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Summary of yesterday, plan for today 

• Start with basics, gradually build up to complexity of  

 
Statistical tests with simple hypotheses for counting data  

Statistical tests with simple hypotheses for distributions  

Hypothesis testing as basis for event selection 

Composite hypotheses (with parameters) for distributions  

“What do we mean 

with probabilities” 

“p-values” 

“Optimal event selection &  

machine learning” 

“Confidence intervals,  

Maximum Likelihood” 

“Fitting the background” Statistical inference with nuisance parameters 

Response functions and subsidiary measurements “Profile Likelihood fits” 



Introduce concept of composite hypotheses 

• In most cases in physics, a hypothesis is not “simple”,  

but “composite” 

• Composite hypothesis = Any hypothesis which does not specify 

the population distribution completely 

• Example: counting experiment with signal and background, 

that leaves signal expectation unspecified 
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Simple hypothesis  

Composite hypothesis  

s=0 

s=5 

s=10 

s=15 

(My) notation convention: all symbols with ~ are constants  

With b=5 
~ 



A common convention in the meaning of model 

parameters 

• A common convention is to recast signal rate parameters into a 

normalized form (e.g. w.r.t the Standard Model rate) 
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Simple hypothesis  

Composite hypothesis  

s=0 

s=5 

s=10 

s=15 

With b=5 
~ 

Composite hypothesis  

with normalized rate parameter 

μ=0  no signal 

μ=1  expected signal 

μ>1  more than expected signal 

 

‘Universal’ parameter interpretation  

makes it easier to work with your models 



What can we do with composite hypothesis 

• With simple hypotheses – inference is restricted to making 

statements about P(D|hypo) or P(hypo|D) 

• With composite hypotheses – many more options 

• 1 Parameter estimation and variance estimation 

– What is value of s for which the observed data is most probable? 

– What is the variance (std deviation squared) in the estimate of s? 

• 2 Confidence intervals 

– Statements about model parameters using frequentist concept of probability 

– s<12.7 at 95% confidence level 

– 4.5 < s < 6.8 at 68% confidence level 

• 3 Bayesian credible intervals  

– Bayesian statements about model parameters 

– s<12.7 at 95% credibility 
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s=5.5 ± 1.3 



Parameter estimation using Maximum Likelihood 

• Likelihood is high for values of p that result in distribution similar 

to data 

 

 

 

 

 

 

 

 

 

• Define the maximum likelihood (ML) estimator to be the 

procedure that finds the parameter value for which the likelihood 

is maximal. 
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Parameter estimation – Maximum likelihood 

• Practical estimation of maximum likelihood performed  

by minimizing the negative log-Likelihood 

 

 

 

 

 

 

 

– Advantage of log-Likelihood is that contributions from events can be 

summed, rather than multiplied (computationally easier) 

• In practice, find point where derivative of –logL is zero 

 

 

• Standard notation for ML estimation of p is p  
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Example of Maximum Likelihood estimation  

• Illustration of ML estimate on Poisson counting model 

 

 

 

 

 

 

 

 

 

 

• Note that Poisson model is discrete in N, but continuous in s! 
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-log L(N|s) versus s   [N=7] 

s=2 

s=0 

s=5 

s=10 

s=15 

-log L(N|s) versus N   [s=0,5,10,15] 

^ 



Properties of Maximum Likelihood estimators 

• In general, Maximum Likelihood estimators are 
 

– Consistent                (gives right answer for N) 
 

– Mostly unbiased       (bias 1/N, may need to worry at small N) 
 

– Efficient for large N  (you get the smallest possible error) 
 

– Invariant:                 (a transformation of parameters  
                                  will Not change your answer, e.g                         
    
 
                 
 

• MLE efficiency theorem: the MLE will be unbiased and efficient 
if an unbiased efficient estimator exists 

– Proof not discussed here 

– Of course this does not guarantee that any MLE is unbiased and efficient 
for any given problem 
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Estimating parameter variance 

• Note that ‘error’ or ‘uncertainty’ on a parameter estimate is an 

ambiguous statement 

• Can either mean an interval with a stated confidence or credible, 

level (e.g. 68%), or simply assume it is the square-root of the 

variance of a distribution 
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Mean=  

<x> 

Variance =  

<x2>-<x>2 

For a Gaussian distribution 

mean and variance 

map to parameters 

for mean and sigma2 

 
and interval defined by  

√V contains 68% 

of the distribution 

(=‘1 sigma’ by definition) 

 

Thus for Gaussian distributions 

all common definitions of 

‘error’ work out to the same 

numeric value 



Estimating parameter variance 

• Note that ‘error’ or ‘uncertainty’ on a parameter estimate is an 

ambiguous statement 

• Can either mean an interval with a stated confidence or credible, 

level (e.g. 68%), or simply assume it is the square-root of the 

variance of a distribution 
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Mean=  

<x> 

Variance =  

<x2>-<x>2 

For other distributions 

intervals by √V do 

not necessarily contain 

68% of the distribution  
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The Gaussian as ‘Normal distribution’ 

• Why are errors usually Gaussian? 

