OUTLINE

LECTURE 1

Essential Cosmology: Contents and History of the Universe

LECTURE 2

WIMP Dark Matter: Candidates and Methods of Detection

LECTURE 3

Inflation, Gravitinos, and Hidden Sectors

June 2014 Feng 4^o

WIMP EXAMPLES

- Weakly-interacting massive particles: many examples, broadly similar, but different in detail
- The prototypical WIMP: neutralinos in supersymmetry

Goldberg (1983); Ellis et al. (1983)

KK B¹ ("KK photons") in universal extra dimensions

Servant, Tait (2002); Cheng, Feng, Matchev (2002)

NEUTRAL SUSY PARTICLES

	U(1)	SU(2)	Up-type	Down-type		
Spin	M_1	M_2	μ	μ	$m_{ ilde{ ilde{ u}}}$	$m_{3/2}$
2						G
						graviton
3/2		Nlauto)	Ğ
		Neutr	Neutralinos: $\{\chi = \chi_1, \chi_2, \chi_3, \chi_4\}$			gravitino
1	В	W o				
1/2	B	W̃ 0	$ ilde{H}_u$	$ ilde{H_d}$	ν	
	Bino	Wino	Higgsino	Higgsino		
0			H_u	H_d	v	
			-	-	sneutrino	

R-PARITY AND STABLE LSPS

One problem: proton decay

- Forbid this with R-parity conservation: $R_p = (-1)^{3(B-L)+2S}$
 - SM particles have R_p = 1, SUSY particles have R_p = -1
 - Require $\Pi R_p = 1$ at all vertices
- Consequence: the lightest SUSY particle (LSP) is stable!

June 2014

WHAT'S THE LSP?

- High-scale → weak scale through RGEs
- Gauge couplings increase masses;
 Yukawa couplings decrease masses
- "typical" LSPs: χ , $\tilde{\tau}_R$

Particle physics alone → neutral, stable, cold dark matter

RELIC DENSITY

Neutralinos annihilate through many processes. [→]
 But there are typically two dominant classes:

- χ are Majorana fermions, so Pauli exclusion → S_{in} = 0, L conservation →
 - − *P* -wave suppression: $\sigma v \sim \sigma_0 + \sigma_1 v^2$, $mv^2/2 = 3T/2 \rightarrow v^2 \sim 3T/m \sim 0.1$
 - $-m_f/m_W$ suppression
- Gauge boson diagrams suppressed for χ ≈ Bino

Bottom line: annihilation is typically suppressed, $\Omega_{\rm DM}h^2$ is typically high

NEUTRALINO ANNIHILATION

Jungman, Kamionkowski, Griest (1995)

COSMOLOGICALLY-PREFERRED SUSY

Typically get too much DM, but there are mechanisms for reducing it

June 2014

COSMOLOGICALLY-PREFERRED SUSY

- After LHC8, there remain several neutralino candidates with the right relic density
 - Co-annihilating DM
 χ, τ_R degenerate, m < 600 GeV
 - Focus-point DMBino-Higgsino mixture, m < 1 TeV
 - Wino-like DMm ~ 2.7-3 TeV
- Note: in this context, cosmology provides upper bounds!
- The Wino scenario is probably excluded by indirect detection, but the other two remain viable, provide interesting targets for LHC13 and future colliders

$$\Omega_X \propto \frac{1}{\langle \sigma v \rangle} \sim \frac{m_X^2}{g_X^4}$$

KK DARK MATTER

 Consider 1 extra spatial dimensions curled up in a small circle

KK-PARITY

Appelquist, Cheng, Dobrescu (2001)

 Problem: many extra 4D fields; some with mass n/R, but some are massless! E.g., 5D gauge field:

$$V_{\mu}(x^{\mu},y) = \underbrace{V_{\mu}(x^{\mu})}_{ ext{good}} + \sum_{n} V_{\mu}^{n}(x^{\mu}) \cos(ny/R) + \sum_{m} V_{\mu}^{m}(x^{\mu}) \sin(my/R)$$
 $V_{5}(x^{\mu},y) = \underbrace{V_{5}(x^{\mu})}_{ ext{bad}} + \sum_{n} V_{5}^{n}(x^{\mu}) \cos(ny/R) + \sum_{m} V_{5}^{m}(x^{\mu}) \sin(my/R)$

Solution: compactify on S¹/Z₂ orbifold

$$y \rightarrow -y$$
: $V_{\mu} \rightarrow V_{\mu}$ $V_{5} \rightarrow -V_{5}$

- Consequence: KK-parity $(-1)^{KK}$ conserved: interactions require an even number of odd KK modes
- 1st KK modes must be pair-produced at colliders
- LKP (lightest KK particle) is stable dark matter!

