CERN school 2014

Eric Laenen



Lecture 4:
All orders in QCD: resummation
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So far

+ We have discussed the structure of fixed order calculations in perturbative QCD
»  PDF’s: what they mean and how they are made
»  LO: methods for computation, e.g. spinor helicity methods, MHV amplitudes, recursion relations

»  NLO: divergences, how they are consistently removed

+ We also discussed the basics of the parton shower, and reviewed (superficially) how it is used in Monte
Carlo’s.

»  Monte Carlo’s can produce an arbitrary number of partons, but that does not make them NNN...NLO accurate

»  Yet they should get some of the all-order soft and collinear physics right.

+ This lecture: how can we say something systematic about all-order predictions, even though we cannot
compute arbitrarily higher orders exactly?

»  Aka: “Resummation’
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Perturbative series in QF'T

Typical perturbative behavior of observable @ G e e
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a is the coupling of the theory (QCD, QED, ..) eI e T AE e e
L is some numerically large logarithm

“1” = 12, In2, anything no

Notice: effective expansion parameter is aL2. Problem occurs if is this >1!!

Possible fix: reorganize/resum terms such that

G5 e e G e e IS M P g B B e o A
= exp | Lgi(asL)+ga(asl) +asgs(asl) + ... | Clas)
LL constants

N /

+ suppressed terms

Notice the definition of LL, NLL, etc



LL, NLL,.. and matching to fixed order

+ This is nomenclature you see very often: leading-log, next-to-leading log, etc

»  Here is the schematic overview of accuracy in resummation

i !

O SO L C Tl = |fexDp [(Z Gl +(Z Gy s +(Z Gl e R }
=1t il

LL,NLL =l e
NlCIrLL ) A& LL -~ J/
2 NLL 5
»  This is a systematic expansion in as in the exponent NNLL

v If we can find the coefficients ¢y, dn, en, Co, C1 etc
»  Itis directly clear how to combine this with an exact NLO or NNLO calculation

v Expand the resummed version to the next order in as . Add the NLO and resummed, but subtract the order as -
expanded resummed result, to avoid double counting.

ONLO matched — ONLO 3 Oresummed B (OreSHmmed) ‘expanded to O(ag)

- generalization to NNLO is obvious

+ But what can L be the logarithm of?



Benefits of resummation

+ |t can rescue predictive power
»  when perturbative series converges poorly
» and can predict terms in next order when they are not known exactly yet (“approximate NNLO")

v by expanding the resummed cross section to that order
+ Better physics description (small pr e.g., more later)

+ Lessens the renormalization/factorization scale uncertainty,
»  the inclusive top quark cross section

»  the Higgs cross section



NNLO-NNLL inclusive cross section

Baernreuther, Fiedler, Mitov, Czakon

+ A milestone in QCD, with clear benefits. Logarithm is “threshold logarithm’
»  precision top physics is here
» new calculational methods developed

»  use for gluon density at large X, and 0s ~ czakon, mitov, Mangano, Rojo
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N’LL resummation for Higgs production

+ Logarithm is threshold logarithm

)

o [pb]

Nice progression, especially with exponentiated constants

Higgs cross section: gluon fusion
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Higgs cross section: gluon fusion

Bonvini, Marzani
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Resummation of what logarithm?

S0 many variables, so many logs,...

pT of b @ Tevatron
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I st example of double logs: thrust

+ Near T=1 the final state looks like two very narrow jets

»  emission must then be either very soft, and/or very collinear. Large logs:

2
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2nd example of double log: recoil logs

+ Eg. pT of Z-bosons produced at Tevatron
»  Z-boson gets pr from recoil agains (soft) gluons
»  Visible logs (argument made of measured quantities)
v 1 emission: with gluon very soft: divergent
- virtual: large negative bin at pT=0

»  The turn-over at pT around 5 GeV is only explained by resummation, not by finite order calculations
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Divergence near pr=0

differential cross section vs pt for 93 93 -> 23 93 LHC at 14 TeV _hist_pt
Entries 10000
= Mean 24
° RMS 13.71
,"z 400
©
350
<
70
pt (GeV)
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Physics near small pr

At finite order

>

do In pr o] . >
—— = g0 rbd i +ci— + ¢po + ...
22 = cod(pr) + (AT 4ol + clfr)

hence the real divergence toward pr near zero

Resummed
CZ'% = co exp [—cha, In?(pr) + .. |
v this is also the effective behaviour of the parton shower there

