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Next subject…

• Start with basics, gradually build up to complexity of 

Statistical tests with simple hypotheses for counting data 

Statistical tests with simple hypotheses for distributions 

Hypothesis testing as basis for event selection

Composite hypotheses (with parameters) for distributions 

“What do we mean

with probabilities”

“p-values”

“Optimal event selection & 

machine learning”

“Confidence intervals, 

Maximum Likelihood”

“Fitting the background”Statistical inference with nuisance parameters

“Sideband fits and 

systematic uncertainties”Response functions and subsidiary measurements



The ideal experiment

• The “only thing” you need to do (as an experimental physicist) is 

to formulate the likelihood function for your measurement

• For an ideal experiment, where signal and background are 

assumed to have perfectly known properties, this is trivial

• Only a single* parameter in the likelihood:

the physics parameter of interest, usually denoted as μ
*Unless there are of course multiple POIs…

Wouter Verkerke, NIKHEF



The imperfect experiment

• In realistic measurements many effect that we don’t control 

exactly influence measurements of parameter of interest

• How do you model these uncertainties in the likelihood? 

Wouter Verkerke, NIKHEF

Signal and background predictions

are affected by (systematic) uncertainties



Adding parameters to the model

• But parametric form of detector and theory systematic 

uncertainties is often, at first sight, elusive

• Ad-hoc parameterizations (like above) do not necessarily 

capture all uncertain degrees of freedom, provide no meaningful 

insight in effect of known systematic uncertainties on the 

analysis. Wouter Verkerke, NIKHEF

L(x | f ,m,s,a0,a1,a2 )= fG(x,m,s )+(1- f )Poly(x,a0,a1,a2)



The simulation workflow and origin of uncertainties

Wouter Verkerke, NIKHEF
Wouter Verkerke, NIKHEF 

Simulation of high-energy

physics process

Simulation of ‘soft physics’

physics process

Simulation of ATLAS

detector

Reconstruction 

of ATLAS detector

LHC data
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Typical systematic uncertainties in HEP

• Detector-simulation related

– “The Jet Energy scale uncertainty is 5%”

– “The b-tagging efficiency uncertainty is 20% for jets with pT<40”

• Physics/Theory related

– The top cross-section uncertainty is 8%

– “Vary the factorization scale by a factor 0.5 and 2.0 and consider the 

difference the systematic uncertainty”

– “Evaluate the effect of using Herwig and Pythia and consider the difference 

the systematic uncertainty”

• MC simulation statistical uncertainty

– Effect of (bin-by-bin) statistical uncertainties in MC samples 

Wouter Verkerke, NIKHEF



What can you do with systematic uncertainties

• As most of the typical systematic prescriptions have no immediately 

apparent parametric formulation in your likelihood, common 

approach is ‘vary setting, rerun analysis, observe the difference’ 

• This common ‘naïve’ approach to assess effect of systematic 

uncertainties amounts to simple error propagation

• Error propagation procedure in a nutshell

– Make nominal measurement (using your favorite statistical inference procedure)

– Change setting in detector simulation or theory (e.g. shift Jet Calibration scale by 

‘1 sigma’ up and down ) Redo measurement procedure for each shift

– Consider propagated effect of shifted setting the systematic uncertainty

Wouter Verkerke, NIKHEF

m =m
nom ±s stat ±(msyst

up -msyst
down) / 2±...

From statistical

analysis

Systematic uncertainty

from error propagation



Pros and cons of the ‘naïve’ approach

• Pros

– It’s easy to do

– It results in a seemingly easy-to-interpret table of systematics

• Cons

– Uncorrelated source of systematic uncertainty can have correlated effect on 

measurement  Completely ignored

– Magnitude of stated systematic uncertainty may be incompatible with 

measurement result  Completely ignored 

– You lost the connection with fundamental statistical techniques 

(i.e. evaluation of systematic uncertainties is completely detached from 

statistical procedure used to estimate physics quantity of interest)  No 

prescription to make confidence intervals, Bayesian posteriors etc in this 

way

– No calibrated probabilistic statements possible (95% C.L.)

• ‘Profiling’  Incorporate a description of systematic uncertainties 

in the likelihood function that is used in statistical procedures 

Wouter Verkerke, NIKHEF



Everything starts with the likelihood

• All fundamental statistical procedures are based on the 

likelihood function as ‘description of the measurement’

Frequentist statistics 

Confidence interval on s Posterior on s s = x G y

Bayesian statistics Maximum Likelihood

Nobs e.g. L(15|s=0)

e.g. L(15|s=10)



Everything starts with the likelihood

Wouter Verkerke, NIKHEF

Frequentist statistics 

Confidence interval

or p-value

Posterior on s

or Bayes factor

s = x G y

Bayesian statistics Maximum Likelihood
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Introducing uncertainties – a non-systematic example

• The original model (with fixed b)

• Now consider b to be uncertain

• The experimental data contains insufficient to constrain both

s and b  Need to add an additional measurement to constrain b
Wouter Verkerke, NIKHEF

s=0

s=5

s=10
s=15

L(N|s)  L(N|s,b)



The sideband measurement

• Suppose your data 

in reality looks like this 

Can estimate level of background in the ‘signal region’ from 

event count in a ‘control region’ elsewhere in phase space 

• Full likelihood of the measurement (‘simultaneous fit’)

NB: Define parameter ‘b’ to represents 

the amount of bkg is the SR. 

