$$
\frac{1}{4} \operatorname{Tr}\left[G^{2}\right]-\bar{\psi}(\not D-m) \psi
$$

Eric Laenen
CERN school 2014

Lecture 4:
 All orders in QCD: resummation

FREE SHIPPING ON ALL ORDERS*

So far

* We have discussed the structure of fixed order calculations in perturbative QCD
- PDF's: what they mean and how they are made
- LO: methods for computation, e.g. spinor helicity methods, MHV amplitudes, recursion relations
- NLO: divergences, how they are consistently removed
* We also discussed the basics of the parton shower, and reviewed (superficially) how it is used in Monte Carlo's.
- Monte Carlo's can produce an arbitrary number of partons, but that does not make them NNN...NLO accurate
- Yet they should get some of the all-order soft and collinear physics right.
+ This lecture: how can we say something systematic about all-order predictions, even though we cannot compute arbitrarily higher orders exactly?
- Aka: "Resummation"

Perturbative series in QFT

* Typical perturbative behavior of observable
- α is the coupling of the theory (QCD, QED, ..)

$$
\begin{aligned}
\hat{O}_{2}= & 1+\alpha\left(L^{2}+L+1\right)+ \\
& \alpha^{2}\left(L^{4}+L^{3}+L^{2}+L+1\right)+\ldots
\end{aligned}
$$

- L is some numerically large logarithm
- " 1 " $=\pi^{2}$, In2, anything no
- Notice: effective expansion parameter is aL². Problem occurs if is this >1 !!
- Possible fix: reorganize/resum terms such that

$$
\begin{aligned}
\hat{O}= & 1+\alpha_{s}\left(L^{2}+L+1\right)+\alpha_{s}^{2}\left(L^{4}+L^{3}+L^{2}+L+1\right)+\ldots \\
= & \exp (\underbrace{\underbrace{L g_{1}\left(\alpha_{s} L\right)}_{L L}+g_{2}\left(\alpha_{s} L\right)}_{N L L}+\alpha_{s} g_{3}\left(\alpha_{s} L\right)+\ldots) \underbrace{C\left(\alpha_{s}\right)}_{\text {constants }} \\
& + \text { suppressed terms }
\end{aligned}
$$

* Notice the definition of LL, NLL, etc

LL, NLL,.. and matching to fixed order

* This is nomenclature you see very often: leading-log, next-to-leading log, etc
- Here is the schematic overview of accuracy in resummation

$$
\begin{aligned}
& O=\alpha_{s}^{p}(\underbrace{\underbrace{C_{0}}_{\text {LL,NLL }}+C_{1} \alpha_{s}}_{\text {NNLL }}+\ldots) \exp [\underbrace{\underbrace{\left.\sum_{n=1}^{\sum_{s} \alpha_{s}^{n} L^{n+1} c_{n}}\right)}_{\text {LL }}+\left(\sum_{n=1} \alpha_{s}^{n} L^{n} d_{n}\right)}_{\text {NLL }}+\left(\sum_{n=1} \alpha_{s}^{n} L^{n-1} e_{n}\right)+\ldots] \\
& \text { his is a systematic expansion in } \mathbf{a}_{\mathbf{s}} \text { in the exponent }
\end{aligned}
$$

\checkmark If we can find the coefficients $\mathrm{C}_{\mathrm{n}}, \mathrm{d}_{\mathrm{n}}, \mathrm{e}_{\mathrm{n}}, \mathrm{C}_{0}, \mathrm{C}_{1}$ etc

- It is directly clear how to combine this with an exact NLO or NNLO calculation
\checkmark Expand the resummed version to the next order in a_{s}. Add the NLO and resummed, but subtract the order a_{s} expanded resummed result, to avoid double counting.

$$
O_{\mathrm{NLO} \text { matched }}=O_{\mathrm{NLO}}+O_{\text {resummed }}-\left.\left(O_{\text {resummed }}\right)\right|_{\text {expanded to } \mathcal{O}\left(\alpha_{\mathrm{s}}\right)}
$$

generalization to NNLO is obvious

* But what can L be the logarithm of?

