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What do we want to know?

• Physics questions we have…

– Does the (SM) Higgs boson exist?

– What is its production cross-section?

– What is its boson mass?

• Statistical tests construct
probabilistic statements:
p(theo|data), or p(data|theo)

– Hypothesis testing (discovery)

– (Confidence) intervals
Measurements & uncertainties

• Result: Decision based on tests

Wouter Verkerke, NIKHEF

“As a layman I would now say: I think we have it”



How do we do this?

• All experimental results start with formulation of a (physics) theory

• Examples of HEP physics models being tested

• Next, you design a measurement to be able to test model

– Via chain of physics simulation, showering MC, detector simulation 
and analysis software, a physics model is reduced to a statistical model

Wouter Verkerke, NIKHEF

The Standard Model The SM without a Higgs boson

✗



How do we do this?

Wouter Verkerke, NIKHEF

Higgs boson

• General infrastructure collider, detector, computing

• Design analysis strategy to 
• observe existence of a particular process, 
• measure property of a produced particle

Top quark

“Discovery” “Measurement”



An overview of HEP data analysis procedures

Simulation of high-energy
physics process

Simulation of ‘soft physics’
physics process

Simulation of ATLAS
detector

Reconstruction 
of ATLAS detector

LHC data
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HEP workflow: data analysis in practice

Wouter Verkerke, NIKHEF

MC Simulated
Events 

(sig,bkg)

All available
“real data”

Event
selection
(cuts, NN, 

BDT)

Final Event 
Selection (data)

Final Event 
Selection (MC)

Final Result

Helps
to define
selection

Limit

Discovery

Measurement

Statistical
analysis

N-tuples
Cut-flows,
Multi-variate analysis (NN,BDT)
ROOT, TMVA, NeuroBayes

Signal, background models
Likelihood models,

MINUIT, RooFit
RooStats, MCLimit



From physics theory to statistical model

• HEP “Data Analysis” is for large part 
the reduction of a physics theory to a statistical model

Physics Theory: Standard Model with 125 GeV Higgs boson

Statistical Model: Given a measurement x (e.g. an event count)
what is the probability to observe each possible value of x,
under the hypothesis that the physics theory is true.

Once you have a statistical model, all physics knowledge has been abstracted 
into the model, and further steps in statistical inference are ‘procedural’ 
(no physics knowledge is required in principle)



From statistical model to a result

• The next step of the analysis is to confront your model with the 
data, and summarize the result in a probabilistic statement of 
some form

• The last step, usually not in a (first) paper, that you, 
or your collaboration, decides if your theory is valid

Final Result

Limit

Discovery

Measurement

σ/σSM (HZZ) |mH=150 < 0.3 @ 95% C.L. 

“Probability to observed this signal
or more extreme, under the hypothesis
of background-only is 1x109”

σ/σSM (HZZ) |mH=126 = 1.4 P 0.3 

‘Confidence/Credible Interval’

‘p-value’

‘Measurement with variance estimate’



Roadmap for this course

• Start with basics, gradually build up to complexity of 

Statistical tests with simple hypotheses for counting data 

Statistical tests with simple hypotheses for distributions 

Hypothesis testing as basis for event selection

Composite hypotheses (with parameters) for distributions 

“What do we mean
with probabilities”

“p-values”

“Optimal event selection & 
machine learning”

“Confidence intervals, 
Maximum Likelihood”

“Fitting the background”Statistical inference with nuisance parameters

“Sideband fits and 
systematic uncertainties”Response functions and subsidiary measurements



The statistical world

• Central concept in statistics is the ‘probability model’

• A probability model assigns a probability to each possible 
experimental outcome.

• Example: a HEP counting experiment

– Count number of ‘events’ in a fixed time interval  Poisson distribution

– Given the expected event count, the probability model is fully specified

Wouter Verkerke, NIKHEF Experimental outcome
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Probabilities vs conditional probabilities

• Note that probability models strictly give conditional probabilities
(with the condition being that the underlying hypothesis is true)

• Suppose we measure N=7 then can calculate

L(N=7|Hbkg)=2.2%       L(N=7|Hsig+bkg)=14.9%

• Data is more likely under sig+bkg hypothesis than bkg-only hypo

• Is this what we want to know? Or do we want to know 
L(H|N=7)? Wouter Verkerke, NIKHEF

P(N)®P(N |Hbkg) P(N)®P(N |Hsig+bkg)

Definition: 
P(data|hypo) is called 

the likelihood



Inverting the conditionality on probabilities

• Do you L(7|Hb) and L(7|Hsb) provide you 
enough information to calculate P(Hb|7) and P(Hsb|7)

• No!

• Image the ‘whole space’ and two subsets A and B

Wouter Verkerke, NIKHEF

A
(=Hx)

B
(=Nobs)

P(A|B) ≠ P(B|A)

P(7|Hb) ≠ P(Hb|7)



Inverting the conditionality on probabilities

Wouter Verkerke, NIKHEF

A
(=Hx)

B
(=Nobs)

P(A|B) ≠ P(B|A)

but you can deduce
their relation



Inverting the conditionality on probabilities

• This conditionality inversion relation is known as Bayes 
Theorem

• And choosing  A=data and B=theory

• Return to original question:

Do you L(7|Hb) and L(7|Hsb) provide you 
enough information to calculate P(Hb|7) and P(Hsb|7)

• No!  Need P(A) and P(B)  Need P(Hb), P(Hsb) and P(7)Wouter Verkerke, NIKHEF

Essay “Essay Towards Solving a Problem in the Doctrine of 
Chances”  published in Philosophical Transactions of the 
Royal Society of London in 1764

Thomas Bayes (1702-61)

P(B|A) = P(A|B) V P(B)/P(A)

P(theo|data) = P(data|theo) V P(theo) / P(data)



Inverting the conditionality on probabilities

• What is P(data)?