B¹ ANNIHILATION

- The level-1 KK hypercharge gauge boson B¹ is often the LKP, is neutral, and so is a natural DM candidate
- It's a massive gauge boson, annihilates through S-wave processes, so preferred masses are larger than for Binos

MORE B¹ ANNIHILATION

 Minimal UED has a compressed spectrum, so coannihilation is natural. In contrast to SUSY, these typically add to the relic density

Level-2 KK resonances

Servant, Tait (2002); Burnell, Kribs (2005)

Kong, Matchev (2005); Kakizaki, Matsumoto, Sato, Senami (2005)

KK DARK MATTER RELIC DENSITY

Mass of Dark Matter Particle from Extra Dimensions (TeV)

Prediction for $\Omega_{B^{(1)}}h^2$ The solid line is the case for $B^{(1)}$ alone, and the dashed and dotted lines correspond to the case in which there are one (three) flavors of nearly degenerate $e_R^{(1)}$. For each case, the black curves (upper of each pair) denote the case $\Delta = 0.01$ and the red curves (lower of each pair) $\Delta = 0.05$.

WIMP DETECTION

Correct relic density -> Efficient annihilation then

DIRECT DETECTION

THE BIG PICTURE: UPPER BOUND

What is the upper bound?

Mack, Beacom, Bertone (2007)

 Strongly-interacting window is now closed

Albuquerque, de los Heros (2010)

THE BIG PICTURE: LOWER BOUND

- Is there (effectively) a lower bound?
- Solar, atmospheric, and diffuse supernova background neutrinos provide a difficult background
- The limits of background-free, non-directional direct detection searches (and also the metric prefix system!) will be reached by ~10 ton experiments probing

 $\sigma \sim 1 \text{ yb } (10^{-3} \text{ zb}, 10^{-12} \text{ pb}, 10^{-48} \text{ cm}^2)$

Strigari (2009); Gutlein et al. (2010)

SPIN-INDEPENDENT VS. SPIN-DEPENDENT SCATTERING

Consider neutralinos with quark interactions

$$\mathcal{L} = \sum_{q=u,d,s,c,b,t} \left(\alpha_q^{\text{SD}} \bar{\chi} \gamma^{\mu} \gamma^5 \chi \bar{q} \gamma_{\mu} \gamma^5 q + \alpha_q^{\text{SI}} \bar{\chi} \chi \bar{q} q \right)$$

- DM particles now have v ~ 10⁻³ c. In the nonrelativistic limit, the first terms reduce to a spin-spin interactions, and so are called spin-dependent interactions
- The second terms are spin-independent interactions; focus on these here

SPIN-INDEPENDENT THEORY

 Theories give DM-quark interactions, but experiments measure DMnucleus cross sections

$$\sigma_{\rm SI} = \frac{4}{\pi} \mu_N^2 \sum_q \alpha_q^{\rm SI2} \left[Z \frac{m_p}{m_q} f_{T_q}^p + (A - Z) \frac{m_n}{m_q} f_{T_q}^n \right]^2 ,$$

where $\mu_N=\frac{m_\chi m_N}{m_\chi+m_N}$ is the reduced mass, and $f_{T_q}^{p,n}=\frac{\langle p,n|m_q\bar{q}q|p,n\rangle}{m_{p,n}}$

is the fraction of the nucleon's mass carried by quark q, with

$$f_{T_u}^p = 0.020 \pm 0.004 \qquad f_{T_u}^n = 0.014 \pm 0.003 \quad f_{T_s}^p = 0.118 \pm 0.062 \qquad f_{T_s}^n = 0.118 \pm 0.062$$

$$f_{T_d}^n = 0.026 \pm 0.005 \qquad f_{T_d}^n = 0.036 \pm 0.008 \quad f_{T_{c,b,t}}^{p,n} = \frac{2}{27} f_{T_G}^{p,n} = \frac{2}{27} (1 - f_{T_u}^{p,n} - f_{T_d}^{p,n} - f_{T_s}^{p,n})$$

The last one accounts for gluon couplings through heavy quark loops.

• This may be parameterized by $\sigma_A=\frac{\mu_A^2}{M_*^4}\left[f_pZ+f_n(A-Z)\right]^2$, where $f_{p,n}$ are the nucleon level couplings. Note that f_p and f_n are not necessarily equal.