Benefits of resummation

* It can rescue predictive power
, when perturbative series converges poorly
- and can predict terms in next order when they are not known exactly yet ("approximate NNLO")
\checkmark by expanding the resummed cross section to that order
* Better physics description (small pт e.g., more later)
* Lessens the renormalization/factorization scale uncertainty,
- the inclusive top quark cross section
- the Higgs cross section

NNLO-NNLL inclusive cross section

+ A milestone in QCD, with clear benefits. Logarithm is "threshold logarithm"
- precision top physics is here
- new calculational methods developed
- use for gluon density at large X , and $\mathrm{a}_{\mathrm{s}} \quad$ Czakon, Mitov, Mangano, Rojo

Soft gluon resummation makes a difference

$$
5 \% \quad \text {-> } \quad 3 \%
$$

$\mathrm{N}^{3} \mathrm{LL}$ resummation for Higgs production

* Logarithm is threshold logarithm
- Nice progression, especially with exponentiated constants

Resummation of what logarithm?

+ So many variables, so many logs,...

$$
\begin{gathered}
\ln (1-7) \ln \left(p_{T} / m_{Z}\right) \\
\ln (1 / x) \ln \left(k_{x}\right) \\
\frac{\ln }{3}(1-\ln (N)
\end{gathered}
$$

pT of \mathbf{Z} @ Tevatron

1st example of double logs: thrust

+ Near T=1 the final state looks like two very narrow jets
- emission must then be either very soft, and/or very collinear. Large logs:

$$
\ln ^{2}(1-T)
$$

- Data (ALEPH) vs fixed order and vs resummation

Becher, Schwartz

2nd example of double log: recoil logs

* Eg. pT of Z-bosons produced at Tevatron
- Z-boson gets $\mathrm{PT}_{\text {t }}$ from recoil agains (soft) gluons
- Visible logs (argument made of measured quantities)
$\checkmark 1$ emission: with gluon very soft: divergent
virtual: large negative bin at $\mathrm{pT}=0$
- The turn-over at pT around 5 GeV is only explained by resummation, not by finite order calculations

Divergence near $\mathrm{pr}^{\mathrm{T}}=\mathbf{0}$

Physics near small рт

- At finite order

$$
\frac{d \sigma}{d p_{T}}=c_{0} \delta\left(p_{T}\right)+\alpha_{s}\left(c_{2}^{1} \frac{\ln p_{T}}{p_{T}}+c_{1}^{1} \frac{1}{p_{T}}+c_{0}^{1} \delta\left(p_{T}\right)\right)+\ldots
$$

- hence the real divergence toward $p_{\boldsymbol{T}}$ near zero
+ Resummed

$$
\frac{d \sigma}{d p_{T}}=c_{0} \exp \left[-c_{2}^{1} \alpha_{s} \ln ^{2}\left(p_{T}\right)+\ldots\right]
$$

\checkmark this is also the effective behaviour of the parton shower there

+ Notice:
- finite order oscillates wildly near small $\mathrm{p}_{\text {T }}$, and may be negative - resummed is positive, and it tracks the data well
+ Physics of resummed answer:
- probability of the process not to emit at small p_{T} is vanishingly small
- There is violent acceleration of color charges after all..

3rd example of double log: threshold \log s

+ Logarithm of "energy above threshold $Q^{2 n} \quad \ln ^{2}\left(1-Q^{2} / s\right)$
- "Invisible" logs": argument made up of integration variables
- Typical effect: enhancement of cross section

$$
S \geq s \geq Q^{2}
$$

Threshold \log rule of thumb

* Why do they increase the cross section? (N large = near threshold)

$$
\sigma_{\text {partonic,resum }}(N)=\frac{\sigma_{\text {hadronic }}(N)}{\phi^{2}(N)}=\frac{\exp \left(-\ln ^{2} N\right)}{\left(\exp \left(-\ln ^{2} N\right)^{2}\right.}=\exp \left(+\ln ^{2} N\right)
$$