 

• The Central Limit Theorem says 

• If you take the sum X of N independent measurements xi,  

each taken from a distribution of mean mi, a variance Vi=si
2, 

the distribution for x 

 

(a) has expectation value 

 

 

(b) has variance 

 

 

(c) becomes Gaussian as N   
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Demonstration of Central Limit Theorem 

 5000 numbers taken at random from a uniform 

distribution between [0,1]. 

– Mean = 1/2, Variance = 1/12 

 

 5000 numbers, each the sum of 2 random 

numbers, i.e. X = x1+x2. 

– Triangular shape 

 

 Same for 3 numbers,  

X = x1 + x2 + x3 

 

 

 

 

 Same for 12 numbers, overlaid curve is exact 

Gaussian distribution 

N=1 

N=2 

N=3 

Important: tails of distribution converge very slowly CLT 

often not applicable for ‘5 sigma’ discoveries N=12 



Estimating variance on parameters 

• Variance on of parameter can also be estimated from Likelihood 

using the variance estimator 

 

 

 

 

• Valid if estimator is efficient and unbiased! 

 

• Illustration of Likelihood Variance estimate on a Gaussian 

distribution 
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From Rao-Cramer-Frechet 

inequality 

b = bias as function of p, 

inequality becomes equality 
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Relation between Likelihood and c2 estimators 

• Properties of c2 estimator follow from properties of ML estimator 
using Gaussian probability density functions 
 

 
 
 

 

 

 

 

 

 

• The c2 estimator follows from ML estimator, i.e it is 

– Efficient, consistent, bias 1/N, invariant, 

– But only in the limit that the error on xi is truly Gaussian 

Take log, 
Sum over all points (xi ,yi ,si) 

The Likelihood function in p 

for given points xi(si) 

and function f(xi;p) 

Gaussian Probability Density Function 

in p for single measurement y±σ  

from a predictive function f(x|p) 



Interval estimation with fundamental methods 

• Can also construct parameters intervals using ‘fundamental’ 

methods explored earlier (Bayesian or Frequentist) 

• Construct Confidence Intervals or Credible Intervals with defined 

probabilistic meaning, independent of assumptions on normality 

of distribution (Central Limit Theorem)  “95% C.L.” 

• With fundamental methods you greater flexibility in types of 

interval.  E.g when no signal observed  usually wish to set an 

upper limit (construct ‘upper limit interval’) 
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Reminder - the Likelihood as basis for hypothesis 

testing 

• A probability model allows us to calculate  

the probability of the observed data under a hypothesis 

• This probability is called the Likelihood 

 

 

 

 

 

 

 

 

 

Wouter Verkerke, NIKHEF 

s=0 

s=5 

s=10 

s=15 

P(obs|theo)  

is called the  

Likelihood 



Reminder - Frequentist test statistics and p-values 

• Definition of ‘p-value’: Probability to observe this outcome or 

more extreme in future repeated measurements is x%, if 

hypothesis is true 

• Note that the definition of p-value assumes an explicit ordering 

of possible outcomes in the ‘or more extreme’ part 
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s=0 

s=5 

s=10 

s=15 

)23.0()0;(  
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P-values with a likelihood ratio test statistic 

• With the introduction of a (likelihood ratio) test statistic, 

hypothesis testing of models of arbitrary complexity is now 

reduced to the same procedure as the Poisson example 

 

 

 

 

 

 

 

 

• Except that we generally  

don’t know distribution f(λ)… 

 

 

 

 

 

 

 

 

log(λ) 

λobs 

p- value = f (l |Hb )
lobs

¥

ò



A different Likelihood ratio for composite hypothesis 

testing 

• On composite hypotheses, where both null and alternate 

hypothesis map to values of μ, we can define an alternative 

likelihood-ratio test statistics that has better properties 

 

 

 

 

 

• Advantage: distribution of new λμ has known asymptotic form 

• Wilks theorem: distribution of –log(λμ) is asymptotically 

distribution as a χ2 with Nparam degrees of freedom* 

*Some regularity conditions apply 

•  Asymptotically, we can directly calculate p-value from λμ
obs    
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l(N ) =
L(N |H0 )

L(N |H1)
lm (Nobs ) =

L(N | m)

L(N | m̂)

‘simple hypothesis’  ‘composite hypothesis’  

‘Best-fit value’ 

Hypothesis  

μ that is being  

tested 



What does a χ2 distribution look like for n=1? 