• It is the probability of the data under any hypothesis

– For Example for two competing hypothesis Hb and Hsb

and generally for N hypotheses

• Bayes theorem reformulated using law of total probability

• Return to original question: Do you L(7|Hb) and L(7|Hsb) provide 
you 
enough information to calculate P(Hb|7) and P(Hsb|7) 
No!  Still need P(Hb) and P(Hsb) Wouter Verkerke, NIKHEF

P(N) = L(N|Hb)P(Hb) + L(N|Hsb)P(Hsb)

P(N) = Σi P(N|Hi)P(Hi)

P(theo|data) =  L(data|theo) V P(theo)  
Σi L(data|theo-i)P(theo-i)



Prior probabilities

• What is the meaning of P(Hb) and P(Hsb)? 

– They are the probability assigned to hypothesis Hb prior to the experiment.

• What are the values of P(Hb) and P(Hsb)?

– Can be result of an earlier measurement

– Or more generally (e.g. when there are no prior measurement) 
they quantify a prior degree of belief in the hypothesis

• Example – suppose prior belief P(Hsb)=50% and P(Hb)=50%

• Observation N=7 strengthens belief in hypothesis Hsb

(and weakens belief in Hb  13%) Wouter Verkerke, NIKHEF

P(Hsb|N=7) =               P(N=7|Hsb) V P(Hsb) 
[ P(N=7|Hsb)P(Hsb)+P(N=7|Hb)P(Hb) ]

=             0.149 V 0.50              = 87% 
[ 0.149V0.5+0.022x0.5 ]



Interpreting probabilities

• We have seen 

probabilities assigned observed experimental outcomes
(probability to observed 7 events under some hypothesis)

probabilities assigned to hypotheses
(prior probability for hypothesis Hsb is 50%)

which are conceptually different.

• How to interpret probabilities – two schools

Bayesian probability = (subjective) degree of belief 

Frequentist probability = fraction of outcomes in 
future repeated identical experiments

Wouter Verkerke, NIKHEF
“If you’d repeat this experiment identically many times, 
in a fraction P you will observe the same outcome”

P(theo|data)
P(data|theo)

P(data|theo)



Interpreting probabilities

• Frequentist: 
Constants of nature are fixed – you cannot assign a probability 
to these. Probability are restricted to observable experimental 
results

– “The Higgs either exists, or it doesn’t” – you can’t assign a probability to that 

• Bayesian:
Probabilities can be assigned to constants of nature

– Quantify your belief in the existence of the Higgs – can assign a probablity

• Example of weather forecast

Bayesian: “The probability it will rain tomorrow is 95%”

– Assigns probability to constant of nature (“rain tomorrow”)
P(rain-tomorrow|weather-data) = 95%

Frequentist: “It will rain tomorrow(*)” 
(*) 95% of the forecast are correct.

– Only states P(weather-data|rain-tomorrow) Wouter Verkerke, NIKHEF



Bayesians and Frequentists

• A slide from a professional statistician found when Googling…

Wouter Verkerke, NIKHEF



Bayesians and Frequentists

• Another slide from a particle physicist..

Wouter Verkerke, NIKHEF



Formulating evidence for discovery

• Given a scenario with exactly two competing hypotheses

• In the Bayesian school you can cast evidence as an odd-ratio

Wouter Verkerke, NIKHEF

Oprior º
P(Hsb)

P(Hb)

=
P(Hsb)

1-P(Hsb)
If p(Hsb)=p(Hb)  Odds are 1:1

Oposterior º
L(x |Hsb )P(Hsb )

L(x |Hsb )P(Hb )
=
L(x |Hsb )

L(x |Hb )
Oprior

‘Bayes Factor’ K multiplies prior odds

P(data|Hb)=10-7

P(data|Hsb)=0.5
If                              K=2.000.000  Posterior odds are 2.000.000 : 1



Formulating evidence for discovery

• In the frequentist school you restrict yourself to P(data|theory)
and there is no concept of ‘priors’

– But given that you consider (exactly) 2 competing hypothesis,
very low probability for data under Hb lends credence to ‘discovery’ of Hsb
(since Hb is ‘ruled out’). Example

• Given importance to interpretation of the lower probability, it is 
customary to quote it in “physics intuitive” form: Gaussian σ.

– E.g. ‘5 sigma’  probability of 5 sigma Gaussian fluctuation =2.87x10-7

• No formal rules for ‘discovery threshold’

– Discovery also assumed is not too unlikely under Hsb. If not, no discovery,
but again no formal rules (“your good physics judgment”)

– NB: In Bayesian case, both likelihoods low reduces Bayes factor K to O(1)    

Wouter Verkerke, NIKHEF

P(data|Hb)=10-7

P(data|Hsb)=0.5
“Hb ruled out”  “Discovery of Hsb”



Taking decisions based on your result

• What are you going to do with the results of your measurement?

• Usually basis for a decision 

– Science: declare discovery of Higgs boson (or not), make press release,
write new grant proposal

– Finance: buy stocks or sell

• Suppose you believe P(Higgs|data)=99%.