+ In words:
- The hadronic cross section is a product/convolution of PDF's and the partonic cross section
- In both factors emissions may, and should occur.
\checkmark The contribution from the PDF's is too stingy
\checkmark The partonic cross section has to overcompensate in order to get the right amount for the hadronic cross section

Reminder of origin of double ("Sudakov") logs

Double logarithms in cross sections are related to IR divergences

Phase space integration

$$
\begin{aligned}
& \alpha_{s} \int \frac{d^{4-2 \epsilon} k}{(2 \pi)^{4}} \frac{p \cdot p^{\prime}}{p \cdot k p^{\prime} \cdot k} \sim \alpha_{s} \int^{K} \frac{d E_{\mathrm{g}} E_{\mathrm{g}}^{-\epsilon}}{E_{\mathrm{g}}} \int \frac{d \theta_{\mathrm{qg}} \sin ^{-\epsilon} \theta_{\mathrm{qg}}}{\theta_{\mathrm{qg}}} \\
& \sim \alpha_{s}\left(\frac{1}{\epsilon^{2}}+\ln ^{2}(K)\right) \text {. }
\end{aligned}
$$

Decoupling of IR effects

+ We saw already for the spinor methods that the part with the soft (k5) gluon decouples from the rest

$$
\mathcal{M}\left(1^{+}, 2^{-}, 3^{+}, 4^{-}, 5^{+}\right)=2 \sqrt{2} e^{2} g T_{a} \frac{\langle 24\rangle^{2}}{\langle 12\rangle\langle 35\rangle\langle 45\rangle}=\frac{\langle 24\rangle^{2}}{\langle 12\rangle\langle 34\rangle} \times \frac{\langle 34\rangle}{\langle 35\rangle\langle 45\rangle}
$$

+ This is in fact quite general, and it is essence of why we can resum double logarithms to all orders.
+ The soft approximation is also known as the "eikonal" approximation
- Simplification, gives nice and very insightful results

Basics of eikonal approximation: QED

+ Charged particle emits softly
- Propagator: expand numerator \& denominator in soft momentum, keep lowest order
- Vertex: expand in soft momentum, keep lowest order

Basics of eikonal approximation in QED

Exact: $\quad \frac{1}{\left(p+K_{1}\right)^{2}}\left(2 p+K_{2}+K_{1}\right)^{\mu_{1}} \cdots \frac{1}{\left(p+K_{n}\right)^{2}}\left(2 p+K_{n}\right)^{\mu_{n}}, \quad K_{i}=\sum_{m=i}^{n} k_{m}$.
Approx: $\quad \frac{1}{2 p K_{1}} 2 p^{\mu_{1}} \cdots \frac{1}{2 p K_{n}} 2 p^{\mu_{n}}$
$\begin{aligned} & \text { Eikonal } \\ & \text { identity: }\end{aligned} \quad \frac{1}{p \cdot\left(k_{1}+k_{2}\right) p \cdot k_{2}}+\frac{1}{p \cdot\left(k_{1}+k_{2}\right) p \cdot k_{1}}=\frac{1}{p \cdot k_{1} p \cdot k_{2}}$
$\begin{aligned} & \text { Sum over } \\ & \text { all perm's: }\end{aligned} \prod_{i} \frac{p^{\mu_{i}}}{p \cdot k_{i}}$.
Independent, uncorrelated emissions, Poisson process

Eikonal approximation: no dependence on emitter spin

* Emitter spin becomes irrelevant in eikonal approximation
- Fermion

$$
M\left(\frac{i(p+k)}{(p+k)^{2}}\left(-i g_{s} \gamma^{\mu}\right) u(p)\right.
$$

- Approximate, and use Dirac equation $\quad p u(p)=0$
- Result:

$$
g(M u(p)) \times \frac{p^{\mu}}{p \cdot k}
$$

,
Two things have happened
\checkmark No sign of emitter spin anymore
\checkmark Coupling of photon proportional to p^{μ} !