• Note that it for n=1, it does not peak at 1, but rather at 0… 
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Composite hypothesis testing in the asymptotic regime 

• For ‘histogram example’: what is p-value of null-hypothesis 

- logm

t0 = 34.77

t0 = -2ln
L(data | m = 0)

L(data | m̂)
μ is best fit  

value of μ 

^ 

‘likelihood of best fit’ 

‘likelihood assuming zero signal strength’ 

On signal-like data t0 is large 

P-value = TMath::Prob(34.77,1)  

            = 3.7x10-9 

Wilks: f(λ|0)  χ2 distribution 



Composite hypothesis testing in the asymptotic regime 

• For ‘histogram example’: what is p-value of null-hypothesis 

t0 = 34.77 t0 = 0.02

t0 = -2ln
L(data | m = 0)

L(data | m̂)
μ is best fit  

value of μ 

^ 

‘likelihood of best fit’ 

‘likelihood assuming zero signal strength’ 

On signal-like data t0 is large On background-like data t0 is small 

P-value = TMath::Prob(34.77,1)  

            = 3.7x10-9 

P-value = TMath::Prob(0.02,1)  

            = 0.88 

Use 

Wilks 

Theorem 



How quickly does f(λμ|μ) converge to its asymptotic form 

• Pretty quickly – Here is an example of likelihood function 

for 10-bin distribution with 200 events 
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From hypothesis testing to confidence intervals 

• Next step for composite hypothesis is to go from p-values for a 

hypothesis defined by set value of μ to an interval statement on μ  

 

• Definition: A interval on μ at X% confidence level is defined such 

that the true of value of μ is contained X% of the time in the 

interval. 

– Note that the output is not a probabilistic statement on the true s value  

– The true μ is fixed but unknown – each observation will result in an estimated 

interval [μ-,μ+]. X% of those intervals will contain the true value of μ 

 

• Definition of confidence intervals does not make  

any assumption on shape of interval  

 

 Can choose one-sided intervals (‘limits’),  

     two-sided intervals (‘measurements’), 

     or even disjoint intervals (‘complicated measurements’) 
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Exact confidence intervals – the Neyman construction 

• Simplest experiment: one measurement (x), one theory parameter 

(q) 

• For each value of parameter θ, determine distribution in in 

observable x 
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observable x 



How to construct a Neyman Confidence Interval 

• Focus on a slice in θ 

– For a 1-a% confidence Interval, define acceptance interval  

that contains 100%-a% of the distribution 
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observable x 

pdf for observable x 

given a parameter value θ0 



How to construct a Neyman Confidence Interval 

• Definition of acceptance interval is not unique  

 Choose shape of interval you want to set here. 

– Algorithm to define acceptance interval is called ‘ordering rule’ 
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observable x 

pdf for observable x given a parameter value θ0 

observable x 

observable x 

Lower Limit 

Central Interval 

Other options, are e.g.  

‘symmetric’ and ‘shortest’ 



How to construct a Neyman Confidence Interval 

• Now make an acceptance interval in observable x 

for each value of parameter θ 
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observable x 



How to construct a Neyman Confidence Interval 

• This makes the confidence belt 
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observable x 



How to construct a Neyman Confidence Interval 

• This makes the confidence belt 
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observable x 



How to construct a Neyman Confidence Interval 

• The confidence belt can constructed in advance of any 
measurement, it is a property of the model, not the data 

• Given a measurement x0, a confidence interval [θ+,θ-] can be 
constructed as follows 

• The interval [θ-,θ+] has a 68% probability to cover the true value 
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observable x 



What confidence interval means & concept of coverage 

• A confidence interval is an interval on a parameter that contains 

the true value X% of the time 

• This is a property of the procedure, and should be interpreted in 

the concept of repeated identical measurements: 

 

Each future measurement will result a confidence interval that 

has somewhat different limits every time 

(‘confidence interval limits are a random variable’) 

 

But procedure is constructed such that true value is in X% of the 

intervals in a series of repeated measurements 

(this calibration concept is called ‘coverage’) 

• It is explicitly not a probability statement on the true value you 

are trying to measure. In the frequentist the true value is fixed 

(but unknown) 
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On the interpretation of confidence intervals 
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The confidence interval – Poisson counting example 

• Given the probability model for Poisson counting example: for 

every hypothesized value of s, plot the expected distribution N 
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Confidence belt for 

68% and 90% central intervals 

Confidence belt for 

68% and 90% lower limit 

‘central’ 

ordering 

rule 

‘upper limit’ 

ordering 

rule 



The confidence interval – Poisson counting example 

• Given confidence belt and observed data, confidence interval on 

parameter is defined by belt intersection 

Confidence belt for 

68% and 90% central intervals 

Confidence belt for 

68% and 90% lower limit 

Nobs Nobs 

Central interval on s at 68% C.L. Lower limit on s at 90% C.L. 



Confidence intervals using the Likelihood Ratio test statistic 

• Neyman Construction on Poisson counting looks like ‘textbook’ belt.  

• In practice we’ll use the Likelihood Ratio test statistic to summarize 
the measurement of a (multivariate) distribution for the purpose of 
hypothesis testing. 

• Procedure to construct belt with LR is  identical:  
obtain distribution of λ for every value of μ to construct confidence belt    

 
x=3.2 

observable x 

p
a

ra
m

e
te

r 
μ

 

λμ(x,μ) 

Likelihood Ratio λ 

p
a

ra
m

e
te

r 
μ

 

? 