• Should declare discovery, make a press release? 
A: Cannot be determined from the given information!

• Need in addition: the utility function (or cost function), 

– The cost function specifies the relative costs (to You) of a Type I error 
(declaring model false when it is true) and a Type II error (not declaring 
model false when it is false).

Wouter Verkerke, NIKHEF



Taking decisions based on your result

• Thus, your decision, such as where to invest your time or 
money, requires two subjective inputs: 

Your prior probabilities, and 

the relative costs to You of outcomes.

• Statisticians often focus on decision-making; 
in HEP, the tradition thus far is to communicate experimental 
results (well) short of formal decision calculations.

• Costs can be difficult to quantify in science. 

– What is the cost of declaring a false discovery? 

– Can be high (“Fleischman and Pons”), but hard to quantify 

– What is the cost of missing a discovery (“Nobel prize to someone else”),
but also hard to quantify

Wouter Verkerke, NIKHEF



How a theory becomes text-book physics

P(data|Hb)=10-7

P(data|Hsb)=0.5
P(data|Hb)=10-7

P(data|Hsb)=0.5

A: P(Hsb|data)=0.9999998
B: P(Hsb|data) = 83% 

Press release, accept as new 
‘text book physics’

or
Wait for more data

A: P(Hsb)=50%

B: P(Hsb)=0.000001%

A: declare discovery at 3σ
B: declare discovery at 5σ

Information from experiment Information from experiment

Posterior from expt and prior
following Bayesian paradigm

P-value threshold from “prior”
(judgment call – no formal theory!)

Cost(FalseDiscovery)
= EternalRidicule/Fired

Cost(UnclaimedDiscovery)
= MissedNobelPrize

Press release, accept as new 
‘text book physics’

OR
Wait for more data

Prior belief in theory
(can be hard to quantify)

Cost of wrong decision
(can be hard to quantify)

Recent judgements
on of 5σ effects:

Higgs – text book
ν(β>1) – rejected

Frequentist Bayesian
Potentially fuzzy

information



Summary on statistical test with simple hypotheses

• So far we considered simplest possible experiment we can do: 
counting experiment

• For a set of 2 or more completely specified (i.e. simple) hypotheses 

• In principle, any potentially complex measurement (for Higgs, 
SUSY, top quarks) can ultimately take this a simple form.
But there is some ‘pre-work’ to get here – examining (multivariate) 
discriminating distributions  Now try to incorporate that 

Wouter Verkerke, NIKHEF

 Given probability models P(N|bkg), and P(N|sig) 
we can calculate P(Nobs|Hx) under both hypothesis

 With additional information on P(Hi) we can also calculate P(Hx|Nobs)



Practical statistics – (Multivariate) distributions

• Most realistic HEP analysis are not like simple counting expts at 
all 

– Separation of signal-like and background-like is a complex task that 
involves study of many observable distributions

• How do we deal with distributions in statistical inference?
 Construct a probability model for the distribution

• Case 1 – Signal and background distributions from MC 
simulation

– Typically have histograms for signal and background

– In effect each histogram is a Poisson counting experiment
 Likelihood for distribution is product of Likelihoods for each bin 

Wouter Verkerke, NIKHEF



Working with Likelihood functions for distributions

• How do the statistical inference procedures change 
for Likelihoods describing distributions?

• Bayesian calculation of P(theo|data) they are exactly the same.

– Simply substitute counting model with binned distribution model 

Wouter Verkerke, NIKHEF

Simply fill in new Likelihood function
Calculation otherwise unchanged



Working with Likelihood functions for distributions

• Frequentist calculation of P(data|hypo) also unchanged, 
but question arises if P(data|hypo) is still relevant?

• L(N|H) is probability to obtain exactly the histogram observed.

• Is that what we want to know? Not really.. We are interested in 
probability to observe any ‘similar’ dataset to given dataset,
or in practice dataset ‘similar or more extreme’ that observed 
data

• Need a way to quantify ‘similarity’ or ‘extremity’ of observed dataWouter Verkerke, NIKHEF



Working with Likelihood functions for distributions

• Definition: a test statistic T(x) is any function of the data

• We need a test statistic that will classify (‘order’) all possible 
observations in terms of ‘extremity’ (definition to be chosen by 
physicist)

• NB: For a counting measurement the count itself is already 
a useful test statistic for such an ordering (i.e. T(x) = x)

Wouter Verkerke, NIKHEF

Test statistic T(N)=Nobs orders observed
events count by estimated signal yield

Low N  low estimated signal
High N  large estimated signal



Ordering distributions by ‘signal-likeness’ aka ‘extremity’

• How to define ‘extremity’ if observed data is a distribution

Counting Histogram

Observation

Median expected
by hypothesis

Predicted distribution
of observables

Nobs=7

Nexp(s=0) = 5

Nexp(s=5) = 10

Which histogram is more ‘extreme’?