* Decoupling again of emission and emitter

Eikonal exponentiation

* In the eikonal approximation, suddenly we see very interesting patterns.

One loop vertex correction, in eikonal approximation

$$
\mathcal{A}_{0} \int d^{n} k \frac{1}{k^{2}} \frac{p \cdot \bar{p}}{(p \cdot k)(\bar{p} \cdot k)}
$$

Two loop vertex correction, in eikonal approximation

Exponential series! A really beautiful result

Another eikonal effect: coherence in emission

Eikonal approximation in amplitude, coherence possible

- First in QED

- Square the amplitude, take the eikonal approximation, and combine with phase. Result

$$
d \sigma_{R}=d \sigma \frac{\alpha_{s}}{2 \pi} \frac{d E}{E} d \cos \theta d \phi E^{2} \frac{p \cdot \bar{p}}{p \cdot k \bar{p} \cdot k}
$$

Only non-zero when $\theta^{\prime}<\theta$: angular ordering after azimuthal integral
\checkmark photon that is too soft only see the sum of the charges, which is zero here.

- In QCD very similar result (after being a little bit more careful with color charges). Radiation function

$$
W_{i j}=\frac{\omega^{2} p_{i} \cdot p_{j}}{p_{i} \cdot q p_{j} \cdot q}=\frac{1-v_{i} v_{j} \cos \theta_{i j}}{\left(1-v_{i} \cos \theta_{i q}\right)\left(1-v_{j} \cos \theta_{j q}\right)}
$$

\checkmark clearly has eikonal form. Notice, it is an interference effect:

Color coherence

* Decompose into a part for emitter i and one for emitter j

$$
W_{i j}=W_{i j}^{[i]}+W_{i j}^{[j]}
$$

+ where

$$
W_{i j}^{[i]}=\frac{1}{2}\left(W_{i j}+\frac{1}{1-\cos \theta_{i q}}-\frac{1}{1-\cos \theta_{j q}}\right)
$$

can be checked. Just substitute..

+ Then one can show (as an exact result)

$$
\int_{0}^{2 \pi} \frac{d \phi_{i q}}{2 \pi} W_{i j}^{[i]}=\left\{\begin{array}{cl}
\frac{1}{1-\cos \theta_{i q}} & \text { if } \theta_{i q}<\theta_{i j} \\
0 & \text { otherwise }
\end{array}\right.
$$

- color coherence/angular ordering in QCD!

\checkmark but after azimuthal integration
- Built-in to the HERWIG parton shower.
- There is evidence for this in data

Color coherence in 3-jet events

* Recent CMS study (based on earlier CDF study): order the 3 jets in pT .
* Then study angular correlations between 2nd and 3rd jet. Expressed through parameter β.
$\checkmark \quad \beta=0$ will be enhanced, when second jet is central
- Study through swithing color coherence on and off in Pythia
\checkmark Switched on works better, but no real satisfactory description of data

Non-abelian eikonal approximation

+ Same methods as for QED, but organization harder: $\operatorname{SU}(3)$ generator at every vertex

- now no obvious decorrelation

Order the T_{a} according to λ

$$
\Phi_{n}\left(\lambda_{2}, \lambda_{1}\right)=P \exp \left[i g \int_{\lambda_{1}}^{\lambda_{2}} d \lambda n \cdot A^{a}(\lambda n) T_{a}\right]
$$

* Key "object": Wilson line
- Order by order in " g ", it generates QCD eikonal Feynman rules, including the $\operatorname{SU}(3)$ generators

Non-abelian exponentiation: webs

Gatheral; Frenkel, Taylor; Sterman

+ Take quark - antiquark line, connect with soft gluons in all possible ways, and use eikonal approximation
+ Exponentiation still occurs! Sum of all eikonal diagrams D with color factor C and momentum space part F

$$
\sum C(D) \mathcal{F}(D)=\exp [\bar{C}(D) W(D)]
$$

- A selection of diagrams in exponent, but with modified color weights: "webs"
\checkmark Easy to select webs: they must be two-eikonal line irreducible
, More difficult to compute the modified color factors, but can be done also