SPIN-INDEPENDENT EXPERIMENT

• The rate observed in a detector is $R = \sigma_A I_A$, where

Astrophysics local DM number density

• Results are typically reported assuming $f_p\!=\!f_n$, so $\sigma_A\sim A^2$, and scaled to a single nucleon

CURRENT STATUS

There are claimed signals: Collision rate should change as Earth's velocity adds with the Sun's \rightarrow annual modulation

Drukier, Freese, Spergel (1986)

DAMA: 9σ signal with T ~ 1 year, max ~ June 2

DAMA signal now supplemented by others

June 2014

CURRENT STATUS AND FUTURE PROSPECTS

June 2014

MOORE'S LAW FOR DARK MATTER

Evolution of the WIMP-Nucleon $\sigma_{\rm SI}$

ISOSPIN-VIOLATING DARK MATTER

- The direct detection anomalies have motivated many DM ideas. As an example, consider a particularly simple model with HEP implications: IVDM
- Recall that DM scattering off nuclei is

$$- \sigma_A \sim [f_p Z + f_n (A-Z)]^2$$

Typically assume

$$- f_n = f_p$$
, $\sigma_A \sim A^2$

 IVDM relaxes this assumption, introduces 1 new parameter: f_n / f_p

- Can decouple any given isotope by a suitable choice of f_n / f_p.
- Crucially important to account for isotope distributions

Feng, Kumar, Marfatia, Sanford (2013)

IVDM IMPLICATIONS

- LUX/XENON and DAMA are irreconcilable, but LUX/XENON and CDMS are consistent for $f_n/f_p = -0.7$ (roughly $f_u/f_d = -1$)
- Compared to the usual isospin-conserving case f_n/f_p = 1, larger DM couplings to up and down quarks are allowed, and are even required to explain anomalies; strong implications for LHC

INDIRECT DETECTION

- Dark matter may pair annihilate in our galactic neighborhood to
 - Photons
 - Neutrinos
 - Positrons
 - Antiprotons
 - Antideuterons

 The relic density provides a target annihilation cross section

$$\langle \sigma_A v \rangle \sim 3 \times 10^{-26} \text{ cm}^3/\text{s}$$

ROBUSTNESS OF THE TARGET CROSS SECTION

Relative to direct, indirect rates typically have smaller particle physics uncertainties (but larger astrophysical uncertainties)

INDIRECT DETECTION

FILL IN THE BLANKS:

Dark matter annihilates in					
	a place				
, which are detected by					
particles	an experiment				

PHOTONS

Dark Matter annihilates in the GC / dwarf galaxies to a place

<u>photons</u>, which are detected by <u>Fermi, VERITAS</u>, some particles an experiment

The flux factorizes:
$$\frac{d\Phi_{\gamma}}{d\Omega dE} = \sum_{i} \underbrace{\frac{dN_{\gamma}^{i}}{dE} \sigma_{i} v \frac{1}{4\pi m_{\chi}^{2}}}_{\text{Particle}} \underbrace{\int_{\psi} \rho^{2} dl}_{\text{Physics}}$$
 Particle Astro-Physics Physics

Particle physics: two kinds of signals

- Lines from XX $\rightarrow \gamma\gamma$, γ Z: loop-suppressed rates, but distinctive signal
- Continuum from XX \rightarrow ff $\rightarrow \gamma$: τ ree-level rates, but a broad signal

HALO PROFILES

Astrophysics: two kinds of sources

- Galactic Center: close, large signal, but large backgrounds
- Dwarf Galaxies: farther and smaller, so smaller signal, but DM dominated, so smaller backgrounds

In both cases, halo profiles are not well-determined at the center, introduces an uncertainty in flux of up to ~100

PHOTONS: CURRENT EXPERIMENTS

Veritas, Fermi-LAT, HAWC, and others

PHOTONS: FUTURE EXPERIMENTS

Cerenkov Telescope Array

June 2014

PHOTONS: STATUS AND PROSPECTS

- Fermi-LAT has excluded a light WIMP with the target annihilation cross section for certain annihilation channels
- CTA extends the reach to WIMP masses ~ 10 TeV

INDIRECT DETECTION: NEUTRINOS

Dark Matter annihilates in <u>the center of the Sun</u> to a place

neutrinos , which are detected by <u>ANTARES / PINGU</u> an experiment some particles

June 2014

NEUTRINOS: EXPERIMENTS

Current: IceCube/DeepCore,
ANTARES

Future: PINGU

NEUTRINOS: STATUS AND PROSPECTS

The Sun is typically in equilibrium

- Spin-dependent scattering off hydrogen → capture rate → annihilation rate
- Neutrino indirect detection results are typically plotted in the (m_X, σ_{SD}) plane, compared with direct detection experiments

Future experiments like PINGU may discover the smoking-gun signal of HE neutrinos from the Sun, or set stringent σ_{SD} limits, extending the reach of IceCube/DeepCore

INDIRECT DETECTION: ANTI-MATTER

In contrast to photons and neutrinos, anti-matter does not travel in straight lines

- bumps around the local halo before arriving in our detectors
- for example, positrons, created with energy E₀, detected with energy E

$$\frac{d\Phi_{e^+}}{d\Omega dE} = \frac{\rho_{\chi}^2}{m_{\chi}^2} \sum_i \sigma_i v B_{e^+}^i \int dE_0 f_i(E_0) G(E_0, E)$$

