The contribution from the PDF’s is too stingy 
✓ The partonic cross section has to overcompensate in order to get the right amount for the hadronic cross 

section
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Reminder of origin of double (“Sudakov”) logs
✦ Double logarithms in cross sections are related to IR divergences
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Decoupling of IR effects 
✦ We saw already for the spinor methods that the part with the soft (k5) gluon decouples from the rest 

!

!

✦ This is in fact quite general, and it is essence of why we can resum double logarithms to all orders. 

✦ The soft approximation is also known as the “eikonal” approximation 
‣ Simplification, gives nice and very insightful results
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Basics of eikonal approximation: QED
✦ Charged particle emits softly 

‣ Propagator: expand numerator & denominator in soft momentum, keep lowest order 

‣ Vertex: expand in soft momentum, keep lowest order

p + k p

k

(p + k)µ + pµ

2p · k + k2
�⇥ 2pµ

2p · k
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Basics  of eikonal approximation in QED

p

k1, µ1 k2, µ2 kn, µn

1
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Eikonal approximation: no dependence on emitter spin
✦ Emitter spin becomes irrelevant in eikonal approximation 

‣ Fermion 

!
!

‣ Approximate, and use Dirac equation 

‣ Result: 

!
!

‣ Two things have happened 
✓ No sign of emitter spin anymore 
✓ Coupling of photon proportional to pµ  ! 

✦ Decoupling again of emission and emitter

M(
i(/p + /k)
(p + k)2

(�igs�
µ) u(p)

p + k

k

p
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Eikonal exponentiation
✦ In the eikonal approximation, suddenly we see very interesting patterns.

A0

�
dnk

1
k2

p · p̄
(p · k)(p̄ · k)

p

p̄

k

p

p̄

k1 k2 A0
1
2

�⇤
dnk

1
k2

p · p̄
(p · k)(p̄ · k)

⇥2

One loop vertex correction, in eikonal approximation

Two loop vertex correction, in eikonal approximation

Exponential series! A really beautiful result
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Another eikonal effect: coherence in emission
✦ Eikonal approximation in amplitude, coherence possible 

‣ First in QED 

!
!
!

‣ Square the amplitude, take the eikonal approximation, and combine with phase. Result 

!
!

‣ Only non-zero when θ’<θ : angular ordering after azimuthal integral 
✓ photon that is too soft only see the sum of the charges, which is zero here. 

‣ In QCD very similar result (after being a little bit more careful with color charges). Radiation function 

!
!
✓ clearly has eikonal form. Notice, it is an interference effect: 
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Color coherence
✦ Decompose into a part for emitter i and one for emitter j 

!

✦ where 

!
- can be checked. Just substitute.. 

✦ Then one can show (as an exact result) 

!

!
‣ color coherence/angular ordering in QCD! 

✓ but after azimuthal integration 

‣ Built-in to the HERWIG parton shower.  

‣ There is evidence for this in data
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Color coherence in 3-jet events
✦ Recent CMS study (based on earlier CDF study): order the 3 jets in pT.  

✦ Then study angular correlations between 2nd and 3rd jet. Expressed through parameter β.  
✓ β = 0 will be enhanced, when second jet is central 

‣ Study through swithing color coherence on and off in Pythia 
✓ Switched on works better, but no real satisfactory description of data

24

10 7 Summary

the data better than the other MC generators in the central region, but the agreement is poor
in the forward region. Finally, when MADGRAPH is used with the exact 2 ! 3 matrix element
calculations at LO, the global description of the data is improved with respect to PYTHIA 6
alone.

The impact of the color coherence effects is studied by switching them on and off for the first
emission in the initial- and final-state showers in PYTHIA 6. One can observe in Fig. 6 that the
agreement between the data and the simulation deteriorates when the color coherence effects
in the MC events are suppressed. More quantitatively, the c2 divided by the number of de-
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Figure 6: The MC predictions for the b distribution from PYTHIA 6, with and without color
coherence effects in the first branching of the initial- and final-state showers, compared to the
measurement. The error bars show the uncorrelated statistical uncertainty of the data. The
yellow band represents the systematic uncertainty, while the green band represents the total
uncertainty.

grees of freedom increases up to 7.7 in the central region and 11.5 in the forward region. The
first emission in the initial- and final-state showers contributes roughly the same order. Using
PYTHIA, it has been verified that the impact of the non-perturbative component of the QCD cal-
culation (hadronization and underlying event) is negligible for this analysis. One conclusion
from this PYTHIA study, as shown Fig. 6, is that the data clearly support larger color coherence
effects than in present MC implementations.

7 Summary

Color coherence effects in multijet events have been studied in a sample of pp collisions cor-
responding to an integrated luminosity of 36 pb�1, collected with the CMS detector at

p
s =

7 TeV. Distributions of the variable b, which was previously used in similar analyses at the
Tevatron, are used to measure the angular correlation between the second and third jets in
transverse-momentum order, in the pseudorapidity and azimuthal angle space. The measure-
ments, unfolded for detector effects, are compared to the predictions of the MC event genera-



Non-abelian eikonal approximation
✦ Same methods as for QED, but organization harder: SU(3) generator at every vertex 

!

!

!
!
!

‣ now no obvious decorrelation 

!

