Beyond the

 Standard Model 2

 Standard Model 2}

Andreas Weiler
(DESY\&CERN)

CERN school 2014/6/29

Higgs as a pGB

Composite Higgs

$$
I_{H}
$$

- Higgs is a hadron of a new strong force
- Solves the hierarchy problem (like QCD)
- Higgs is a pseudoGoldstone that's why it is lighter than the other resonances

$S O(5) / S O(4)$

Tree level: gauge SO(4) aligned
Higgs

$$
\begin{aligned}
& \text { I-loop }\langle\phi(x)\rangle=\theta \cdot f \\
& \text { eaten by } W_{L} Z_{L}
\end{aligned}
$$

Higgs couplings

Have been measured to 20-30\% precision

$\mathrm{ch}_{4,4 h}^{\text {sh }}$

Expect deviations $\sim(v / f)^{2}$

$$
a=\sqrt{1-\xi}
$$

$$
\xi \equiv \frac{v^{2}}{f^{2}}
$$

$$
c_{f}=\frac{1-(1+n) \xi}{1-\xi}
$$

Higgs couplings

Vector
Red points at $\xi \equiv(v / f)^{2}=0.2,0.5,0.8$

Higgs couplings

$\mathbf{S M}+\mathcal{L}=\frac{\alpha_{s} c_{g}}{12 \pi}|H|^{2} G_{\mu \nu}^{a 2}+\frac{\alpha c_{\gamma}}{2 \pi}|H|^{2} F_{\mu \nu}+y_{t} c_{t} \bar{q}_{L} \tilde{H} t_{R}|H|^{2}$

$$
\frac{\sigma(g g \rightarrow h)}{\mathrm{SM}}=\left(1+\left(c_{g}-c_{t}\right) v^{2}\right)^{2}
$$

Degeneracy ‘short-distance’ vs 'long-distance’

E.g. fermionic top partners MCHM: $\Delta c_{t}=\Delta c_{g}$

$$
\sigma(p p \rightarrow H+X)_{\text {inclusive }}
$$

Does not resolve short-distance physics

$m_{H}(\mathrm{GeV})$	$\frac{\sigma_{N L O}\left(m_{t}\right)}{\sigma_{N L O}\left(m_{t} \rightarrow \infty\right)}$	$\frac{\sigma_{N L O}\left(m_{t}, m_{b}\right)}{\sigma_{N L O}\left(m_{t} \rightarrow \infty\right)}$	
125	1.061	0.988	
150	1.093	1.028	
200	1.185	1.134	
e.g. $\mid 306.458 \\|$			

Beyond current observables

Cut the loop open, recoil against hard jet

Measurement how-to

worst case: inclusive cross-section = SM

Top partner example

Inclusive

MCHM 5, $\xi=0.1$
Grojean, Salvioni, Schlaffer, AW

Complementary to htt

Competitive/complement to notoriously difficult $h \bar{t} t$ channel

Theory frontier: $\mathrm{NLO}_{m_{t}}$ not yet calculated, $1 / m_{t}$ known to $\mathcal{O}\left(\alpha_{S}^{4}\right)$: few \% up to pt $\sim 150 \mathrm{GeV}$

Harlander et al 'l2

New physics \& naturalness

light stops I_{I}, , sbottomL, higgsinos, gluinos, ...
light top partners ($\mathrm{Q}=5 / 3,2 / 3, \mathrm{I} / 3$), anything else?
composite Higgs

Flavor used to be a show-

stopper

CPV in Kaon mixing

$$
|\epsilon|=2.3 \times 10^{-3} \Longrightarrow \frac{M_{E T C}}{g_{E T C} \sqrt{\operatorname{Im}\left(V_{s d}^{2}\right)}} \gtrsim 16,000 \mathrm{TeV}
$$