The asymptotic distribution of the likelihood ratio test statistic 

• Given the likelihood ratio  

 

 

 

Q: What do we know about asymptotic distribution of λ(μ)?   

• A: Wilks theorem  Asymptotic form of  f(t|μ) is a χ2 distribution 

 

                                             f(tμ|μ) = c2(tμ,n) 

  
 

• Note that f(tμ|μ) is independent of μ!  

 Distribution of tμ is the same for every ‘horizontal slice’ of the belt 
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tm = -2loglm (x) = -2log
L(x | m)

L(x | m̂)

Where  

μ is the hypothesis being tested and  

n is the number of parameters (here 1: μ ) 

 



Confidence intervals using the Likelihood Ratio test statistic 

• Procedure to construct belt with LR is identical:  

obtain distribution of λ for every value of μ to construct belt    

 
x=3.2 

observable x 

p
a
ra

m
e
te

r 
μ

 

tμ(x,μ) 

Likelihood  

Ratio 

p
a
ra

m
e
te

r 
μ

 

Confidence  

belt now  

range in LR 



What does the observed data look like with a LR? 

• Note that while belt is (asymptotically) independent of parameter μ, 

observed quantity now is dependent of the assumed μ 

x=3.2 

observable x 

p
a
ra

m
e
te

r 
μ

 

tμ(x,μ) 

Likelihood Ratio 

p
a
ra

m
e
te

r 
μ

 

Measurement = tμ(xobs,μ)  

is now a function of μ 



Connection with likelihood ratio intervals 

• If you assume the asymptotic distribution for tμ,  

– Then the confidence belt is exactly a box  

– And the constructed confidence interval can be simplified 

to finding the range in μ where tμ=½Z2  

 This is exactly the MINOS error 
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tμ 

p
a
ra

m
e
te

r 
μ

 

FC interval with Wilks Theorem MINOS / Likelihood ratio interval 



Recap on confidence intervals 

• Confidence intervals on parameters are constructed  

to have precisely defined probabilistic meaning 

– This calibration is called “coverage”  

The Neyman Construction has coverage by construction 

– This is different from parameter variance estimates  

(or Bayesian methods) that don’t have (a guaranteed) coverage 

– For most realistic models confidence intervals are calculated using  

(Likelihood Ratio) test statistics to define the confidence belt 

• Asymptotic properties 

– In the asymptotic limit (Wilks theorem),  

Likelihood Ratio interval converges to a  

Neyman Construction interval  

(with guaranteed coverage) “Minos Error” 

NB: the likelihood does not need to be 

parabolic for Wilks theorem to hold 

– Separately, in the limit of normal distributions the  

likelihood becomes exactly parabolic and  

the ML Variance estimate converges to  

the Likelihood Ratio interval Wouter Verkerke, NIKHEF 



Bayesian inference with composite hypothesis 

• With change LL(μ) the prior and posterior model probabilities 

become probability density functions 
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Hb Hs+b 

H(μ) 

Prior  

probability density 

Posterior 

probability density 

NB: Likelihood is not a probability density 



Bayesian credible intervals 

• From the posterior density function, a credible interval can be 

constructed through integration 

 

 

 

 

 

 

 

 

 

• Note that Bayesian interval estimation require no minimization  

of –logL, just integration Wouter Verkerke, NIKHEF 

95% credible central interval 95% credible upper limit 

Posterior on μ Posterior on μ 



Bayesian parameter estimation 

• Bayesian parameter estimate is the posterior mean 

• Bayesian variance is the posterior variance  
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Mean=  

<x> 

Variance =  

<x2>-<x>2 

V̂ = (m̂ -m)2P(m | N)ò dm

m̂ = mP(m | N)ò dm



Choosing Priors 

• As for simple models, Bayesian inference always in involves a prior  

 now a prior probability density on your parameter 

• When there is clear prior knowledge, it is usually straightforward to 

express that knowledge as prior density function 

– Example: prior measurement of μ = 50 ± 10 

 

 

 

 

 

 

 

– Posterior represents updated belief  It incorporates information from 

measurement and prior belief  

– But sometimes we only want to publish result of this experiment, or there is no 

prior information. What to do? 
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prior p(μ) 

posterior  

p(μ|x0) 

likelihood 

L(x0|μ) 



Choosing Priors 

• Common but thoughtless choice: a flat prior 

– Flat implies choice of metric. Flat in x, is not flat in x2 

 

 

 

 

 

 

 

 

 

 

 

• Flat prior implies choice on of metric 

– A prior that is flat in μ is not flat in μ2 

– ‘Preferred metric’ has often no clear-cut answer.  

(E.g. when measuring neutrino-mass-squared, state answer in m or m2) 

– In multiple dimensions even complicated (prior flat in x,y or is prior flat in r,φ?) 
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prior p(μ) 

posterior  

p(μ|x0) 

likelihood 

L(x0|μ) prior p(μ’) 

posterior  

p(μ’|x0) 

likelihood 

L(x0|μ’) 

distribution in μ 
distribution in μ2 



Is it possible to formulate an ‘objective’ prior? 