Multiple colored lines

+ Structure

$$
\sum \mathcal{F}(D) C(D)=\exp \left[\sum_{d, d^{\prime}} \mathcal{F}(d) R_{d d^{\prime}} C\left(d^{\prime}\right)\right] \quad \begin{array}{cc}
\text { Projector matrix } & \sum_{d^{\prime}} R_{d d^{\prime}}=0 \\
\text { Eigenvalues } \mathbf{0} \text { or } 1
\end{array}
$$

- multi-parton webs are "closed sets" of diagrams, with modified color factors

(3a)

(3b)

(3c)

= Multiparton Web

(3d)

+ Closed form solution for modified color factor

$$
\frac{1}{6}[C(3 a)-C(3 b)-C(3 c)+C(3 d)] \times[M(3 a)-2 M(3 b)-2 M(3 c)+M(3 d)]
$$

- Interesting properties of projector matrix (reduces degree of divergence)

Projector matrix

$$
\sum \mathcal{F}(D) C(D)=\exp \left[\sum_{d, d^{\prime}} \mathcal{F}(d) R_{d d^{\prime}} C\left(d^{\prime}\right)\right]
$$

- Projects out contributions that come from exponentiation of lower order diagrams
\checkmark Interesting combinatorial aspects (Stirling numbers)
\checkmark Proof of idempotency and zero sum row property
- Combinatorics involves quite interesting for mathematicians

How to resum?

* There are many ways, depending on
- the observable
- the logarithm
- the resummer
* Here we take as key notions
- factorization
- approximations for kinematic limit (eikonal approximation e.g.)

Resummation 101

* Cross section for n extra gluons

$$
\begin{array}{r}
\text { Phase space measure } \quad \text { Squared matrix element } \\
\sigma(n)=\frac{1}{2 s} \int d \Phi_{n+1}\left(P, k_{1}, \ldots, k_{n}\right) \times\left|\mathcal{M}\left(P, k_{1}, \ldots, k_{n}\right)\right|^{2}
\end{array}
$$

* When emissions are soft, can factorize phase space measure and matrix element [eikonal approximation]

$$
d \Phi_{n+1}\left(P, k_{1}, \ldots, k_{n}\right) \longrightarrow d \Phi(P) \times\left(d \Phi_{1}(k)\right)^{n} \frac{1}{n!}
$$

+ Sum over all orders

$$
\begin{aligned}
\left|\mathcal{M}\left(P, k_{1}, \ldots, k_{n}\right)\right|^{2} & \longrightarrow|\mathcal{M}(P)|^{2} \times\left(\left|\mathcal{M}_{1 \text { emission }}(k)\right|^{2}\right)^{n} \\
\sum_{n} \sigma(n) & =\sigma(0) \times \exp \left[\int d \Phi_{1}(k)\left|\mathcal{M}_{1 \text { emission }}(k)\right|^{2}\right]
\end{aligned}
$$

+ Incorporate Theta or Delta functions in space space
- but these must factorize similarly, or they cannot go into exponent

Phase space in resummation

+ Kinematic condition expresses "z" in terms of gluon energies

$$
s=Q^{2}-2 P \cdot K-K^{2} \quad \delta\left(1-\frac{Q^{2}}{s}-\sum_{i} \frac{2 k_{i}^{0}}{\sqrt{s}}\right)
$$

- or conservation of transverse momentum

$$
\delta^{2}\left(Q_{T}-\sum p_{T}^{i}\right)
$$

+ Transform (e.g. Laplace/Mellin or Fourier) factorizes the phase space

$$
\int_{0}^{\infty} d w e^{-w N_{\delta}} \delta\left(w-\sum_{i} w_{i}\right)=\prod_{i} \exp \left(-w_{i} N\right) \quad \int d^{2} Q_{T} e^{i b \cdot Q_{T}} \delta^{2}\left(Q_{T}-\sum_{i} p_{T}^{i}\right)=\prod_{i} e^{i b p_{T}^{i}}
$$