$m_{q, \ell, T}\left(M_{E T C}\right) \simeq \frac{g_{E T C}^{2}}{2 M_{E T C}^{2}}\langle\bar{T} T\rangle_{E T C} \lesssim \frac{0.1 \mathrm{MeV}}{\left|V_{s d}\right|^{2} N^{3 / 2}} \quad$ vs. $\quad \mathrm{m}_{\text {top }}$

Partial compositeness

vector-like
composite fermion
Fermionic operators can excite composite fermions at low energy:

$$
\langle 0| O|\chi\rangle=\lambda f
$$

Analogous to photon-rho mixing $\mathrm{Br}\left(\right.$ rho \rightarrow e+e-) $\sim 10^{-5}$

Linear couplings imply mass $\mathcal{L}=\bar{\psi} i \not \partial \psi+\bar{\chi}\left(i \not \partial-m_{*}\right) \chi+\lambda f \bar{\psi} \chi+$ h.c. mixings:

Rotate to mass eigenbasis: $\quad\binom{\psi}{\chi} \rightarrow\left(\begin{array}{cc}\cos \varphi & \sin \varphi \\ \sin \varphi & \cos \varphi\end{array}\right)\binom{\psi}{\chi} \quad \tan \varphi=\frac{\lambda f}{m_{*}}$

... almost works $\Lambda_{\epsilon_{K}}=10^{5} \mathrm{TeV} \rightarrow m_{\rho} \gtrsim 10 \mathrm{TeV}$

"Into the Extra-dimension and back"

Exciting journey...

Depends on the perspective...

Extra-dimensions

brane 1

bulk
brane 2

Compact extra dimensions

Compact Extra-dimension => momentum in extradim' direction is quantized: \quad PED $=n /($ size of ED)

$$
p^{2}=m^{2} \quad p_{5 D}^{2} \underset{5 D}{=} p^{2}-(n / R)^{2}=m^{2}
$$

Two pictures (n / R on LHS or RHS):
I) 5 D field with quantized momentum and mass m^{2}
2) infinite tower of 4D fields labeled by 5 momentum n / R with masses

$$
M_{n}^{2}=m^{2}+(n / R)^{2}
$$

Kaluza Klein states

Free scalar field, massless

$$
S=\int d^{5} x \frac{1}{2} \partial_{M} \Phi \partial^{M} \Phi
$$

Expand in fourier modes

$$
\Phi(x, y)=\frac{1}{\sqrt{2 \pi R}} \sum_{n} \Phi^{(n)}(x) e^{i \frac{n}{R} y}
$$

with $\quad\left(\Phi^{(n)}\right)^{\dagger}=\Phi^{(-n)}$ to 'keep it real'

$$
\begin{aligned}
& \partial_{\mu} \phi \partial^{\mu} \phi=\partial_{\mu} \phi \partial^{\mu} \phi-\left(\partial_{y} \phi\right)^{2} \\
S= & \int d^{4} x \sum_{m, n} \int d y \frac{1}{2 \pi R} e^{\frac{(m+n)}{R} y} y \\
& \frac{1}{2}\left[\partial_{\mu} \phi^{(n)}(x) \partial^{\mu} \phi^{n}(x)+\frac{m \cdot n}{R^{2}} \phi^{m} \cdot \phi^{n}\right] \\
= & \frac{1}{2} \sum_{n} \int d^{n} x\left[\partial_{\mu} \phi^{(n)} \partial^{\mu} \phi^{(n)}-\frac{n^{2}}{R^{2}} \phi^{(-n)} \phi^{n}\right]
\end{aligned}
$$

Infinite tower of massive 4D fields $\quad m^{(n)}=\frac{n}{R}$

$$
\mathrm{E}_{\mathrm{A}} \boldsymbol{\sim}=\begin{gathered}
\cdots \\
= \\
= \\
1 / R \\
0
\end{gathered}
$$

The SM flavor puzzle

$$
Y_{D} \approx \operatorname{diag}\left(2 \cdot 10^{-5} \quad 0.0005 \quad 0.02\right)
$$

$$
Y_{U} \approx\left(\begin{array}{ccc}
6 \cdot 10^{-6} & -0.001 & 0.008+0.004 i \\
1 \cdot 10^{-6} & 0.004 & -0.04+0.001 \\
8 \cdot 10^{-9}+2 \cdot 10^{-8} i & 0.0002 & 0.98
\end{array}\right)
$$