Notice:

>

>

finite order oscillates wildly near small pr, and may be negative

resummed is positive, and it tracks the data well

Physics of resummed answer:

>

probability of the process not to emit at small pr is vanishingly small

v

There is violent acceleration of color charges after all..
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ard example of double log: threshold logs

+  Logarithm of “energy above threshold @ In*(1 — Q@?/s)
»  “Invisible” logs”: argument made up of integration variables

»  Typical effect: enhancement of cross section

- —@

S

14



Threshold log rule of thumb

+ Why do they increase the cross section? (N large = near threshold)

G A exp(—In? N
Upartonic,resum(N) = e ( ) = p( ) o s eXp(—|— 1Il2 N)

i (exp(— In” N)

+ In words:
»  The hadronic cross section is a product/convolution of PDF’s and the partonic cross section
»  In both factors emissions may, and should occur.
v The contribution from the PDF’s is too stingy

v The partonic cross section has to overcompensate in order to get the right amount for the hadronic cross
section

15



Reminder of origin of double (“Sudakov™) logs
+ Double logarithms in cross sections are related to IR divergences

—
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Decoupling of IR effects

+ We saw already for the spinor methods that the part with the soft (k5) gluon decouples from the rest

T e G (34)
e E e SR ARy 9o 9y 35y asy — (12)(34) ~ T35)(45)

+ This is in fact quite general, and it is essence of why we can resum double logarithms to all orders.

+ The soft approximation is also known as the “eikonal” approximation

»  Simplification, gives nice and very insightful results
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Basics of eikonal approximation: QED

+ Charged particle emits softly
»  Propagator: expand numerator & denominator in soft momentum, keep lowest order

»  Vertex: expand in soft momentum, keep lowest order

k > U
>
p+k P
GO e
2p - k + k2 -k

18



Basics of eikonal approximation in QED

Ei, i Ko, po Ky bin
> p
Exact: 1 (REloinelli)ise s 1 (2petekE et K= znjkm-
B ) (p+ Kn)? ’ s
1 1
Approx: DA 2pHn
Eikonal 1 1 1

=y - =
|dent|ty: p - (kl S kQ)p : kg p - (kl ol kg)p : ]431 D - klp - kQ

K
Sum over H L
all perm’s: i 5

Independent, uncorrelated emissions, Poisson process
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Kikonal approximation: no dependence on emitter spin

+  Emitter spin becomes irrelevant in eikonal approximation
p+k

»  Fermion p -
: Ngh Sl =

»  Approximate, and use Dirac equation  pu(p) =0

»  Result:

pH
g (M u(p)) X e
»  Two things have happened
v No sign of emitter spin anymore

v Coupling of photon proportional to p* !

+ Decoupling again of emission and emitter

20



Kikonal exponentiation

In the eikonal approximation, suddenly we see very interesting patterns.

One loop vertex correction, in eikonal approximation
p

oo fesl ot

Two loop vertex correction, in eikonal approximation

ko 1 £ 1 0 2
W@é W{ A“z(/”k2<p-k><p-k>>

Exponential series! A really beautiful result

Yennie, Frautschi, Suura
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Another eikonal effect: coherence 1n emission

+ Eikonal approximation in amplitude, coherence possible
»  Firstin QED

»  Square the amplitude, take the eikonal approximation, and combine with phase. Result

S dE - D
o = e 10—
4

p-kp-k
» Only non-zero when 6'<0 : angular ordering after azimuthal integral

v photon that is too soft only see the sum of the charges, which is zero here.

»  In QCD very similar result (after being a little bit more careful with color charges). Radiation function

W IR e | S e
Y o piogpirqg (1 —w;co80;4)(1 — v;cosby) w2
v clearly has eikonal form. Notice, it is an interference effect: i

7




Color coherence

+ Decompose into a part for emitter i and one for emitter |

57 k) (4]

+ Wwhere

i 1 1
WU = (Wij . = )

2 =sscogit sl =—Cos.0/=
- can be checked. Just substitute..

+ Then one can show (as an exact result)

D

/%WM 2 { 1—0(18 0.5 if (92'(1 < 91]
J

Dt 0 otherwise.

»  color coherence/angular ordering in QCD!
v but after azimuthal integration
»  Built-in to the HERWIG parton shower.

