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For practical purposes it is often convenient to work in the mass eigenstate basis of both up- and
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u,d mass−basis−→ ūiLVijγ
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However, it must be stressed that V originates from the Yukawa sector (in particular by the miss-

alignment of Yu and Yd in the SU(3)QL subgroup of Gq): in absence of Yukawa couplings we can

always set Vij = δij .

To summarize, quark flavor physics within the SM is characterized by a large flavor symmetry, Gq,

defined by the gauge sector, whose only breaking sources are the two Yukawa couplings Yd and Yu. The

CKM matrix arises by the miss-alignment of Yu and Yd in flavor space.
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V =




Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb





=




c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13
s12s23 − c12c23s13eiδ −s23c12 − s12c23s13eiδ c23c13



 , (1.9)

where cij = cos θij and sij = sin θij (i, j = 1, 2, 3).
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|Vcd| are close to 0.22, the elements |Vcb| and |Vts| are of order 4 × 10−2
whereas |Vub| and |Vtd| are of

order 5× 10−3
. The Wolfenstein parametrization, namely the expansion of the CKM matrix elements in

powers of the small parameter λ
.
= |Vus| ≈ 0.22, is a convenient way to exhibit this hierarchy in a more

explicit way [10]:
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
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where A, �, and η are free parameters of order 1. Because of the smallness of λ and the fact that for each

element the expansion parameter is actually λ2
, this is a rapidly converging expansion.
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= ūiLγ
µdiL

u,d mass−basis−→ ūiLVijγ
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The Wolfenstein parametrization is certainly more transparent than the standard parametrization.

However, if one requires sufficient level of accuracy, the terms of O(λ4) and O(λ5) have to be in-

cluded in phenomenological applications. This can be achieved in many different ways, according to the

convention adopted. The simplest (and nowadays commonly adopted) choice is obtained defining the

parameters {λ, A, �, η} in terms of the angles of the exact parametrization in Eq. (1.9) as follows:

λ
.
= s12 , Aλ2 .

= s23 , Aλ3(�− iη)
.
= s13e

−iδ . (1.11)

The change of variables {sij , δ} → {λ, A, �, η} in Eq. (1.9) leads to an exact parametrization of the

CKM matrix in terms of the Wolfenstein parameters. Expanding this expression up to O(λ5) leads to




1− 1

2λ
2 − 1

8λ
4 λ+O(λ7) Aλ3(�− iη)

−λ+ 1
2A

2λ5[1− 2(�+ iη)] 1− 1
2λ

2 − 1
8λ

4(1 + 4A2) Aλ2 +O(λ8)
Aλ3(1− �̄− iη̄) −Aλ2 + 1

2Aλ
4[1− 2(�+ iη)] 1− 1

2A
2λ4



 (1.12)

where

�̄ = �(1− λ2

2
) +O(λ4) , η̄ = η(1− λ2

2
) +O(λ4) . (1.13)

The advantage of this generalization of the Wolfenstein parametrization is the absence of relevant cor-

rections to Vus, Vcd, Vub and Vcb, and a simple change in Vtd, which facilitate the implementation of

experimental constraints.

The unitarity of the CKM matrix implies the following relations between its elements:

I)
�

k=1...3

V ∗
ikVki = 1 , II)

�

k=1...3

V ∗
ikVkj �=i . (1.14)

These relations are a distinctive feature of the SM, where the CKM matrix is the only source of quark

flavor mixing. Their experimental verification is therefore a useful tool to set bounds, or possibly reveal,

new sources of flavor symmetry breaking. Among the relations of type II, the one obtained for i = 1
and j = 3, namely

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0 (1.15)

or
VudV

∗
ub

VcdV
∗
cb

+
VtdV

∗
tb

VcdV
∗
cb

+ 1 = 0 ↔ [�̄+ iη̄] + [(1− �̄)− iη̄] + 1 = 0 ,

is particularly interesting since it involves the sum of three terms all of the same order in λ and is usually

represented as a unitarity triangle in the complex plane, as shown in Fig. 1.1. It is worth to stress that

Eq. (1.15) is invariant under any phase transformation of the quark fields. Under such transformations

the triangle in Fig. 1.1 is rotated in the complex plane, but its angles and the sides remain unchanged.

Both angles and sides of the unitary triangle are indeed observable quantities which can be measured in

suitable experiments.

3 Present status of CKM fits
The values of |Vus| and |Vcb|, or λ and A in the parametrization (1.12), are determined with good accuracy

from K → π�ν and B → Xc�ν decays, respectively. According to the recent analysis of the UTfit

collaboration [13] their numerical values are

λ = 0.2259± 0.0006 , A = 0.824± 0.013 . (1.16)

Using these results, all the other constraints on the elements of the CKM matrix can be expressed as

constraints on �̄ and η̄ (or constraints on the CKM unitarity triangle in Fig. 1.1). The list of the most

sensitive observables used to determine �̄ and η̄ in the SM includes:
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eliminate five of the six complex phases in V (the relative phases of the various quark fields). As a result,

the physical parameters in V are four: three real angles and one complex CP-violating phase. The full

set of parameters controlling the breaking of the quark flavor symmetry in the SM is composed by the

six quark masses in λu,d and the four parameters of V .
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and down-type quarks. This can be achieved rotating independently the up and down components of the

quark doublet QL, or moving the CKM matrix from the Yukawa sector to the charged weak current in

LSM
gauge:

Jµ
W

��
quarks

= ūiLγ
µdiL

u,d mass−basis−→ ūiLVijγ
µdjL . (1.8)

However, it must be stressed that V originates from the Yukawa sector (in particular by the miss-

alignment of Yu and Yd in the SU(3)QL subgroup of Gq): in absence of Yukawa couplings we can

always set Vij = δij .