Why this structure?
Other dimensionless parameters of the SM: $g_{s} \sim I, g \sim 0.6, \quad g^{\prime} \sim 0.3, \lambda_{\text {Higgs }} \sim I,|\theta|<10^{-9}$

Log(SM flavor puzzle)

$$
\begin{aligned}
& -\log \left|Y_{D}\right| \approx \operatorname{diag}\left(\begin{array}{lll}
11 & 8 & 4
\end{array}\right) \\
& -\log \left|Y_{U}\right| \approx\left(\begin{array}{ccc}
12 & 7 & 5 \\
14 & 6 & 3 \\
18 & 9 & 0
\end{array}\right)
\end{aligned}
$$

If $Y=e^{-\Delta}$, then the Δ don't look crazy.

Hierarchies w/o Symmetries

SM on thick brane \& domain wall \Rightarrow chiral localization

$$
\mathcal{S}=\int \mathrm{d}^{5} x \sum_{i, j} \bar{\Psi}_{i}\left[i \phi_{5}+\lambda \Phi\left(x_{5}\right)-m\right]_{i j} \Psi_{j}
$$

$$
\Psi=\binom{\Psi_{L}}{\Psi_{R}}=\binom{\psi_{L}^{0}}{0}+\text { KK modes }
$$

Log(flavor hierarchy)!

$$
\int \mathrm{d} x_{5} \phi_{l}\left(x_{5}\right) \phi_{e}\left(x_{5}\right)=\frac{\sqrt{2} \mu}{\sqrt{\pi}} \int \mathrm{~d} x_{5} e^{-\mu^{2} x_{5}^{2}} e^{-\mu^{2}\left(x_{5}-r\right)^{2}}=e^{-\mu^{2} r^{2} / 2}
$$

Warped Extra Dimensions

How to do calculations in a strongly coupled theory?

Excursion into AdS/CFT

AdS/CFT

$$
d s^{2}=\left(\frac{R}{z}\right)^{2}\left(d x_{\mu} d x_{\nu}-d z^{2}\right)
$$

Anti-de-Sitter (AdS)
Compactification
Red-shifting of scales

$$
m_{W}=\sqrt{\frac{g(I R)}{g(U V)}} M_{P} \ll M_{P}
$$

Conformal (CFT)
Mass gap
Dimensional transmutation

$$
m_{W} \sim e^{-4 \pi / \alpha} M_{P}
$$

\{

CFT \& Extra-dimensions

Question
Is this a picture of a big ball and a small ball side-by-side in 2D or two identical balls at different distances in 3D?

analogy by T. Okui

In the real world, we can tell the difference because atomic size is fixed.

(• Atom)

2D: Big \& small balls

3D: Near \& Far

But in a scale invariant world, atomic size • would also scale.

$2 \mathrm{D}+$ scale invariance

3D
\}

Fermion location in AdS

Grossman, Neubert; Gherghetta, Pomarol; Huber;

high PT

Resonance production (option I)

$$
\sim g_{*}^{2} \sin ^{2} \theta_{u_{R}}
$$

strongly suppressed for light quarks!

high PT

Resonance production (option 2)
s. \quad gluon ρ similar to $\gamma-\rho$ mixing

NB, gluon-rho-rho $=0$
high Рт

Resonance decay

decays dominantly into 3rd generation!
(tt, bt, bb)

(b) $g_{K K}$ upper c oss section limits.

$$
M_{K k}>2 \text { TeV@ 95CL }
$$

Top partners

Decay modes

Current limits
 > $700-800 \mathrm{GeV}$

ATLAS Preliminary
Status: Lepton-Photon 2013
$\sqrt{s}=8 \mathrm{TeV}, \quad \int \mathrm{Ldt}=14.3 \mathrm{fb}^{-1}$