✦ Key “object”: Wilson line 
‣ Order by order in “g”, it generates QCD eikonal Feynman rules, including the SU(3) generators
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Non-abelian exponentiation: webs

✦ Take quark - antiquark line, connect with soft gluons in all possible ways, and use eikonal approximation 

✦ Exponentiation still occurs! Sum of all eikonal diagrams D with color factor C and momentum space part F 
!
!
!
!
!
!
!

‣ A selection of diagrams in exponent, but with modified color weights: “webs” 
✓ Easy to select webs: they must be two-eikonal line irreducible 
✓ More difficult to compute the modified color factors, but can be done also
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Multiple colored lines
✦ Structure  

!

‣ multi-parton webs are “closed sets” of diagrams, with modified color factors 
!

!

!

!
✦ Closed form solution for modified color factor 

!

‣ Interesting properties of projector matrix (reduces degree of divergence)
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Projector matrix

‣ Projects out contributions that come from exponentiation of lower order diagrams 
✓ Interesting combinatorial aspects (Stirling numbers) 
✓ Proof of idempotency and zero sum row property  

‣ Combinatorics involves quite interesting for mathematicians
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How to resum?
✦ There are many ways, depending on 

‣ the observable 

‣ the logarithm 

‣ the resummer 

✦ Here we take as key notions 
‣ factorization 

‣ approximations for kinematic limit (eikonal approximation e.g.)

29



Resummation 101
✦ Cross section for n extra gluons 

!

!

✦ When emissions are soft, can factorize phase space measure and matrix element  [eikonal 
approximation] 

!

✦ Sum over all orders 

!

!

!

✦ Incorporate Theta or Delta functions in space space 
‣ but these must factorize similarly, or they cannot go into exponent
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Phase space in resummation
✦ Kinematic condition expresses “z” in terms of gluon energies 

!

!
‣ or conservation of transverse momentum 

✦ Transform (e.g. Laplace/Mellin or Fourier) factorizes the phase space 

!

!

✦ So can go into exponent 

!
!

‣ Large logs:  ln(N) or ln(bQ)
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Resummation and factorization
✦ Very generically, if a quantity factorizes, one can resum it. Let us consider UV renormalization as an 

example. 
‣ Renormalization; factorizes UV modes into Z-factor  (Λ is an ultraviolet cut-off) 

!
‣ Evolution equation (here RG equation) 

!
✓ Notice that γ can only depend on, the only common variable 

‣ Solving  the differential equation = resumming 

!
!
✓ The exponent will be a series in gR(µ).  

- Exercise: compute the first term in the exponent. Answer:  

✦ This is a very general notion, and can be seen as the basis of resummation.
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Factorization and resummation for Drell-Yan

✦ Near threshold, cross section is equivalent to product of 4 well-defined functions 
✦ Demand independence of  
‣ renormalization scale µ 
‣ gauge dependence parameter ξ 

✓ find exponent of double logarithm
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Factorization for threshold resummation
✦ Δi(N):  initial state soft+collinear radiation effects 

‣ real+virtual 

‣ αsnln2n N 

✦ Sij(N):  soft, non-collinear radiation effects 
‣ αsnlnn N 

✦ H:  hard function, no soft and collinear effects
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From N space back to momentum-space
✦ Parton cross section derived in N space 

✦ PDF’s in N space 
‣ Use initial conditions in N-space, then QCD-PEGASUS evolution (A. Vogt) 

✦ Use inverse Mellin transform 
‣ Avoid Landau pole singularity with Minimal Prescription (go left..) 

✓ gives Good numerical stability 

✦ Exercise: 
‣ function 

‣ Melling transform 

‣  Inverse Mellin transform 
✓ Correct!
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Catani, Mangano!
Nason, Trentadue 
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Resummed Drell-Yan/Higgs cross section
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Threshold-resummed Drell-Yan 
cross section!
!
Functions in exponent depend 
only on coupling

Sterman; Catani, Trentadue
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Good convergence in exponent
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Resummation vs parton shower
✦ Both account for emission to all orders in perturbative QCD. It’s accuracy vs flexibility 

‣ Resummation: a formula 
✓ accuracy to LL, NLL, NNLL depending on what the theorists did. For specific observables 

‣ Parton shower: generate events 
✓ very flexible, can use for any observables 
✓ but, on the downside, in essence only LL accuracte (it never has all the NLL information in it, because that 

is to some extent observable dependent). 
- Progress is being made here however 
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Final summary
✦ Many concepts in perturbative QCD were discussed, in both their essence and some technical aspects 

‣ Formal: symmetries, renormalization, asymptotic freedom 

‣ Finite orders, IR and COL divergence-handling 

‣ Parton showers 

‣ Modern methods: spinor helicity methods, and a glimpse of the NLO revolution 

‣ All-orders: resummation, why and how 
✓ here there is quite a bit of physics insight possible 

✦ My hope: that when you see such concepts in workshops or talks, you now have a sense about what this 
is about.  

✓ Don’t be blinded by the technicalities, there is room for a lot of physics intuition in QCD 

✦ Especially I hope that you will feel free to ask, and discuss with QCD theorists when you have questions 
and/or ideas. Just as how you have done here. I think the success of the LHC and its research program 
depend on this!
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