»  There is evidence for this in data
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Color coherence in 3-jet events

+ Recent CMS study (based on earlier CDF study): order the 3 jets in pT.

+ Then study angular correlations between 2nd and 3rd jet. Expressed through parameter f.
v (=0 will be enhanced, when second jet is central
»  Study through swithing color coherence on and off in Pythia

v Switched on works better, but no real satisfactory description of data
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Non-abelian eikonal approximation

+ Same methods as for QED, but organization harder: SU(3) generator at every vertex

ki, p Ko, po Ky

(e p
»  now no obvious decorrelation Order the Ta according to A

i

(I)n()\Qa )\1) =P exp

A2
z'g/ dAn - A*(\n) T,
A1

+ Key “object™ Wilson line

»  Order by order in “g”, it generates QCD eikonal Feynman rules, including the SU(3) generators
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Non-abelian exponentiation: webs

Gatheral; Frenkel, Taylor; Sterman

+ Take quark - antiquark line, connect with soft gluons in all possible ways, and use eikonal approximation

+ Exponentiation still occurs! Sum of all eikonal diagrams D with color factor C and momentum space part F

Y C(D)F(D) = exp [C(D)W(D)]

+ (=S Cr

o - o
g -y T
» > o
P >
« « «
4 - - ll’.
o o o
o + e + o
. “ o . o
L L .
. - “a -
- --. ..ll .
» »
. - = a
L - e
T e o
» » >

» A selection of diagrams in exponent, but with modified color weights: “webs”
v Easy to select webs: they must be two-eikonal line irreducible

v More difficult to compute the modified color factors, but can be done also
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Mulaple colored lines

Projector matrix Z Ryy =0
d/

Z ]:(D)C(D) = eXp[Z }“(d)Rld,C(d’)] Eigenvalues Oor 1
d,d’

»  multi-parton webs are “closed sets” of diagrams, with modified color factors

X % % X\é = Multiparton Web

(3b) (3c) (3d)

+ Structure

+ Closed form solution for modified color factor

% C(3a) - C(3b) — C(3¢) + C(3d) | x |M(3a) — 20 (3b) — 2M (3c) + M(3d)|

» Interesting properties of projector matrix (reduces degree of divergence)

L



Projector matrix

Y F(D)C(D) = exp|» _ F(d)Raa C(d)]
d,d’
Gardi, White

»  Projects out contributions that come from exponentiation of lower order diagrams

v Interesting combinatorial aspects (Stirling numbers)

v Proof of idempotency and zero sum row property

»  Combinatorics involves quite interesting for mathematicians

28



How to resum?

+ There are many ways, depending on
»  the observable
»  the logarithm

»  the resummer

+ Here we take as key notions
»  factorization

»  approximations for kinematic limit (eikonal approximation e.g.)

29
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Resummation 101

Cross section for n extra gluons

Phase space measure Squared matrix element

1
O-(n) &= 2_3/d(1)n+1(P7 k17"'7kn) X ‘M(P7 kl""7kn)‘2

When emissions are soft, can factorize phase space measure and matrix element [eikonal
approximation]

el
d(I)n_H(P, ki, .. ,k‘n) — d(I)(P) X (d(I)l(k)) ﬁ

Sum over all orders
MP e, )2 — M) X (M emission (B)2)"

> o(n) =a(0) x exp | / 4D ()| M emission (k) 2]

n

Incorporate Theta or Delta functions in space space

»  but these must factorize similarly, or they cannot go into exponent
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Phase space in resummation

+ Kinematic condition expresses “z” in terms of gluon energies

== P
— et e e @ 2K
I 5<1 S ; \/E)
» or conservation of transverse momentum .

0*(Qr — > ry)

+ Transform (e.g. Laplace/Mellin or Fourier) factorizes the phase space
/oo e e_WNé(w = sz) &2 Hexp(—wiN) /d2QT o0 QT 52(QT i ZP’?F) Sl H eib-pi_r
0 i i i i

+ So can go into exponent

Za(n) = g(0) x exp [/d@l(k)\./\/ll o (e XD [ ee

n

»  Large logs: In(N) or In(bQ)
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Resummation and factorization

+ Very generically, if a quantity factorizes, one can resum it. Let us consider UV renormalization as an
example.