$\mathrm{Ht}+\mathrm{X}$ [ATLAS-CONF-2013-018]
Same-Sign [ATLAS-CONF-2013-051]
Zb/t+X [ATLAS-CONF-2013-056]
Wb+X [ATLAS-CONF-2013-060]
$S U(2)(T, B)$ doub. $\operatorname{SU}(2)$ singlet

$$
T_{5 / 3}
$$

Phenomenology

Three possible production mechanisms

QCD pair prod. model indep., relevant at low mass
single prod. with \mathbf{t} model dep. coupling pdf-favored at high m
single prod. with \mathbf{b} favored by small b mass dominant when allowed

Exotics

Have we thought hard enough about non-standard options?

DM emerging jets

with D. Stolarski and P. Schwaller

Maybe DM is just part of a larger dark sector

- Example: Proton is massive, stable, composite state
- DM self interactions solve structure formation problems
- New signals, new search strategies!

Coincidence?

$$
\Omega_{D M} \simeq 5 \Omega_{B}
$$

$\downarrow^{\text {QCD like? }}$
Controlled by complicated (known) QCD dynamics

Unknown dynamics of baryogenesis

Dark QCD

Imagine a QCD like "dark sector" with $1-10 \mathrm{GeV}$ mass scale

$$
p_{d} \quad \pi_{d} \quad \mathrm{ZOO}_{d}
$$

Connected to SM in two ways:

- TeV scale mediator (hidden valley) Strassler, Zurek, PLB 07.

Dark QCD

Imagine a QCD like "dark sector" with $1-10 \mathrm{GeV}$ mass scale

$$
p_{d} \quad \pi_{d} \quad \mathrm{ZOO}_{d}
$$

Connected to SM in two ways:

- TeV scale mediator (hidden valley) Strassler, Zurek, PLB 07.
- Weak pion decay operator

emerging jets

Decay lifetime of $\sim \mathrm{cm}$

Exponential decay means jets emerge at different distances

No/few tracks originating from interaction point

$p p \rightarrow \Phi \Phi^{\dagger} \rightarrow \bar{q} Q_{d} \bar{Q}_{d} q$

$m_{\pi_{d}}=5 \mathrm{GeV} \quad c \tau_{\pi_{d}}=50 \mathrm{~mm}$

QCD bgd's

QCD 4-jet production in Pythia8

* - modified Pythia settings to increase QCD contribution

What will we learn from run II?

Collider-reach

w/ Gavin Salam (CERN)
estimates of the reach of future colliders based on existing limits

www.cern.ch/collider-reach

There are already many well-designed searches

How do we leverage that experience to estimate future reaches?

A rough way of doing it

Suppose ATLAS/CMS are currently sensitive to gluinos of $1250 \mathrm{GeV}\left(95 \% C L_{s}, 8 \mathrm{TeV}, 20 \mathrm{fb}^{-1}\right)$

Work out how many signal events that corresponds to

Find out for what gluino mass you would get the same number of signal events at 14 TeV with $300 \mathrm{fb}^{-1}$ (assume \# of background events scales same way)

Too simplistic

Backgrounds may not scale in
 the same way as signal

New irreducible backgrounds may appear at higher scales

Reconstruction efficiencies may depend on mass scale

Detector effects (e.g. granularity), and run conditions (pileup) vary across energy scales and luminosities

Too complicated

Calculating mass for constant \# of signal events is pretty straightforward

But it still requires some work and setup
E.g. need cross section calculators for each new physics process (Prospino/Pythia/...), run them for a range of masses, etc.

$$
\frac{N_{\text {signal-events }}\left(M_{\text {high }}^{2}, 14 \mathrm{TeV}, \text { Lumi }\right)}{N_{\text {signal-events }}\left(M_{\text {low }}^{2}, 8 \mathrm{TeV}, 19 \mathrm{fb}^{-1}\right)}=1
$$

Coupling constants \& other prefactors mostly cancel in the ratio.