The Likelihood Ratio as a test statistic

• Given two hypothesis Hb and Hs+b the ratio of likelihoods
is a useful test statistic

• Intuitive picture: 

 If data is likely under Hb,                 If data is likely under Hs+b

L(N|Hb) is large,                                 L(N|Hs+b) is large,
L(N|Hs+b) is smaller                            L(N|Hb) is smaller 

Wouter Verkerke, NIKHEF



Visualizing the Likelihood Ratio as ordering principle

• The Likelihood ratio as ordering principle

• Frequentist solution to ‘relevance of P(data|theory’) is to classify all 
observed data using a (Likelihood Ratio) test statistic

– Probability to observe ‘similar data or more extreme’ then amounts to 
calculating ‘probability to observe test statistic λ(N) as large or larger than the 
observed test statistic λ(Nobs)

Wouter Verkerke, NIKHEF

L(N|Hs+b)=small
L(N|Hb)=large

L(N|Hs+b)=soso
L(N|Hb)=soso

L(N|Hs+b)=large
L(N|Hb)=small

λ(N)=0.0005 λ(N)=0.47 λ(N)=5000



The distribution of the test statistic

• Distribution of a test statistic is generally not known

• Use toy MC approach to approximate distribution

– Generate many toy datasets N under Hb and Hs+b

and evaluate λ(N) for each dataset

Wouter Verkerke, NIKHEF

log(λ)

Distribution of λ for 
data sampled under Hs+b

Distribution of λ for 
data sampled under Hb

λobs

p- value = f (l |Hb )
lobs

¥

ò



The distribution of the test statistic

• Definition: p-value: 
probability to obtain the observed data, or more extreme
in future repeated identical experiments
(extremity define in the precise sense of the (LR) ordering rule)

Wouter Verkerke, NIKHEF

log(λ)

Distribution of λ for 
data sampled under Hs+b

Distribution of λ for 
data sampled under Hb

λobs

p- value = f (l |Hb )
lobs

¥

ò



Likelihoods for distributions - summary

• Bayesian inference unchanged

 simply insert L of distribution to calculate P(H|data)

• Frequentist inference procedure modified

 Pure P(data|hypo) not useful if data is a distribution
 Order all possible data with a (LR) test statistic in ‘extremity’
 Quote p(data|hypo) as ‘p-value’ for hypothesis

Probability to obtain observed data, or more extreme, is X%   

Wouter Verkerke, NIKHEF



The likelihood principle

• Note that ‘ordering procedure’ introduced by test statistic 
also has a profound implication on procedure

• Bayesian inference only uses the Likelihood of the observed data

• While the observed Likelihood Ratio also 
only uses likelihood of observed data.

• Distribution f(λ|N), and thus p-value, also uses likelihood of non-
observed outcomes (in fact Likelihood of every possible outcome 
is used) Wouter Verkerke, NIKHEF



Generalizing to continuous distributions

• Can generalize likelihood to described continuous distributions

• Probability model becomes a probability density model
– Integral of probability density model over full space of observable is always 1 

(just like sum of bins of a probability model is always 1)

– Integral of p.d.f. over a range of observable results in a probability

• Probability density models have (in principle) more analyzing 
power

– But relies on your ability to formulate an analytical model (e.g. hard at LHC)Wouter Verkerke, NIKHEF



Generalizing to multiple dimensions

• Can also generalize likelihood models to distributions in multiple
observables

• Neither generalization (binnedcontinuous, onemultiple
observables) has any further consequences for Bayesian or 
Frequentist inference procedures 

Wouter Verkerke, NIKHEF



The Likelihood Ratio test statistic as tool for event selection

• Note that hypothesis testing with two simple hypotheses for 
observable distributions, exactly describes ‘event selection’ problem

• In fact we have already ‘solved’ the optimal event selection 
problem! Given two hypothesis Hs+b and Hb that predict an complex 
multivariate distribution of observables, you can always 
classify all events in terms of ‘signal-likeness’ (a.k.a ‘extremity’)
with a likelihood ratio

• So far we have exploited λ to calculate a frequentist p-value
will now explore properties ‘cut on λ’ as basis of (optimal) event 
selection Wouter Verkerke, NIKHEF



HEP workflow versus statistical concepts

MC Simulated
Events 

(sig,bkg)

All available
“real data”

Event
selection
(cuts, NN, 

BDT)

Final Event 
Selection (data)

Final Event 
Selection (MC)

Helps
to define
selection

Statistical
Inference

L(x |Hi )
xobs

l(x)º
L(x |H s+b )

L(x |Hb )
>a

p0(x |Hi )= f (l |Hi )
lobs

¥

ò

P(Hs+b | x)=
L(x |Hs+b )P(Hs+b )

L(x |Hs+b )P(Hs+b )+L(x |Hb )P(Hb )

“Likelihood”

“Likelihood Ratio”

“p-value from Likelihood Ratio test statistic”

“Bayesian posterior probability”

Note that the Likelihood is key to everything



Event selection

• The event selection problem:

– Input: Two classes of events “signal” and “background”

– Output: Two categories of events “selected” and “rejected”

• Goal: select as many signal events as possible,
reject as many background events as possible

• Note that optimization goal as stated is ambiguous. 

– But can choose a well-defined by optimization goal by e.g. fixing desired 
background acceptance rate, and then choose procedure that has highest 
signal acceptance.