So can go into exponent

$$
\sum_{n} \sigma(n)=\sigma(0) \times \exp \left[\int d \Phi_{1}(k)\left|\mathcal{M}_{1} \operatorname{emisision}(k)\right|^{2}(\exp (-w N)-1)\right]
$$

- Large logs: $\ln (N)$ or $\ln (b Q)$

Resummation and factorization

+ Very generically, if a quantity factorizes, one can resum it. Let us consider UV renormalization as an example.
- Renormalization; factorizes UV modes into Z-factor (\wedge is an ultraviolet cut-off)

$$
G_{B}\left(g_{B}, \Lambda, p\right)=Z\left(\frac{\Lambda}{\mu}, g_{R}(\mu)\right) \times G_{R}\left(g_{R}(\mu), \frac{p}{\mu}\right)
$$

- Evolution equation (here RG equation)

$$
\mu \frac{d}{d \mu} \ln G_{R}\left(g_{R}(\mu), \frac{p}{\mu}\right)=-\mu \frac{d}{d \mu} \ln Z\left(\frac{\Lambda}{\mu}, g_{R}(\mu)\right)=\gamma\left(g_{R}(\mu)\right)
$$

\checkmark Notice that y can only depend on, the only common variable

- Solving the differential equation $=$ resumming

$$
G_{R}\left(\frac{p}{\mu}, g_{R}(\mu)\right)=G_{R}\left(1, g_{R}(p)\right) \underbrace{\exp \left[\int_{p}^{\mu} \frac{d \lambda}{\lambda} \gamma\left(g_{R}(\lambda)\right)\right]}_{\text {resummed }}
$$

$\checkmark \quad$ The exponent will be a series in $g_{R}(\mu)$.
Exercise: compute the first term in the exponent. Answer: $\frac{g_{R}^{2}(p)}{4 \pi} \gamma^{(1)} \ln \frac{\mu}{p}$

* This is a very general notion, and can be seen as the basis of resummation.

Factorization and resummation for Drell-Yan

$$
\sigma(N)=\Delta\left(N, \mu, \xi_{1}\right) \Delta\left(N, \mu, \xi_{2}\right) S\left(N, \mu, \xi_{1}, \xi_{2}\right) H(\mu)
$$

+ Near threshold, cross section is equivalent to product of 4 well-defined functions
+ Demand independence of
- renormalization scale μ
, gauge dependence parameter ξ
\checkmark find exponent of double logarithm

$$
0=\mu \frac{d}{d \mu} \sigma(N)=\xi_{1} \frac{d}{d \xi_{1}} \sigma(N)=\xi_{2} \frac{d}{d \xi_{2}} \sigma(N)
$$

Contopanagos, EL, Sterman

$$
\Delta=\exp \left[\int \frac{d \mu}{\mu} \int \frac{d \xi}{\xi} . .\right]
$$

Factorization for threshold resummation

+ $\Delta_{i}(\mathrm{~N})$: initial state soft+collinear radiation effects
, real+virtual $\mathrm{a}_{s}{ }^{\mathrm{n}} \ln 2 \mathrm{n} \mathrm{N} \quad \sigma(N)=\sum_{i j} \phi_{i}(N) \phi_{j}(N) \times \underbrace{\left[\Delta_{i}(N) \Delta_{j}(N) S_{i j}(N) H_{i j}\right]}_{\hat{\sigma}_{i j}(N)}$
+ $\mathrm{S}_{\mathrm{ij}}(\mathrm{N})$: soft, non-collinear radiation effects
- $a_{s}{ }^{n} n^{n} N$
* H: hard function, no soft and collinear effects

$$
\begin{aligned}
\Delta_{i}(N) & =\exp \left[\ln N \frac{C_{F}}{2 \pi b_{0} \lambda}\{2 \lambda+(1-2 \lambda) \ln (1-2 \lambda)\}+. .\right] \\
& =\exp \left[\frac{2 \alpha_{s} C_{F}}{\pi} \ln ^{2} N+. .\right]
\end{aligned}
$$