Dependence on M and on $\sqrt{ }$ s mostly comes about through parton distribution functions (PDFs) \& simple dimensions.

Z' example

$$
\hat{\sigma}_{0}(\hat{s})=C \frac{\hat{s}}{\left(\hat{s}-M_{Z^{\prime}}^{2}\right)^{2}+\Gamma_{Z^{\prime}}^{2} M_{Z^{\prime}}^{2}}
$$

$$
\begin{aligned}
\frac{d \sigma}{d m^{2}} & =\int d x_{1} d x_{2}\left[f_{1}\left(x_{1}\right) f_{2}\left(x_{2}\right)\right] \hat{\sigma}_{0}(\hat{s}) \delta\left(m^{2}-\hat{s}^{2}\right) \\
& =\sum_{i j}\left[\tau \int \frac{d x}{x} f_{i}(x) f_{j}(\tau / x)\right] \frac{C}{\left(m^{2}-M_{Z^{\prime}}^{2}\right)^{2}+\Gamma_{Z^{\prime}}^{2} M_{Z^{\prime}}^{2}}
\end{aligned}
$$

$$
\begin{aligned}
\sigma & \approx \int d m^{2} \sum_{i j} \mathcal{L}_{i j}\left(m^{2}, s\right) C \frac{\pi}{\Gamma_{Z^{\prime}} M_{Z^{\prime}}} \delta\left(m^{2}-M_{Z^{\prime}}^{2}\right) \quad \Gamma_{Z^{\prime}} \propto M_{Z^{\prime}} \\
& =\frac{1}{M_{Z^{\prime}}^{2}} \sum_{i j} C^{\prime} \mathcal{L}_{i j}\left(M_{Z^{\prime}}^{2}, s\right) \quad \text { "1/M^2} \times \text { parton-lumi" } \\
& =N\left(M_{Z^{\prime}}, s\right)
\end{aligned}
$$

Instead of cross section ratio, use parton luminosity ratio

Equation we solve to find $\mathrm{M}_{\text {high }}$ is then

$$
\left.\frac{\mathcal{L}_{i j}\left(M_{\text {high }}^{2}, s_{\text {high }}\right)}{\mathcal{L}_{i j}\left(M_{\text {low }}^{2}, s_{\text {low }}\right)} \times \frac{\text { lumi }_{\text {high }}}{\text { lumi }}=\frac{M_{\text {low }}^{2}}{M_{\text {ligh }}^{2}}\right)
$$

The tools we use for this are LHAPDF and HOPPET most plots with MSTW2008 NNLO PDFs

$$
\begin{gathered}
\mathcal{L}_{i j}\left(M^{2}, s\right)=\int_{\tau}^{1} \frac{d x}{x} x f_{i}\left(x, M^{2}\right) \frac{\tau}{x} f_{j}\left(\frac{\tau}{x}, M^{2}\right) \quad \tau \equiv \frac{M^{2}}{s} \\
\text { i \& i parton }
\end{gathered}
$$

Does it work?

Try a Z' search. Take a baseline analysis:

ATLAS, $0.2 \mathrm{fb}^{-1}$ @ 7 TeV
 excludes $M<1450$ GeV

Try a Z' search. Take a baseline analysis:

ATLAS, $0.2 \mathrm{fb}^{-1} @ 7 \mathrm{TeV}$ excludes $\mathrm{M}<1450 \mathrm{GeV}$

"Predict" exclusions at other lumis \& energies (assume $q \bar{q}$)

Try a Z' search. Take a baseline analysis:

ATLAS, $0.2 \mathrm{fb}^{-1}$ @ 7 TeV excludes $M<1450 \mathrm{GeV}$

"Predict" exclusions at other lumis \& energies (assume $q \bar{q}$)

Compare to actual exclusions

Post/pre-dictions for Z ' exclusion reach

Try a Z' search. Take a baseline analysis:

ATLAS, $0.2 \mathrm{fb}^{-1} @ 7 \mathrm{TeV}$
excludes $\mathrm{M}<1450 \mathrm{GeV}$
"Predict" exclusions at other lumis \& energies (assume $q \bar{q}$)

Compare to actual exclusions

Maybe it only works so well because it's a simple search? (Signal \& Bkgd are both $q \bar{q}$ driven)

Post/pre-dictions for sequential Z^{\prime} exclusion reach

From your iPhone/Android (or a generic browser) cern.ch/collider-reach

Collider 1: CoM energy	8	TeV, integrated luminosity	20	fb^{-1}
Collider 2: CoM energy	14	TeV , integrated luminosity	$300 \mathrm{fb}^{-1}$	
PDF:	MSTW2008nnlo68cl	Δ		

 proton-proton collider setups.

| | |
| :--- | ---: | ---: | ---: | ---: |
| Collider 1: CoM energy | 14 |

Downioad: collider.pdf, colliderioglog.pdf, plot generation log file The PDF choice was CT10nlo. LHigrid				
Original mass	90	∞	allaq	qqpar
100.	283.	291.	298.	297.
125.	350.	359.	368.	367.
150.	416.	427.	438.	437.
200.	547.	562.	576.	575.
300.	806.	827.	848.	847.
500.	1317.	1350.	1386.	1382.
700.	1822.	1866.	1916.	1907.
1000.	2570.	2628.	2702.	2680.
1250.	3188.	3256.	3349.	3314.
1500.	3802.	3879.	3990.	3839.
2000.	5018.	5110.	5251.	5169.
2500.	6223.	6327.	6483.	6380.
3000.	7417.	7530.	7703.	7578.
4000.	9782.	9904.	10082.	9945.
5000.	12120.	12246.	12417.	12284
6000.	14439.	14565.	14726.	14601
7000.	16748.	16871.	17021.	16905
8000.	19053.	19169.	19310.	19206.

$14 \mathrm{TeV}_{300 \mathrm{fb}^{-1}} \rightarrow 100 \mathrm{TeV}_{3 \mathrm{ab}^{-1}}$

The PDF choice was CT10nlo.LHgrid

Original mass	gg	qg	allqq	qqbar
100.	469.	465.	462.	457.
125.	585.	579.	575.	568.
150.	702.	693.	687.	679.
200.	937.	923.	912.	902.
300.	1414.	1386.	1365.	1350.
500.	2394.	2332.	2279.	2261.
700.	3401.	3300.	3206.	3194.
1000.	4956.	4793.	4619.	4640.
1250.	6287.	6072.	5818.	5892.
1500.	7647.	7382.	7038.	7187.
2000.	10444.	10090.	9552.	9905.
2500.	13337.	12908.	12185.	12781.
3000.	16319.	15833.	14954.	15795.
4000.	22531.	21986.	20933.	22162.
5000.	29050.	28508.	27467.	28894.
6000.	35863.	35366.	34451.	35960.
7000.	43079.	42620.	41854.	43411.
8000.	50671.	50230.	49590.	51132.

Rule of Thumb \#1

Increase collider energy by \mathbf{X} \& increase luminosity by a factor $\mathbf{X}^{\mathbf{2}}$

\rightarrow reach goes up by a factor X

Because you keep same Bjorken-x \& luminosity increase compensates for $1 /$ mass 2 scaling of cross sections

Rule of Thumb \#2

(apparently not widely known previously)

Increase luminosity by factor 10
\rightarrow reach increases by constant $\Delta \mathrm{m} \simeq 0.07 \sqrt{ } \mathrm{~s}$
i.e. for $\sqrt{ } s=14 \mathrm{TeV}$, reach goes by up 1 TeV

No deep reason - a somewhat random characteristic of large-x PDFs.

Only holds for $0.15 \lesssim \mathrm{M} / \sqrt{ } \mathrm{s} \lesssim 0.6$

Consequence of rule \#2

 (may be a bit fragile \& only for $S \leqslant B$)
Exclusion is $2-\sigma$
 Discovery is $5-\sigma$

Need $(5 / 2)^{2}=6.25$ increase in lumi to go from one to the other.

