Supersymmetry: Lecture 3 superpartners in action

Yael Shadmi Technion

gauge bosons (s=1) + gauginos (s=1/2)

photon + photino

gluon + gluinos

W + wino Z + zino

fermions + sfermions (scalars)

quark + squark

electron + selectron ..

neutrino + sneutrino

2x(Higgs (s=0) + Higgsino (s=1/2))

each superpartner: same charges as SM particle

→ GAUGE + YUKAWA INTERACTIONS COMPLETELY DICTATED

by SUSY + SM

the only freedom is in:

spectrum (determined by soft terms)

[+ interactions:

- are there R-parity breaking couplings or not?
- are gaugino-scalar-fermion couplings flavor diagonal or not?]

spectrum (soft terms): many possibilities
 (depend on the mediation of SUSY breaking)

so: don't listen to theorists ...

.. if they tell you they know what the superpartner masses are

where can we observe superpartners?

- virtual corrections:

 electric and magnetic dipole moments
 flavor violating processes
 widths of known particles
- direct production: LHC

virtual corrections:

most relevant for LHC searches: flavor violating processes: eg

$$K^{0} - \overline{K}^{0}$$
$$b \to s\gamma$$
$$\mu \to e\gamma \dots$$

let's talk about sleptons (easier)

relevant parameters:

eg R-sleptons: $\tilde{l}_1, ..., \tilde{l}_3$

- 3 masses: m_1, m_2, m_3
- mixings:

3 obvious approaches: (or combination)

$$\delta_{ij} = \frac{\Delta m_{ij}^2 K_{ij}}{m^2}$$
small mixings:
 \rightarrow alignment
slepton mass matrix "aligned"
with lepton mass matrix:
approximately diagonal
together

LHC SEARCHES

supersymmetry is NOT a single model so:

rather than a model based approach

use a **signature based** approach

(both CMS and ATLAS!)

the only freedom is in:

spectrum (determined by soft terms)

[+ interactions:

- are there R-parity breaking couplings or not?
- are gaugino-scalar-fermion couplings flavor diagonal or not?]

general considerations: interactions: R-parity conservation

- production: superpartners produced in **pairs**
- decay: superpartner \rightarrow superpartner + SM
- the lightest superpartner (LSP) is stable

R-parity violating coupling(s) (RPV):

 production: single superpartner (resonant) production is possible

 decay: a superpartner can decay to SM (jets, leptons)

(see below)

R-parity violating coupling(s) (RPV): if small:

- production: single superpartner (resonant) production is possible
 competitive with gauge couplings because of kinematics
- decay: a superpartner can decay to SM (jets, leptons)
 only the LSP decays via the RPV coupling

general considerations: interactions:

mainly affects decay

sleptons vs neutralinos??)

gluino

squarks

sleptons sneutrinos

charginos neutralinos

=========
I SP

colored vs non-colored:

if larger hierarchy (colored masses go up) EWK production more important (slepton, neutralino, chargino production)

identity of LSP

neutral or charged?

(usually: neutralino or slepton)

missing energy or something else

Yael Shadmi Technion

SP

sleptons sneutrinos

charginos neutralinos

flavor dependent or not? up squark=charm squark? d squark= s squark?

smuon=selectron?

charginos neutralinos

production: colored vs EWK

production: flavor dependence

production: with R-parity violating coupling

in principle

single squark or slepton

coupling may be small but kinematics can win

decay: (with no RPV coupling)

LSP = neutralino

decay: (with no RPV coupling)

LSP = slepton (stau?)

LSP = neutralino

- stable, neutral: good DM candidate (WIMP)
- LHC: transverse momentum imbalance: ``missing E^T"
- main handle against SM bgnds:
 - squark mass (or other mother particle) goes up:
 missing E_T goes up (LSP more boosted)
 - LSP mass goes up

missing E_T goes down (LSP less boosted)

efficiency goes down with mass difference

LSP = charged slepton

cosmology ?? ruled out if the slepton is stable

but it can be metastable:

LSP = charged slepton

cosmology ?? ruled out if the slepton is stable

but it can be metastable: remember the gravitino?

- Ifetime only depends on
 SB scale (→ gravitino mass) and slepton mass
- a whole range
- in particular: slepton can exit detector: looks like a muon
- if it's seen: how do we know it's not a muon?
- but will it be seen?
- it`s slow: $\beta < 1$

trigger? reconstruction? usually assume $\beta = 1$

{this is a good example of

a ``practical application" of thinking about SUSY (other BSM) models

you could say (should say?) we will have this amazing machine why not look for long-lived charged particles

(regardless of any BSM) }

low beta: is it lost (forever..)? high beta: fake muon?

by now: good coverage in beta muon detector (ATLAS) TOF inner detector (CMS) dE/dx

apply to the simplest process:

Drell-Yan slepton production

with ``zero SM bgnd"..

completely model independent: (almost)

any long-lived scalar with charges of slepton

(old result)

this is our first example of possible SUSY signatures it's the simplest: just DY production no SM bgnd **IF** you identify the long-lived slepton let's move to harder examples

in the process:

- see how the different considerations we listed come into play
- learn about different handles for distinguishing signal from bgnd: usually the main challenge

Drell-Yan slepton production: but LSP=neutralino

final state: opposite sign (OS) leptons + missing ET

flavor: l=e, mu what if not degenerate?

squark/gluino pair production (neutralino LSP)

squark/gluino pair production (neutralino LSP)

- missing ET + at least 2-4 jets
- missing ET: main tool in fighting SM bgnd
- more: pair production of heavy particles

$$m_{eff} = |\vec{p}_T^{miss}| + \sum_{jets/vis} |\vec{p}_T^i| \qquad H_T = \sum_{jets} |\vec{p}_T^i|$$

- SM falls
- heavy particle production kicks in,
- then falls more slowly

Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum using

 $\sqrt{s} = 8$ TeV proton–proton collision data

Search for new physics in the multijet and missing transverse momentum final state in proton-proton collisions at $\sqrt{s} = 8$ TeV

The CMS Collaboration

signature based (simplified model)

signal is peaked whereas SM flat

event has to sides:

combinatorial bgnds

but there`s also an advantage:
``double" the number of kinematic variable
same number of unknowns (neutralino, slepton masses..)

construct variables that exploit this: M_{T2}

let's go back and think about other things we mentioned:

flavor: production: squarks not necessarily
 degenerate
if gluino not very heavy: more sensitive to up, down

but efficiency drops with squark mass: light charm squarks hiding? (CMS plot: around 400 GeV)

flavor: decay: slepton mixing: not just e-e but also e-mu

flavor: top: the top is special:

theory:

- RGE: large top Yukawa: stop mass goes down stop usually lightest squark
- top: large contribution to quadratic divergence in Higgs mass

to avoid fine tuning: OK if just the stop is around the weak scale (with other squarks heavy)

`natural supersymmetry"

this motivates dedicated stop searches

to conclude:

supersymmetry is a beautiful and powerful theoretical idea:

- it`s an extension of space-time symmetry
- it exchanges fermions and bosons

supersymmetric theories: only log divergences (even when supersymmetry broken by mass splittings) supersymmetric extensions of the SM:

no quadratic divergence in Higgs mass: natural theory (already some fine-tuning since superpartners are heavy)

field content + gauge and Yukawa interactions dictated (by SM + supersymmetry)

supersymmetry-breaking terms can be generated through spontaneous supersymmetry breaking many different possibilities for the mediation (often just a few parameters determine all the 100 or so supersymmetry-breaking terms in the MSSM)

ightarrow a variety of LHC signatures

when you discover something in the coming run:

is it supersymmetry?