• Relates to “classical hypothesis testing”

– Two competing hypothesis (traditionally named ‘null’ and ‘alternate’)

– Here null = background, alternate = signal

Wouter Verkerke, NIKHEF



Terminology of classical hypothesis testing

• Definition of terms
– Rate of type-I error = a

– Rate of type-II error = b

– Power of test is 1-b

• Treat hypotheses 
asymmetrically 

– Null hypo is usually special  Fix rate of type-I error

– Criminal convictions: Fix rate of unjust convictions 

– Higgs discovery: Fix rate of false discovery

– Event selection: Fix rate of background that is accepted

• Now can define a well stated goal for optimal testing
– Maximize the power of test (minimized rate of type-II error) for given a

– Event selection: Maximize fraction of signal accepted
Wouter Verkerke, NIKHEF



The Neyman-Pearson lemma

• In 1932-1938 Neyman and Pearson developed a 
theory in which one must consider competing hypotheses

– Null hypothesis (H0) = Background only

– Alternate hypotheses (H1) = e.g. Signal + Background

and proved that

• The region W that minimizes the rate of the type-II error (not 
reporting true discovery) is a contour of the Likelihood Ratio

• Any other region of the same size will have less power

Wouter Verkerke, NIKHEF



The Neyman-Pearson lemma

• Example of application of NP-lemma with two observables

• Cut-off value c controls type-I error rate (‘size’ = bkg rate)
Neyman-Pearson: LR cut gives best possible ‘power’ = signal 
eff. 

• So why don’t we always do this? (instead of training neural 
networks, boosted decision trees etc)

Wouter Verkerke, NIKHEF

x

y y

x

f(x,y|Hs) f(x,y|Hb)
f(x,y|Hs)

f(x,y|Hs+b)
>c



Why Neyman-Pearson doesn’t always help

• The problem is that we usually don’t have explicit formulae for 
the pdfs

• Instead we may have Monte Carlo samples for signal and  
background processes

– Difficult to reconstruct analytical distributions of pdfs from MC samples, 
especially if number of dimensions is large

• If physics problem has only few observables can still estimate 
estimate pdfs with histograms or kernel estimation,

– But in such cases one can also forego event selection and go straight to 
hypothesis testing / paramater estimation with all events

Wouter Verkerke, NIKHEF

Approximation of true f(x|s)

Approximation of true f(x|b)



Hypothesis testing with a large number of observables

• When number of observables is large follow different strategy

• Instead of aiming at approximating p.d.f.s f(x|s) and f(x|b) aim to 
approximate decision boundary with an empirical parametric 
form 

Wouter Verkerke, NIKHEF

f(x,y|Hs) f(x,y|Hb)
f(x,y|Hs)

f(x,y|Hs+b)
>c

c(x,θ)



Empirical parametric forms of decision boundaries

• Can in principle choose any type of Ansatz parametric shape

• Goal of Ansatz form is estimate of a ‘signal probability’ for every 
event in the observable space x (just like the LR)

• Choice of desired type-I error rate (selected background rate), 
can be set later by choosing appropriate cut on Ansatz test 
statistic.

accept
H0

H1

accept
H0

H1

accept

H0

H1

Rectangular cut Linear cut Non-linear cut

)()()( iijj cxcxxt   iijj xaxaxt )( ...)(  xAxxaxt




Wouter Verkerke, UCSB

The simplest Ansatz – A linear disciminant

• A linear discriminant constructs t(x) 
from a linear combination of the variables xi

– A cut on t(x) results in a linear decision plane in x-space

• What is optimal choice of direction vector a?

• Solution provided by the Fisher – The Fisher discriminant

R.A. Fisher
Ann. Eugen. 7(1936) 179.  xVxF

T

BS

 1)(  

Mean values in 
xi for sig,bkg

Inverse of variance matrix
of signal/background
(assumed to be the same)

a


accept
H0

H1



The simplest Ansatz – A linear disciminant

• Operation advantage of Fisher discrimant is that test statistic 
parameters can be calculated (no iterative estimation is 
required)

• Fisher discriminant is optimal test statistic (i.e. maps to Neyman
Pearson Likelihood Ratio) for case where both hypotheses are 
multivariate Gaussian distributions with the same variance, but 
diffferent means

Wouter Verkerke, NIKHEF

Wouter Verkerke, UCSB

R.A. Fisher
Ann. Eugen. 7(1936) 179.  xVxF

T

BS

 1)(  

Mean values in 
xi for sig,bkg

Inverse of variance matrix
of signal/background
(assumed to be the same)

a


Multivariate Gaussian distributions 
with different means but same width
for signal and background



The simplest Ansatz – A linear disciminant

• How the Fisher discriminant follows from the LR test statistic

• Generalization for multidimensional Gaussian distributions

• Note that since we took -log of λ, F(x) is not signal probability,
but we can trivially recover this

Wouter Verkerke, NIKHEF
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If λ=1, x is equally likely under s,b
Then F = -log(λ)=0  P = 50%

“Logistic sigmoid function”



Example of Fisher discriminant use in HEP

• The “CLEO” Fisher discriminant

– Goal: distinguish between 
e+e-  Y4s  bb and uu,dd,ss,cc

– Method: Measure energy flow
in 9 concentric cones around 
direction of B candidate

F(x)

Energy flow 
in bb

Energy flow 
in u,d,s,c

1

2

3

4
5

678
9

Cone
Energy
flows

1 2 3

4 5 6

7 8 9



Non-linear test statistics

• In most real-life HEP applications signal and background are not 
multi-variate Gaussian distributions with different means

• Will need more complex Ansatz shapes than Fisher discriminant

• Loose ability analytically calculate 
parameters of Ansatz model from 
Likelihood Ratio test statistic 
(as was done for Fisher)

• Choose an Ansatz shapes with 
tunable parameters

– Artificial Neural Networks

– Decision Trees

– Support Vector Machines

– Rule Ensembles

• Need numeric procedure to estimate Ansatz parameters 
Machine learning or Bayesian Learning