From N space back to momentum-space

* Parton cross section derived in N space

PDF's in N space

$$
\begin{aligned}
\sigma_{h_{1} h_{2} \rightarrow k l}^{(\mathrm{res})}\left(\rho^{2},\left\{m^{2}\right\}, \mu_{R}^{2}, \mu_{F}^{2}\right)=\frac{1}{\pi} & \int_{0}^{\infty} d y \operatorname{Im}\left[e^{i \phi} \rho^{-C_{\mathrm{MP}}-y e^{i \phi}}\right. \\
& \left.\times \sigma_{h_{1} h_{2} \rightarrow k l}^{(\mathrm{res})}\left(N=C_{\mathrm{MP}}+y e^{i \phi},\left\{m^{2}\right\}, \mu_{R}^{2}, \mu_{F}^{2}\right)\right]
\end{aligned}
$$

v Use initial conditions in N-space, then QCD-PEGASUS evolution (A. Vogt)

- Use inverse Mellin transform
- Avoid Landau pole singularity with Minimal Prescription (go left..)
, gives Good numerical stability
+ Exercise:

- function $f(x)=x^{p}$
, Melling transform $f(N)=\int_{0}^{1} d x x^{N-1} x^{p}=\frac{1}{N+p}$
, Inverse Mellin transform $f(x)=\frac{1}{2 \pi i} \int d N x^{-N} \frac{1}{N+p}=x^{p}$
\checkmark Correct!

Resummed Drell-Yan/Higgs cross section

Threshold-resummed Drell-Yan cross section

$$
\begin{aligned}
\frac{d \sigma^{\text {resum }}}{d Q^{2}}(z)= & \int_{C} \frac{d N}{2 \pi i} z^{-N} \hat{\sigma}(N) \\
\sigma(N)= & \exp \left[-\int_{0}^{1} d x \frac{x^{N-1}-1}{1-x}\left\{\int_{Q^{2}}^{Q^{2}(1-x)^{2}} \frac{d \mu}{\mu} A\left(\alpha_{s}(\mu)\right)\right.\right. \\
& \left.\left.+D\left(\alpha_{s}((1-x) Q)\right)\right\}\right] \times\left(1+\alpha_{s}\left(Q^{2}\right) \frac{C_{F}}{\pi}+\ldots\right)
\end{aligned}
$$

$$
\begin{aligned}
\hat{\sigma}_{D Y}\left(N, Q^{2}\right) & =g_{0}\left(Q^{2}\right) \exp \left[G_{D Y}^{N}\left(Q^{2}\right)\right] \\
\text { A. Vogt } \quad G_{D Y}^{N} & =\ln N g_{1}(\lambda)+g_{2}(\lambda)+\alpha_{s} g_{3}(\lambda)+\ldots, \quad \lambda=\beta_{0} \alpha_{s} \ln N
\end{aligned}
$$

Good convergence in exponent

Resummation vs parton shower

* Both account for emission to all orders in perturbative QCD. It's accuracy vs flexibility
- Resummation: a formula
\checkmark accuracy to LL, NLL, NNLL depending on what the theorists did. For specific observables
- Parton shower: generate events
\checkmark very flexible, can use for any observables
\checkmark but, on the downside, in essence only LL accuracte (it never has all the NLL information in it, because that is to some extent observable dependent).

Progress is being made here however

Final summary

* Many concepts in perturbative QCD were discussed, in both their essence and some technical aspects
- Formal: symmetries, renormalization, asymptotic freedom
- Finite orders, IR and COL divergence-handling
- Parton showers
- Modern methods: spinor helicity methods, and a glimpse of the NLO revolution
- All-orders: resummation, why and how
\checkmark here there is quite a bit of physics insight possible
* My hope: that when you see such concepts in workshops or talks, you now have a sense about what this is about.
\checkmark Don't be blinded by the technicalities, there is room for a lot of physics intuition in QCD
* Especially I hope that you will feel free to ask, and discuss with QCD theorists when you have questions and/or ideas. Just as how you have done here. I think the success of the LHC and its research program depend on this!