• Can one define a prior p(μ) which contains as little information 
as possible, so that the posterior pdf is dominated by the 
likelihood? 

– A bright idea, vigorously pursued by physicist Harold Jeffreys in in mid-
20thcentury: 

– This is a really really thoughtless idea, recognized by Jeffreys as such, but 
dismayingly common in HEP: just choose p(μ) uniform in whatever metric 
you happen to be using!  

• “Jeffreys Prior” answers the question using a prior uniform in a 
metric related to the Fisher information. 
 
 
 

– Unbounded mean μ of gaussian: p(μ) = 1 

– Poisson signal mean μ, no background: p(μ) = 1/√μ 

• Many ideas and names around on non-subjective priors 

– Advanced subject well beyond scope of this course. 

– Many ideas (see e.g. summary by Kass & Wasserman),  
but very much an open/active in area of research 
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Sensitivity Analysis 

• Since a Bayesian result depends on the prior probabilities, which are 
either personalistic or with elements of arbitrariness, it is widely 
recommended by Bayesian statisticians to study the sensitivity of the 
result to varying the prior. 

• Sensitivity generally decreases with precision of experiment 
 
 
 
 
 

 

 

 

 

 

• Some level of arbitrariness – what variations to consider in sensitivity 
analysis 
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Using priors to exclude unphysical regions 

• Priors provide simple way to exclude unphysical regions  

• Simplified example situations for a measurement of mn
2 

1. Central value comes out negative (= unphysical). 

2. Even upper limit (68%) may come out negative, e.g. m2<-5.3, 

3. What is inference on neutrino mass, given that is must be >0?  
 
 
 
  

 

 

 

 

 

 

– Introducing prior that excludes unphysical region ensure limit in physical range of 
observable (m2<6.4) 

– NB: Previous considerations on appropriateness of flat prior for domain m2>0 still 
apply 
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p(μ|x0) with flat prior p(μ|x0) with p’(μ) p’(μ) 



Using priors to exclude unphysical regions 

• Do you want publish (only) results restricted to the physical 

region? 

– It depends very much to what further analysis and/or combinations is 

needed… 

• An interval / parameter estimate that in includes unphysical still 

represents the best estimate of this measurement 

– Straightforward to combined with future measurements, 

new combined result might be physical (and more precise) 

– You need to decide between ‘reporting outcome of this measurement’ vs 

‘updating belief in physics parameter’ 

• Typical issues with unphysical results in confidence intervals 

– ‘Low fluctuation of background’  ‘Negative signal’   

95% confidence interval excludes all positive values of cross-section. 

– Correct result (it should happen 5% of the time),  

but people feel ‘uncomfortable’ publishing such a result 

• Can you also exclude unphysical regions in confidence intervals? 

– No concept of prior…But yes, it can be done! 
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Physical boundaries frequentist confidence intervals 

• Solution is to modify the statistic 

to avoid unphysical region 
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tm (x) = - 2log
L(x | m)

L(x | m̂)

Introduce  

“physical bound” 

μ>0 

    If μ<0, use 0 in denominator 

 Declare data maximally  

    compatible with hypothesis μ=0  

μ=-1 μ=1 μ=2 

μ=-1 μ=1 μ=2 



Physical boundaries in frequentist confidence intervals 

• What is effect on distribution  

of test statistic? 

Wouter Verkerke, NIKHEF 

    If μ<0, use 0 in denominator 

 Declare data maximally  

    compatible with hypothesis μ=0  

Distribution of t0 for μ=2 

Distribution of t0 for μ=0 

~ 

Spike at zero contains all 

“unphysical” observations 

~ 

Unmodified…. 

Introduce  

“physical bound” 

μ>0 

tm (x) = - 2log
L(x | m)

L(x | m̂)



Physical boundaries frequentist confidence intervals 

• What is effect on acceptance interval 

of test statistic? 
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    If μ<0, use 0 in denominator 

 Declare data maximally  

    compatible with hypothesis μ=0  

Effect: Acceptance  

interval is shortened 

Introduce  

“physical bound” 

μ>0 

tm (x) = - 2log
L(x | m)

L(x | m̂)

Distribution of t0 for μ=0 

Spike at zero contains all 

“unphysical” observations 

~ 

Unmodified…. 