Using rule \#2:

discovery reach is about $0.05 \sqrt{ } \mathrm{~s}$ below exclusion reach
$\sim 0.8 \mathrm{TeV}$ at 14 TeV

system mass [TeV] for $14.00 \mathrm{TeV}, 300.00 \mathrm{fb}^{-1}$

What else?

- We are preparing for run II
- Maybe we won't see a natural resolution of the hierarchy problem
- Need to cover all bases: consider more exotic signatures, think hard about triggers

Looking under the lamp-post

Home-work

Find the TeV theory beyond the SM

Conclusion

LHC_{14} will be exciting (tuning $\propto E^{2}$). Let's be prepared and leave no stone unturned.

Implications of $\mathrm{m}_{\mathrm{H}}=125 \mathrm{GeV}$

Potential is fully radiatively generated
Agashe et. al

$$
\begin{aligned}
& V_{\text {gauge }}(h)=\frac{9}{2} \int \frac{d^{4} p}{(2 \pi)^{4}} \log \left(\Pi_{0}(p)+\frac{s_{h}^{2}}{4} \Pi_{1}(p)\right) \quad s_{h} \equiv \sin h / f \\
& \Pi_{0}(p)=\frac{p^{2}}{g^{2}}+\Pi_{a}(p), \quad \Pi_{1}(p)=2\left[\Pi_{\hat{a}}(p)-\Pi_{a}(p)\right]
\end{aligned}
$$

$$
\int d^{4} p \Pi_{1}(p) / \Pi_{0}(p)<\infty \quad \text { Higgs dependent term }
$$

UV finite
\rightarrow 'Weinberg sum rules'

$$
\lim _{p^{2} \rightarrow \infty} \Pi_{1}(p)=0, \quad \quad \lim _{p^{2} \rightarrow \infty} p^{2} \Pi_{1}(p)=0
$$

UV finiteness requires at least two resonances

$$
\Pi_{1}(p)=\frac{f^{2} m_{\rho}^{2} m_{a_{1}}^{2}}{\left(p^{2}+m_{\rho}^{2}\right)\left(p^{2}+m_{a_{1}}^{2}\right)} \quad \text { spin }
$$

Similarly for $\mathrm{SO}(5)$ fermionic contribution
Pomarol et al; Marzocca

$$
m_{h}^{2} \simeq \frac{N_{c}}{\pi^{2}}\left[\frac{m_{t}^{2}}{f^{2}} \frac{m_{Q_{4}}^{2} m_{Q_{1}}^{2}}{m_{Q_{1}}^{2}-m_{Q_{4}}^{2}} \log \left(\frac{m_{Q_{1}}^{2}}{m_{Q_{4}}^{2}}\right)\right]
$$

similar result in deconstruction:
Matsedonskyi et al; Redi et al
$5=4+I \quad$ with EM charges $5 / 3,2 / 3,-I / 3$
$\mathrm{Q}_{4} \mathrm{Q}_{1}$

Light Higgs implies light fermionic top partners

$$
m_{h}^{2} \simeq \frac{N_{c}}{\pi^{2}}\left[\frac{m_{t}^{2}}{f^{2}} \frac{m_{Q_{4}}^{2} m_{Q_{1}}^{2}}{m_{Q_{1}}^{2}-m_{Q_{4}}^{2}} \log \left(\frac{m_{Q_{1}}^{2}}{m_{Q_{4}}^{2}}\right)\right]
$$

125 GeV Higgs

Pomarol et al; Marzocca

$$
\begin{gathered}
5=4+1 \\
Q_{4} Q_{1}
\end{gathered}
$$

with EM charges 5/3, 2/3,-I/3

Contino et al; Pomarol, Riva;
Matsedonskyi,Panico,Wulzer; Redi,Tesi;
Marzocca,Serone,Shu;

Scan over composite Higgs parameter space