ANTI-MATTER: EXPERIMETS

- Positrons (PAMELA, Fermi-LAT, AMS, CALET)
- Anti-Protons (PAMELA, AMS)

Anti-Deuterons (GAPS)

POSITRONS: STATUS AND PROSPECTS

- Flux is a factor of 100-1000 too big for a thermal relic; requires
 - Enhancement from particle physics
 - Alternative production mechanism
- Difficult to distinguish from pulsars

Pato, Lattanzi, Bertone (2010)

DARK MATTER AT COLLIDERS

Full Models (e.g., SUSY)

Cascades:
Produce other
particles, which
decay to DM

DARK MATTER AT COLLIDERS

DM Effective Theories (Bare Bones Dark Matter)

Produce DM directly, but in association with something else so it can be seen: Mono-γ, jet,W,Z,h,b,t

Birkedal, Matchev, Perelstein (2004) Feng, Su, Takayama (2005)

Now systematically classify all possible 4-pt interactions

Name	Operator	Coefficient
D1	$\bar{\chi}\chi\bar{q}q$	m_q/M_*^3
D2	$\bar{\chi}\gamma^5\chi\bar{q}q$	im_q/M_*^3
D3	$\bar{\chi}\chi\bar{q}\gamma^5q$	im_q/M_*^3
D4	$\bar{\chi}\gamma^5\chi\bar{q}\gamma^5q$	m_q/M_*^3
D5	$\bar{\chi}\gamma^{\mu}\chi\bar{q}\gamma_{\mu}q$	$1/M_*^2$
D6	$\bar{\chi}\gamma^{\mu}\gamma^5\chi\bar{q}\gamma_{\mu}q$	$1/M_{*}^{2}$
D7	$\bar{\chi}\gamma^{\mu}\chi\bar{q}\gamma_{\mu}\gamma^5q$	$1/M_{*}^{2}$
D8	$\bar{\chi}\gamma^{\mu}\gamma^5\chi\bar{q}\gamma_{\mu}\gamma^5q$	$1/M_{*}^{2}$
D9	$\bar{\chi}\sigma^{\mu\nu}\chi\bar{q}\sigma_{\mu\nu}q$	$1/M_{*}^{2}$
D10	$\bar{\chi}\sigma_{\mu\nu}\gamma^5\chi\bar{q}\sigma_{\alpha\beta}q$	i/M_*^2
D11	$\bar{\chi}\chi G_{\mu\nu}G^{\mu\nu}$	$\alpha_s/4M_*^3$
D12	$\bar{\chi}\gamma^5\chi G_{\mu\nu}G^{\mu\nu}$	$i\alpha_s/4M_*^3$
D13	$\bar{\chi}\chi G_{\mu\nu}\tilde{G}^{\mu\nu}$	$i\alpha_s/4M_*^3$
D14	$\bar{\chi}\gamma^5\chi G_{\mu\nu}\tilde{G}^{\mu\nu}$	$\alpha_s/4M_*^3$

Goodman, Ibe, Rajaraman, Shepherd, Tait, Yu (2010) Bai, Fox, Harnik (2010)

WIMP EFFECTIVE THEORY

- One operator can correspond to many channels. E.g., $bb\chi\chi$ leads to
 - bb → $\chi\chi$ + X: monophoton, monojet channel
 - bg → bχχ: mono-b channel
 - $-gg \rightarrow bb\chi\chi$: sbottom pair channel
- WIMP effective theory allows comparison to indirect, direct search results; colliders do very well for some operators, low masses
- This assumes the mediators are heavy compared to the WIMPs and the energies involved, which is not always true for colliders

THE FUTURE

If there is a signal, what do we learn?

 Cosmology and dark matter searches can't identify the particle nature

 Particle colliders can't prove it's dark matter

Lifetime > $10^{-7} \text{ s} \rightarrow 10^{17} \text{ s}$?

DARK MATTER COMPLEMENTARITY

 Before a signal: Different experimental approaches are sensitive to different dark matter candidates with different characteristics, and provide us with different types of information – complementarity!

 After a signal: we are trying to identify a quarter of the Universe: need high standards to claim discovery and follow-up studies to measure properties

86

COMPLEMENTARITY: FULL MODELS

pMSSM 19-parameter scan of SUSY parameter space

Different expts probe different models, provide cross-checks

LECTURE 2 SUMMARY

- WIMPs are natural dark matter candidates in many models of BSM physics
- The relic density implies significant rates for direct detection, indirect detection, and colliders
- A time of rapid experimental advances on all fronts
- Definitive dark matter detection and understanding will require signals in several types of experiments