Physical boundaries frequentist confidence intervals 

• Putting everything together – the confidence with modified tμ 

• Confidence belt ‘pinches’ towards physical boundary 

• Offsetting of likelihood curves for measurements that prefer μ<0   

tμ(x,μ) 

 Large μ  

2-sided interval in μ  

p
a
ra

m
e
te

r 
μ

 

Likelihood Ratio 

 

~ 



Physical boundaries frequentist confidence intervals 

• Putting everything together – the confidence with modified tμ 

• Confidence belt ‘pinches’ towards physical boundary 

• Offsetting of likelihood curves for measurements that prefer μ<0   

tμ(x,μ) 

 Small μ>0 

 ‘upper limit’ interval 

  

p
a
ra

m
e
te

r 
μ

 

Likelihood Ratio 

 

~ 



Physical boundaries frequentist confidence intervals 

• Putting everything together – the confidence with modified tμ 

• Confidence belt ‘pinches’ towards physical boundary 

• Offsetting of likelihood curves for measurements that prefer μ<0   

tμ(x,μ) 

μ<0   

‘upper limit’ interval 
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Physical boundaries frequentist confidence intervals 

• Example for unconstrained unit Gaussian measurement 

Wouter Verkerke, NIKHEF 

L =Gauss(x |m,1)
tμ(x,μ) 
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Physical boundaries frequentist confidence intervals 

• First map back horizontal axis of confidence belt from tμ(x)x 

tμ(x,μ) 
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Gauss(x|μ,1) 
95% Confidence belt in (x,μ)  

defined by cut on tμ  
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“Feldman-Cousins” 



Comparison of Bayesian and Frequentist limit treatment 

• Bayesian 95% credible upper-limit interval with flat prior μ>0  
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defined by cut on tμ for 
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Comparison of Bayesian and Frequentist limit treatment 

• Bayesian 95% credible upper-limit interval with flat prior μ>0  

tμ(x,μ) 
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Likelihood Ratio 

 

x 

observable x 

p
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r 
μ

 

Gauss(x|μ,1) 
95% Confidence belt in (x,μ)  

defined by cut on tμ for 

Note that tμ / Feldman-Cousins automatically 

switches from ‘upper limit’ to ‘two-sided’ 

 “unified procedure” 

 

Note that Bayesian and Frequentist intervals 

at >2 would agree exactly for Gaussian 

example  

if both would be takes as ‘two-sided’ 

~ 
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Summary 

• Maximum Likelihood 

– Point and variance estimation 

– Variance estimate assumes normal 

distribution. No upper/lower limits 

• Frequentist confidence intervals 

– Extend hypothesis testing to composite hypothesis 

– Neyman construction provides exact “coverage”  

= calibration of quoted probabilities 

– Strictly p(data|theory) 

– Asymptotically identical to likelihood ratio intervals 

(MINOS errors, does not assume parabolic L) 

• Bayesian credible intervals 

– Extend P(theo) to p.d.f. in model parameters 

– Integrals over posterior density  credible intervals 

– Always involves prior density function 

 in parameter space 

 

Wouter Verkerke, NIKHEF 



Next subject… 

• Start with basics, gradually build up to complexity of  

 
Statistical tests with simple hypotheses for counting data  

Statistical tests with simple hypotheses for distributions  

Hypothesis testing as basis for event selection 

Composite hypotheses (with parameters) for distributions  

“What do we mean 

with probabilities” 

“p-values” 

“Optimal event selection &  

machine learning” 

“Confidence intervals,  

Maximum Likelihood” 

“Fitting the background” Statistical inference with nuisance parameters 

“Sideband fits and  

systematic uncertainties” Response functions and subsidiary measurements 



So far we’ve only considered the ideal experiment 

• The “only thing” you need to do (as an experimental physicist) is 

to formulate the likelihood function for your measurement 

• For an ideal experiment, where signal and background are 

assumed to have perfectly known properties, this is trivial 

 

 

 

 

 

 

 

 

 

• So far only considered a single parameter in the likelihood: 

the physics parameter of interest, usually denoted as μ 

 
Wouter Verkerke, NIKHEF 



The imperfect experiment 

• In realistic measurements many effect that we don’t control 

exactly influence measurements of parameter of interest 

• How do you model these uncertainties in the likelihood?  

Wouter Verkerke, NIKHEF 

Signal and background predictions 

are affected by (systematic) uncertainties 



Adding parameters to the model 

• We can describe uncertainties in our model by adding new 

parameters of which the value is uncertain 

 

 

 

 

 

 

 

 

• These additional model parameters are not ‘of interest’, but we 

need them to model uncertainties  ‘Nuisance parameters’ 

 Wouter Verkerke, NIKHEF 

L(x | f ,m,s,a0,a1,a2 ) = fG(x,m,s )+ (1- f )Poly(x,a0,a1,a2 )



What are the nuisance parameters of your physics model? 

• Empirical modeling of uncertainties, e.g. polynomial for 
background, Gaussian for signal, is easy to do, but may lead to 
hard questions 
 
 

 

 

 

 

 

• Is your model correct? (Is true signal distr. captured by a 
Gaussian?) 

• Is your model flexible enough? (4th order polynomial, or better 6th)? 

• How do model parameters connect to known detector/theory 
uncertainties in your distribution?  

– what conceptual uncertainty do your parameters represent? 