To summarize, quark flavor physics within the SM is characterized by a large flavor symmetry, Gq,

defined by the gauge sector, whose only breaking sources are the two Yukawa couplings Yd and Yu. The

CKM matrix arises by the miss-alignment of Yu and Yd in flavor space.

2 Some properties of the CKM matrix
The standard parametrization of the CKM matrix [9] in terms of three rotational angles (θij) and one

complex phase (δ) is

V =




Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb





=




c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13
s12s23 − c12c23s13eiδ −s23c12 − s12c23s13eiδ c23c13



 , (1.9)

where cij = cos θij and sij = sin θij (i, j = 1, 2, 3).

The off-diagonal elements of the CKM matrix show a strongly hierarchical pattern: |Vus| and

|Vcd| are close to 0.22, the elements |Vcb| and |Vts| are of order 4 × 10−2
whereas |Vub| and |Vtd| are of

order 5× 10−3
. The Wolfenstein parametrization, namely the expansion of the CKM matrix elements in

powers of the small parameter λ
.
= |Vus| ≈ 0.22, is a convenient way to exhibit this hierarchy in a more

explicit way [10]:

V =




1− λ2

2 λ Aλ3(�− iη)

−λ 1− λ2

2 Aλ2

Aλ3(1− �− iη) −Aλ2 1



+O(λ4) , (1.10)

where A, �, and η are free parameters of order 1. Because of the smallness of λ and the fact that for each

element the expansion parameter is actually λ2
, this is a rapidly converging expansion.

5

The Wolfenstein parametrization is certainly more transparent than the standard parametrization.

However, if one requires sufficient level of accuracy, the terms of O(λ4) and O(λ5) have to be in-

cluded in phenomenological applications. This can be achieved in many different ways, according to the

convention adopted. The simplest (and nowadays commonly adopted) choice is obtained defining the

parameters {λ, A, �, η} in terms of the angles of the exact parametrization in Eq. (1.9) as follows:

λ
.
= s12 , Aλ2 .

= s23 , Aλ3(�− iη)
.
= s13e

−iδ . (1.11)

The change of variables {sij , δ} → {λ, A, �, η} in Eq. (1.9) leads to an exact parametrization of the

CKM matrix in terms of the Wolfenstein parameters. Expanding this expression up to O(λ5) leads to




1− 1

2λ
2 − 1

8λ
4 λ+O(λ7) Aλ3(�− iη)

−λ+ 1
2A

2λ5[1− 2(�+ iη)] 1− 1
2λ

2 − 1
8λ

4(1 + 4A2) Aλ2 +O(λ8)
Aλ3(1− �̄− iη̄) −Aλ2 + 1

2Aλ
4[1− 2(�+ iη)] 1− 1

2A
2λ4



 (1.12)

where

�̄ = �(1− λ2

2
) +O(λ4) , η̄ = η(1− λ2

2
) +O(λ4) . (1.13)

The advantage of this generalization of the Wolfenstein parametrization is the absence of relevant cor-

rections to Vus, Vcd, Vub and Vcb, and a simple change in Vtd, which facilitate the implementation of

experimental constraints.

The unitarity of the CKM matrix implies the following relations between its elements:

I)
�

k=1...3

V ∗
ikVki = 1 , II)

�

k=1...3

V ∗
ikVkj �=i . (1.14)

These relations are a distinctive feature of the SM, where the CKM matrix is the only source of quark

flavor mixing. Their experimental verification is therefore a useful tool to set bounds, or possibly reveal,

new sources of flavor symmetry breaking. Among the relations of type II, the one obtained for i = 1
and j = 3, namely

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0 (1.15)

or
VudV

∗
ub

VcdV
∗
cb

+
VtdV

∗
tb

VcdV
∗
cb

+ 1 = 0 ↔ [�̄+ iη̄] + [(1− �̄)− iη̄] + 1 = 0 ,

is particularly interesting since it involves the sum of three terms all of the same order in λ and is usually

represented as a unitarity triangle in the complex plane, as shown in Fig. 1.1. It is worth to stress that

Eq. (1.15) is invariant under any phase transformation of the quark fields. Under such transformations

the triangle in Fig. 1.1 is rotated in the complex plane, but its angles and the sides remain unchanged.

Both angles and sides of the unitary triangle are indeed observable quantities which can be measured in

suitable experiments.

3 Present status of CKM fits
The values of |Vus| and |Vcb|, or λ and A in the parametrization (1.12), are determined with good accuracy

from K → π�ν and B → Xc�ν decays, respectively. According to the recent analysis of the UTfit

collaboration [13] their numerical values are

λ = 0.2259± 0.0006 , A = 0.824± 0.013 . (1.16)

Using these results, all the other constraints on the elements of the CKM matrix can be expressed as

constraints on �̄ and η̄ (or constraints on the CKM unitarity triangle in Fig. 1.1). The list of the most

sensitive observables used to determine �̄ and η̄ in the SM includes:
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Unitarity of CKM
|Vus|(λ) from K → π�ν
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|Vub|2 ∝ ρ̄2 + η̄2 from B → Xu�ν

SψKS = sin 2β =
2η̄(1− ρ̄)

(1− ρ̄)2 + η̄2

eiγ =
ρ̄+ iη̄

ρ̄2 + η̄2

α = π − β − γ

∆md

∆ms
∝

����
Vtd

Vts

����
2

= λ2[(1− ρ̄)2 + η̄2]

�K

λ = 0.2253(9)

A = 0.822(12)
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