»  Renormalization; factorizes UV modes into Z-factor (A is an ultraviolet cut-off)

Gp(gs.A,p) = Z(%,QR(M)) X GR<gR(u), %)

»  Evolution equation (here RG equation)

g G (90, 2) = <7 102, 9(0)) = 2{m ()

v Notice that y can only depend on, the only common variable

»  Solving the differential equation = resumming

G (Loane)) = G 1.ano) exp | [ Srtan)|

\ 7
-~

resummed

v The exponent will be a series in gr(u).

2
Exercise: compute the first term in the exponent. Answer: gi—(my(l) In ©
n P

+ This is a very general notion, and can be seen as the basis of resummation.
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Factorization and resummation for Drell-Yan

O(N) = A(Na Iy gl)A(Na M, 52)S(N7 Iy 517 fQ)H(:u)
+ Near threshold, cross section is equivalent to product of 4 well-defined functions
+ Demand independence of

»  renormalization scale

»  gauge dependence parameter ¢

v find exponent of double logarithm

d d d
0= -0 (N) = &1 3-0(N) = Ea o (N)

A:exp[/‘%/%.]

33

Contopanagos, EL, Sterman



Factorization for threshold resummation

+ A(N): initial state soft+collinear radiation effects

» rea|I+2vir[:uaI o(N) = 3" 6s(N)¢; () [Ai(N)Aj(N)Sij(N) Hij]
3 as"n4" Ly f

+  Sj(N): soft, non-collinear radiation effects

4 Gsnlnn N

+ H: hard function, no soft and collinear effects

Cr
27Tb0)\

_2 S
2 1n2]\7—|—..]
7T

Ay(N) = exp | In N {20+ (1 —2)) In(1 —zA)}+..]

= exp
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From N space back to momentum-space

Parton cross section derived in N space

PDF’s in N space
Use initial conditions in N-space, then QCD-PEGASUS evolution (A. Vogt)

>

Use inverse Mellin transform

>

(res) 2 2 2 2\
Uhlhg—.kl(/) ) {m } R L) = -

Avoid Landau pole singularity with Minimal Prescription (go left..)

v

gives Good numerical stability

Exercise:

>

i
» Melling transform f(N):/ g =
0

>

function f(z) =P

v

Inverse Mellin transform

Correct!

1

1

35

1

20
2 ch (" y — p
/ dyTm [e'¢ p~Cmp—ve
0

(res)
X 0’?]’!2-‘

w(N = Cup + ye'®, {m?}  ph. p1¥) |

Catani, Mangano
Nason, Trentadue




Resummed Drell-Yan/Higgs cross section

Sterman; Catani, Trentadue

Threshold-resummed Drell-Yan Joresum AN
cross section T G = / — 2V &(N)
dQ o 2mi
: . 1 AT Q% (1—=z)? d
Functions in exponent depend o(N) = exp|— / il R e / A Alas(p))
only on coupling 0 l-= : z

+D(cs((1 — x)Q))H sClabE aS(Q2)% +...)

6py(N,Q%) = go(Q?) exp [Ggy(Q2)]
A. Vogt GDy = InNgi(A)+g2(A) +asgs(N) +...,  A=foasInN

6 T T T T I T T T T T T T T T T T T 12

10

Good convergence in exponent




Resummation vs parton shower

+ Both account for emission to all orders in perturbative QCD. It's accuracy vs flexibility
»  Resummation: a formula
v accuracy to LL, NLL, NNLL depending on what the theorists did. For specific observables
»  Parton shower: generate events
v very flexible, can use for any observables

v but, on the downside, in essence only LL accuracte (it never has all the NLL information in it, because that
is to some extent observable dependent).

Progress is being made here however
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Final summary

Many concepts in perturbative QCD were discussed, in both their essence and some technical aspects

4

4

>

4

4

Formal: symmetries, renormalization, asymptotic freedom

Finite orders, IR and COL divergence-handling

Parton showers

Modern methods: spinor helicity methods, and a glimpse of the NLO revolution
All-orders: resummation, why and how

v here there is quite a bit of physics insight possible

My hope: that when you see such concepts in workshops or talks, you now have a sense about what this
IS about.

v Don't be blinded by the technicalities, there is room for a lot of physics intuition in QCD

Especially | hope that you will feel free to ask, and discuss with QCD theorists when you have questions
and/or ideas. Just as how you have done here. | think the success of the LHC and its research program
depend on this!
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