Wouter Verkerke, NIKHEF
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Machine Learning – General Principles

• Given a Ansatz parametric test statistic T(x|θ), quantify ‘risk’ due 
‘loss of performance’ due to misclassifications by T as follows

• Practical issue: since f(x|s,b) not analytically available, cannot 
evaluate risk function. Solution  Substitute risk with ‘empirical 
risk’ which substitutes integral with Monte Carlo approximation

Target value of T for 
background classification

Target value of T
for signal classification

Loss function (~ log of Gaussian Likelihood) 

Risk function 

xi is a set of points 
sampled from f(x|b)

xi is a set of points 
sampled from f(x|s)

Empirical Risk 
function 



Machine Learning – General Principles

• Minimization of empirical risk E(θ) can be performed with 
numerical methods (many tools are available, e.g. TMVA)

• But approximation of empirical risk w.r.t analytical risk
introduces possibility for ‘overtraining’: 

If MC samples for signal and background are small, 
and number of parameters θ, one can always reduce empirical 
risk to zero (‘perfect selection’)

(Conceptually similar to χ2 fit : if you fit a 10th order polynomial to 
10 points – you will always perfectly describe the data. You will 
however not perfectly describe an independent dataset sampled 
from the same parent distribution)

• Even if empirical risk is not reduced to zero by training, it may 
still be smaller than true risk  Control effect by evaluating 
empirical risk also on independent validation sample during 
minimization.
If ER on samples start to diverge, stop minimization

Wouter Verkerke, NIKHEF



Bayesian Learning – General principles

• Can also applied Bayesian methodology to learning process of 
decision boundaries

• Given a dataset D(x,y) and a Ansatz model with parameters w,
aim is to estimate parameters w

Wouter Verkerke, NIKHEF

P(w) = posterior density on parameters of discriminant

Training data
x: inputs
y: class label  
(S/B) typically

Likelihood of the data under hypothesis w

L(a,b)=L(a|b)L(b)

L(x|w)=1 since
input observables
independent of model



Bayesian Learning – General principles

• Inserting a binomial likelihood 
function to model classification
the classification problem

• The parameters w are thus
estimated from the Bayesian 
posteriors densities

– No iterative minimization, but Note that integrals over ‘w-space’ can usually 
only be performed numerically and if w contains many parameters, this is 
computationally challenging

• If class of function T(x,w) is large enough it will contain a
function T(x,w*) that represents the true minimum in E(w)

– I.e. T(x,w*) is the Bayesian equivalent of of Frequentist TS that is NP L ratio

– In that case the test statistic is

L(y | x,w)= T(xi,w)
i

Õ
y

1-T (xi,w)[ ]1-y

T (x,w*)= yL(y | x)dyò
= L(y =1| x) =

L(x | y =1)P(y =1)
L(x | y = 0)P(y = 0)+ L(x | y =1)P(y =1)

L(y | x,w)= T(xi,w)
i

Õ
y

1-T (xi,w)[ ]1-y

With y=0,1 only
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Machine/Bayesian learning – Non-linear Ansatz
functions

• Artificial Neural Network is one of the most popular non-linear 
ansatz forms. In it simplest incarnation the classifier function is

• This formula corresponds to the ‘single layer perceptron’

– Visualization of single layer network topology


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s(t) is the activation function,
usually a logistic sigmoid

te
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

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xN

N(x)

Since the activation function s(t) is monotonic, 

a single layer N(x) is equivalent 
to the Fisher discriminant F(x)



Neural networks – general structure

• The single layer model and easily be generalized 
to a multilayer perceptron

– Easy to generalize to arbitrary number of layers

– Feed-forward net: values of a node depend only on earlier layers (usually 
only on preceding layer) ‘the network architecture’

– More nodes bring N(x) allow it to be closer to optimal (Neyman Pearson / 
Bayesian posterior) but with much more parameters to be determined

x1

xN

N(x)

))(()(
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0 
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with ai and wij weights 
(connection strengths)
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layer
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Neural networks – training example

N(x)

Signal MC Output

Background MC Output

cosQH
B cosQ*B cosQthr

cosQH
D Fisher Qhemi

Diff

ln|DOCAK| QBSQobKm(Kl)

Signal

Signal

Signal

Background

Background

Background

Input Variables (9) Output Variables (1)



Practical aspects of machine learning

• Choose input variables sensibly
– Don’t include badly understood observables (such as #tracks/evt),

variables that are not expected carry useful information

– Generally: “Garbage in = Garbage out”

• Traditional Machine learning provides no guidance of useful 
complexity of test statistic (e.g. NN topology, layers)

– Usually better to start simple and gradually increase complexity and see 
how that pays off

• Bayesian learning can (in principle) provide guidance on model 
complexity through Bayesian model selection

– Bayes factors automatically includes a penalty for including too much model 
structure.

– But availability of Bayesian model selection depends in practice on the 
software that you use.