 Topic for 3rd lecture 
Wouter Verkerke, NIKHEF 

L(x | f ,m,s,a0,a1,a2 ) = fG(x,m,s )+ (1- f )Poly(x,a0,a1,a2 )



The statisticians view on nuisance parameters 

• In general, our model of the data is not perfect 

 

 

 

 

 

 

• Can improve modeling by including additional adjustable 

parameters 

• Goal: some point in the parameter space of the enlarged model 

should be “true” 

• Presence of nuisance parameters decreases the sensitivity of the 

analysis of the parameter(s) of interest 

 
Wouter Verkerke, NIKHEF 



Treatment of nuisance parameters in parameter estimation 

• In POI parameter estimation, the effect of NPs incorporated 

through unconditional minimization 

– I.e. minimize Likelihood w.r.t all parameter simultaneously. 

• Simple example with 2-bin Poisson counting experiment 

Wouter Verkerke, NIKHEF 

L(s,b) = Poisson(10 | s+b)Poisson(10 | 3×b)

Unconditional 

minimum in s,b 

Conditional  

minimum in s 

(condition: b=5) 

(ŝ, b̂)

ˆ̂s
b=5

L(s) = Poisson(10 | s+5)



Treatment of nuisance parameters in variance 

estimation 

• Maximum likelihood estimator of parameter variance  

is based on 2nd derivative of Likelihood  

– For multi-parameter problems this 2nd derivative is generalized  

by the Hessian Matrix of partial second derivatives 

 

 

 

 

 

 

 

 

• For multi-parameter likelihoods estimate of covariance Vij of pair 

of 2 parameters in addition to variance of individual parameters 

– Usually re-expressed in terms dimensionless correlation coefficients ρ  

Wouter Verkerke, NIKHEF 
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Treatment of nuisance parameters in variance 

estimation 

• Effect of NPs on variance estimates visualized 

Wouter Verkerke, NIKHEF 

Scenario 1 

Estimators of  

POI and NP correlated 

i.e. ρ(s,b)≠0 
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Treatment of NPs in hypothesis testing and conf. 

intervals 

• We’ve covered frequentist hypothesis testing and interval 

calculation using likelihood ratios based on a likelihood with a 

single parameter (of interest) L(μ) 

– Result is p-value on hypothesis with given μ value, or 

– Result is a confidence interval [μ-,μ+] with values of μ for which p-value is at 

or above a certain level (the confidence level) 

• How do you do this with a likelihood L(μ,θ) where θ is a 

nuisance parameter? 

– With a test statistics qμ, we calculate p-value for hypothesis θ as  

 

 

 

• But what values of θ do we use for f(qμ|μ,θ)? 

Fundamentally, we want to reject θ only if p<α for all θ 

 Exact confidence interval 
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Hypothesis testing & conf. intervals with nuisance 

parameters 

• The goal is that the parameter of interest should be covered at 

the stated confidence for every value of the nuisance 

parameter 

• if there is any value of the nuisance parameter which makes the 

data consistent with the parameter of interest, that value of the 

POI should be considered:  

– e.g. don’t claim discovery if any background scenario is compatible with 

data 

 

• But: technically very challenging and significant problems with 

over-coverage 

– Example: how broadly should ‘any background scenario’ be defined?  

Should we include background scenarios that are clearly incompatible with 

the observed data? 

Wouter Verkerke, NIKHEF, 73 



The profile likelihood construction as compromise 

• For LHC the following prescription is used:  

 

                Given L(μ,θ) 

 

perform hypothesis test for each value of μ (the POI),  

 

using values of nuisance parameter(s) θ that best fit the data 

under the hypothesis μ 

• Introduce the following notation 

 

 

 

• The resulting confidence interval will have exact coverage for 

the points 

– Elsewhere it may overcover or undercover (but this can be checked) 

Wouter Verkerke, NIKHEF, 74 
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The profile likelihood ratio 

• With this prescription we can construct the profile likelihood ratio 

as test statistic 

 

 

 

 

 

 

• NB: value profile likelihood ratio does not depend on θ  

Wouter Verkerke, NIKHEF, 75 
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Profiling illustration with one nuisance parameter 

Wouter Verkerke, NIKHEF, 76 
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Profile scan of a Gaussian plus Polynomial probability model 

Wouter Verkerke, NIKHEF 

Likelihood Ratio 

Profile Likelihood Ratio 

 
Minimizes –log(L)  

for each value of fsig  

by changing bkg shape params 

(a 6th order Chebychev Pol) 



Profile scan of a Gaussian plus Polynomial probability model 

Wouter Verkerke, NIKHEF 

Likelihood Ratio 

Profile Likelihood Ratio 

 
Minimizes –log(L)  

for each value of fsig  

by changing bkg shape params 

(a 6th order Chebychev Pol) 

Interval on μ widens 

due to effect of uncertain NPs 



PLR Confidence interval vs MINOS 

tμ(x,μ) 

Profile Likelihood Ratio 
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Confidence  

belt now  

range in PLR tμ(x,μ) 

Profile Likelihood Ratio 

p
a
ra

m
e
te

r 
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Measurement = tμ(xobs,μ)  

is now a function of μ 

Asymptotically, 

distribution is identical 

for all μ 

NB: asymptotically, distribution  

is also independent of true  

values of θ 



Link between MINOS errors and profile likelihood 

 

 

 

 

 