Wouter Verkerke, NIKHEF

K =
P(D |H1)

P(D |H2 )
=

L(D |q1,H1)P(q2 |H1)dq2ò
L(D |q2,H2 )P(q2 |H2 )dq2ò

http://en.wikipedia.org/wiki/Bayes_factor#cite_note-kassraftery1995-3
http://en.wikipedia.org/wiki/Bayes_factor#cite_note-kassraftery1995-3
http://en.wikipedia.org/wiki/Bayes_factor#cite_note-kassraftery1995-3
http://en.wikipedia.org/wiki/Bayes_factor#cite_note-kassraftery1995-3


Practical aspects of machine learning

• Don’t make the learning problem 
unnecessarily difficult for the machine

• E.g. remove strong correlation with 
explicit decorrelation before learning step

– Can use Principle Component Analysis

– Or Cholesky decomposition
(rotate with square-root of covariance matrix) 

• Also: remember that for 2-class problem (sig/bkg) that each 
have
multivariate Gaussian distributions with different means,
the optimal discriminant is can be calculated analytically

– Fisher discriminant is analytical solution. NN solution reduces to single-layer 
perceptron

• Thus, you can help your machine by transforming your inputs in 
a form as close as possible to the Gaussian form by 
transforming your input observables Wouter Verkerke, NIKHEF

u1

u2



Gaussianization of input observables

• You can transform any distribution in a Gaussian distribution in 
two steps

• 1 – Probability integral transform

turns any distribution f(x) into a flat distribution in y(x)

• 2 – Inverse error function

turns flat distribution into a Gaussian distribution

• Note that you can make either signal or background Gaussian,
but usually not both

Wouter Verkerke, NIKHEF

y(x)= f (x ' |H )
-¥

x

ò dx '

“…seems likely to be one of the most 
fruitful conceptions introduced into 
statistical theory in the last few years” 
−Egon Pearson (1938) 

erf x( )= 2

p
e-t2

dt
0

x

òxGauss  = 2 ×erf-1 2x flat -1( ) 



A very different type of Ansatz - Decision Trees

• A Decision Tree encodes sequential rectangular cuts

– But with a lot of underlying theory on training and optimization

– Machine-learning technique, widely used in social sciences

– L. Breiman et al., “Classification and Regression Trees” (1984)

• Basic principle

– Extend cut-based selection

– Try not to rule out events failing
a particular criterion

– Keep events rejected by one criterion 
and see whether other criteria could 
help classify them properly

Wouter Verkerke, NIKHEF



Building a tree – splitting the data

• Essential operation : 
splitting the data in 2 groups using a single cut, e.g. HT<242

• Goal: find ‘best cut’ as quantified through best separation of 
signal and background (requires some metric to quantify this)

• Procedure: 
1) Find cut value with best separation for each observable
2) Apply only cut on observable that results in best separation



Building a tree – recursive splitting

• Repeat splitting procedure on sub-samples of previous split

• Output of decision tree: 

– ‘signal’ or ‘background’ (0/1) or 

– probability based on expected purity of leaf  (s/s+b)



Parameters in the construction of a decision tree

• Normalization of signal and background before training

– Usually same total weight for signal and background events

• In the selection of splits

– list of questions (vari < cuti) to consider

– Separation metric (quantifies how good the split is)

• Decision to stop splitting (declare a node terminal)

– Minimum leaf size (e.g. 100 events)

– Insufficient improvement from splitting

– Perfect classification (all events in leaf belong to same class)

• Assignment of terminal node to a class

– Usually: purity>0.5 = signal, purity<0.5 = background

Wouter Verkerke, NIKHEF



Machine learning with Decision Trees 

• Instead of ‘Empirical Risk’ minimize ‘Impurity Function’ of leaves 

– Impurity function i(t) quantifies (im)purity of a sample, but is not uniquely 
defined

– Simplest option: i(t) = misclassification rate

• For a proposed split s on a node t, decrease of impurity is

• Take split that results in largest Δi

Signal purity

Im
p

u
rit

y 
fu

n
ct

io
n

Impurity
of sample

before split

Impurity
of ‘left’
sample

Impurity
of ‘right’
sample



Machine learning with Decision Trees 

• Stop splitting when

– not enough improvement (introduce a cutoff Di)

– not enough statistics in sample, or node is pure (signal or background)

• Example decision tree from learning process

Wouter Verkerke, NIKHEF



Machine learning with Decision Trees 

• Given that analytical pdfs f(x|s) and f(x|b) are usually not available,
splitting decisions are based on ‘empirical impurity’ rather than
true ‘impurity’  risk of overtraining exists

• Can mitigate effects of overtraining by ‘pruning’ tree a posteriori

– Expected error pruning (prune weak splits that are consistent with original leaf 
within statistical error of training sample)

– Cost/Complexity pruning (generally strategy to trade tree complexity against 
performance)

Wouter Verkerke, NIKHEF

Pruning



Concrete example of a trained Decision Tree

Wouter Verkerke, NIKHEF

Signal

Background
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Boosted Decision trees

• Decision trees largely used with ‘boosting strategy’

• Boosting = strategy to combine multiple weaker classifiers into a 
single strong classifier

• First provable boosting algorithm by Schapire (1990)
– Train classifier T1 on N events

– Train T2 on new N-sample, 
half of which misclassified by T1

– Build T3 on events where T1 and T2 disagree

– Boosted classifier: MajorityVote(T1,T2,T3)

• Most used: AdaBoost = Adaptive Boosting (Freund & Shapire
‘96)

– Learning procedure adjusts to training data to classify it better

– Many variations on the same theme for actual implementation

Wouter Verkerke, NIKHEF



AdaBoost

• Schematic view of iterative algorithm

– Train Decision Tree on (weighted) signal and background training samples

– Calculate misclassification rate for Tree K (initial tree has k=1)

– Calculate weight of tree K in ‘forest decision’

– Increase weight of misclassified events in Sample(k) to create Sample(k+1)

• Boosted classifier is result is performance-weighted ‘forest’

Wouter Verkerke, NIKHEF

“Weighted average
of isMisclassified over 

all training events”

“Weighted average
of Trees by their performance”



AdaBoost by example

• So-so classifier (Error rate  = 40%)

– Misclassified events get their weight multiplied by exp(0.4)=1.5

– Next tree will have to work a bit harder on these events

• Good classifier (Error rate  = 5%)

– Misclassified events get their weight multiplied by exp(2.9)=19 (!!) 