 

 

 

• Note that MINOS algorithm in  

MINUIT gives same errors as  

Profile Likelihood Ratio 

– MINOS errors is bounding box  

around (s) contour 

– Profile Likelihood = Likelihood 

minimized w.r.t. all nuisance  

parameters 

Wouter Verkerke, NIKHEF 
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NB: Similar to graphical interpretation of variance estimators, but those 

       always assume an elliptical contour from a perfectly parabolic likelihood  



Summary on NPs in confidence intervals 

• Exact confidence intervals are difficult with nuisance parameters 

– Interval should cover for any value of nuisance parameters 

– Technically difficult and significant over-coverage common 

• LHC solution Profile Likelihood ratio  Guaranteed coverage at 

measured values of nuisance parameters only 

– Technically replace likelihood ratio with profile likelihood ratio 

– Computationally more intensive (need to minimize likelihood w.r.t all 

nuisance parameters for each evaluation of the test statistic), but still very 

tractable 

• Asymptotically confidence intervals constructed with profile 

likelihood ratio test statistics correspond to (MINOS) likelihood 

ratio intervals 

– As distribution of profile likelihood becomes asymptotically independent of 

θ, 

coverage for all values of θ restored   

Wouter Verkerke, NIKHEF, 81 



Dealing with nuisance parameters in Bayesian intervals 

• Elimination of nuisance parameters in Bayesian interval: 

Integrate over the full subspace of all nuisance parameters; 

 

  

 

 

 

• You are left with posterior pdf for μ 

P(m | x)µ L(x | m,q )p (m)p (q )( )dqò

μ 

θ 

)ˆ,ˆ( q

∫  = ),( q

Credible interval: 

area that integrates  

X% of posterior 

P(m | x)µL(x |m) ×p(m)



Computational aspects of dealing with nuisance parameters 

• Dealing with many nuisance parameters is computationally 

intensive in both Bayesian and (LHC) Frequentist approach 

• Profile Likelihood approach 

– Computational challenge = Minimization of likelihood w.r.t. all nuisance 

parameters for every point in the profile likelihood curve 

– Minimization can be a difficult problem,  

e.g. if there are strong correlations, or multiple minima 

• Bayesian approach 

– Computational challenge = Integration of posterior density of all nuisance 

parameters 

– Requires sampling of very potentially very large space. 

– Markov Chain MC and importance sampling techniques can help, but still 

very CPU consuming  

Wouter Verkerke, NIKHEF 



Other procedures that have been tried* 

• Hybrid Frequentist-Bayesian approach (‘Cousins-Highland / ZN’) 

– Integrate likelihood over nuisance parameters 

 

 

 

 

– Then treat integrated Lm as test statistic  obtain p-value from its 

distribution 

– In practice integral is performed using MC integration, so often described as 

a ‘sampling method’ 

 

 

– Method has been shown to have bad coverage 

• Ad-hoc sampling methods of various types. 

– Usually amount to either MC integration or fancy error propagation 

  

Note that sampling the conditional estimator        

over sample of θ values obtained from π(θ)  

is just glorified error propagation!  Wouter Verkerke, NIKHEF 
* But are known to have problems 
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How much do answers differ between methods? 

These slide discuss  

a ‘prototype’ likelihood 

that statisticians like:  

 

Poisson(Nsig|s+b)  Poisson(Nctl|τb) 

 

NB: This is one of the very few 

problems with nuisance parameters 

with can be exactly calculation 

 



Recent comparisons results from PhyStat 2007 

Wouter Verkerke, NIKHEF 

Exact 
solution 



Summary of statistical treatment of nuisance 

parameters 

• Each statistical method has an associated technique to 

propagate the effect of uncertain NPs on the estimate of the POI 

– Parameter estimation  Joint unconditional estimation 

– Variance estimation  Replace d2L/dp2 with Hessian matrix 

– Hypothesis tests & confidence intervals  Use profile likelihood ratio 

– Bayesian credible intervals  Integration (‘Marginalization’) 

 

• Be sure to use the right procedure with the right method 

– Anytime you integrate a Likelihood you are a Bayesian 

– If you are minimizing the likelihood you are usually a Frequentist 

– If you sample something chances are you performing either a (Bayesian) 

Monte Carlo integral, or are doing glorified error propagation 

• Answers can differ substantially between methods! 

– This is not always a problem, but can also be a consequence of a difference 

in the problem statement  

Wouter Verkerke, NIKHEF 



Summary of yesterday, plan for today 

• Start with basics, gradually build up to complexity of  

 
Statistical tests with simple hypotheses for counting data  

Statistical tests with simple hypotheses for distributions  

Hypothesis testing as basis for event selection 

Composite hypotheses (with parameters) for distributions  

“What do we mean 

with probabilities” 

“p-values” 

“Optimal event selection &  

machine learning” 

“Confidence intervals,  

Maximum Likelihood” 

“Fitting the background” Statistical inference with nuisance parameters 

“Profile Likelihood fits” Response functions and subsidiary measurements 