– Being failed by a good classifier means a big penalty: must be a difficult 
case

– Next tree will have to pay much more attention to this event and try to get it 
right

• Note that boosting usually results in (strong) overtraining

– Since with misclassification rate will ultimately go to zero

Wouter Verkerke, NIKHEF



Example of Boosting 

Wouter Verkerke, NIKHEF

T0(x,y)

T1(x,y)

T2(x,y)
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HEP workflow versus statistical concepts

MC Simulated
Events 

(sig,bkg)

All available
“real data”

Event
selection
(cuts, NN, 

BDT)

Final Event 
Selection (data)

Final Event 
Selection (MC)

Helps
to define
selection

Statistical
Inference

L(x |Hi )
xobs

l(x)º
L(x |H s+b )

L(x |Hb )
>a

“Likelihood”

“Likelihood Ratio”

Or approximation of optimal
test statistic with a parametric
form from machine learning

Remaining question:
What value of α represents

‘optimal cut’? 



Choosing the optimal cut on the test statistic

MC Simulated
Events 

(sig,bkg)

All available
“real data”

Event
selection
(cuts, NN, 

BDT)

Final Event 
Selection (data)

Final Event 
Selection (MC)

Helps
to define
selection

Statistical
Inference

L(x |Hi )
xobs

l(x)º
L(x |H s+b )

L(x |Hb )
>a

p0(x |Hi )= f (l |Hi )
lobs

¥

ò

“Likelihood”

“Likelihood Ratio”

“p-value from Likelihood Ratio test statistic”

Note that in the limit of an optimal 
test statistic, and when subsequent 
using LR hypothesis test, 
the cut on α has no influence on the 
statistical inference!

 Purely operational decision 
(ntuple-sizes etc…)



Choosing the optimal cut on the test statistic

• But reality is usually more complex: 

– Test statistics are usually not optimal, 

– Ingredients to test statistics, i.e. the event selection, 
are usually not perfectly known (systematic uncertainties)

• In the subsequent statistical test phase we can account for 
(systematic) uncertainties in signal and background models in a 
detailed way. In the event selection phase we cannot

• Pragmatically considerations in design of event selection criteria

– Ability to estimate level of background from the selected data

– Small sensitivity of signal acceptance to selection criteria used

• Result is that Likelihood Ratio used for event selection 
and final hypothesis test are different (λselection ≠ λhypotest) 
 Cut on λselection will influence statistical test with λhypotest

• To be able decide on optimal cut on λselection you need a figure 
merit that approximates behavior of statistical test using λhypotest

Wouter Verkerke, NIKHEF



Traditional approximate Figures of Merit

• Traditional choices for Figure of Merit

– Note: these FOMs quantify best signal significance for a counting 
experiment with an known level of background, and not e.g. ‘strongest 
upper limit’,no
accounting for systematic uncertainties 

)()(

)(
)(






BS

S
F




)(

)(
)(






B

S
F 

‘measurement’‘discovery’

Note that position of 
optimum depends on 
a priori knowledge of 
signal cross section

Make 
cut |x|<C

C

CX

X

Large Bkg Scenario

Small Bkg Scenario
Make 

cut |x|<C

S
/s

q
rt

(S
+

B
)

S
/s

q
rt

(S
+

B
)

Strongly
peaked optimum

Shallow
optimum



Validity of approximations in Figures of Merit

• Note that approximations made in ‘traditional’ figure of merit are 
not always good.

• E.g. for ‘discovery FOM’ s/√b 
illustration of approximation for s=2,5,10 and b in range [0.01-100]
shows significant deviations of s/√b from actual significance at low 
b 

Wouter Verkerke, NIKHEF

Improved discovery F.O.M 
(“Asimov Z”) suggested for
situations where s<<b is not true



Final comments on event selection

• Main issue with event selection is usually, sensitivity of selection 
criteria to systematic uncertainties

• What you’d like to avoid is your BDT/NN that is trained to get a 
small statistical uncertainty has a large sensitivity to a 
systematic uncertainties

• No easy way to incorporate effect of systematic uncertainties in 
training process

 Can insert some knowledge of systematic uncertainties 
included in figure of merit when deciding where to cut in 
BDT/NN, but proper calculation usually requires much more 
information that signal and background event counts and is time 
consuming

• Use your physics intuition…

Wouter Verkerke, NIKHEF



Roadmap for this course

• Tomorrow we with start with hypothesis with parameters

Statistical tests with simple hypotheses for counting data 

Statistical tests with simple hypotheses for distributions 

Hypothesis testing as basis for event selection

Composite hypotheses (with parameters) for distributions 

“What do we mean
with probabilities”

“p-values”

“Optimal event selection & 
machine learning”

“Confidence intervals, 
Maximum Likelihood”

“Fitting the background”Statistical inference with nuisance parameters

“Sideband fits and 
systematic uncertainties”Response functions and subsidiary measurements