Scale factor τ accounts for difference 

in size between SR and CR

CR SR

“Background uncertainty constrained from the data”



Generalizing the concept of the sideband measurement

• Background uncertainty from sideband clearly clearly not a 

‘systematic uncertainty’

• Now consider scenario where b is not measured from a 

sideband, but is taken from MC simulation with an 8% cross-

section ‘systematic’ uncertainty

– We can model this in the same way, because the cross-section uncertainty 

is also (ultimately) the result of a measurement

Wouter Verkerke, NIKHEF

‘Measured background rate by MC simulation’

‘Subsidiary measurement’

of background rate

Generalize: ‘sideband’  ‘subsidiary measurement’



What is a systematic uncertainty?

• Concept & definitions of ‘systematic uncertainties’ originates from 

physics, not from fundamental statistical methodology.

– E.g. Glen Cowans (excellent) 198pp book “statistical data analysis” 

does not discuss systematic uncertainties at all

• A common definition is

– “Systematic uncertainties are all uncertainties that are 

not directly due to the statistics of the data”

• But the notion of ‘the data’ is a key source of ambiguity: 

– does it include control measurements?

– does it include measurements that were used to perform basic 

(energy scale) calibrations?

Wouter Verkerke, NIKHEF



Typical systematic uncertainties in HEP

• Detector-simulation related

– “The Jet Energy scale uncertainty is 5%”

– “The b-tagging efficiency uncertainty is 20% 
for jets with pT<40”

• Physics/Theory related

– The top cross-section uncertainty is 8%

– “Vary the factorization scale by a factor 0.5 
and 2.0 and consider the difference 
the systematic uncertainty”

– “Evaluate the effect of using 
Herwig and Pythia and consider the difference 
the systematic uncertainty”

• MC simulation statistical uncertainty

– Effect of (bin-by-bin) statistical uncertainties
in MC samples 

Wouter Verkerke, NIKHEF

Subsidiary measurement

is an actual measurement

 conceptually similar to 

a ‘sideband’ fit

Subsidiary measurement

unclear, but origin of

prescription may well

be another measurement

(if yes, like sideband, if

no, what is source of info?)

Subsidiary measurement

is a Poisson counting

experiment (but now in

MC events), otherwise

conceptually identical to

a ‘sideband fit’



Typical systematic uncertainties in HEP

• Detector-simulation related

– “The Jet Energy scale uncertainty is 5%”

– “The b-tagging efficiency uncertainty is 20% 
for jets with pT<40”

• Physics/Theory related

– The top cross-section uncertainty is 8%

– “Vary the factorization scale by a factor 0.5 
and 2.0 and consider the difference 
the systematic uncertainty”

– “Evaluate the effect of using 
Herwig and Pythia and consider the difference 
the systematic uncertainty”

• MC simulation statistical uncertainty

– Effect of (bin-by-bin) statistical uncertainties
in MC samples 

Wouter Verkerke, NIKHEF

Subsidiary measurement

is an actual measurement

 conceptually to 

a ‘sideband’ fit

Subsidiary measurement

unclear, but origin of

prescription may well

be another measurement

(if yes, like sideband, if

no, what is source of info?)

Subsidiary measurement

is a Poisson counting

experiment (but now in

MC events), otherwise

conceptually identical to

a ‘sideband fit’

Almost all systematic uncertainties are similar in nature to 

‘sidebands’ measurements of some form or shape

 Can always model systematics like sidebands 

in the Likelihood

And even when the are not the (in)direct result of 

some measurement (certainty theory uncertainties)

we can still model them in that form



Modeling a detector calibration uncertainty

• Now consider a detector uncertainty, e.g. jet energy scale 

calibration, which can affect the analysis acceptance in a non-trivial 

way (unlike the cross-section example) 

Signal rate (our parameter of interest)

Observed event count

Nominal background 

expectation from MC

(a constant), obtained

with a=a˜

Response function

for JES uncertainty

(a 1% JES change 

results in a 2% 

acceptance change)

“Subsidiary measurement”

Encodes ‘external knowledge’ 

on JES calibration

Nominal calibration

Assumed calibration

Uncertainty

on nominal

calibration

(here 5%)



Modeling a detector calibration uncertainty

• Simplify expression by renormalizing “subsidiary measurement”

Wouter Verkerke, NIKHEF

Signal rate (our parameter of interest)

Observed event count

Nominal background 

expectation from MC

(a constant)

Response function

for normalized JES 

parameter

[a unit change in α 

– a 5% JES change –

still results in a 10% 

acceptance change]

“Normalized 

subsidiary measurement”

The scale of parameter

α is now chosen such that 

values +1 corresponds to the 

nominal uncertainty

(in this example 5%)

Gauss( a |a,sa )



The response function as empirical model of full simulation

• Note that the response function is generally not linear, but can in 

principle always be determined by your full simulation chain

– But you cannot run your full simulation chain for any arbitrary ‘systematic 

uncertainty variation’  Too much time consuming

– Typically, run full MC chain for nominal and G1σ variation of systematic 

uncertainty, and approximate response for other values of NP with 

interpolation

– For example run at nominal JES and with JES shifted up and down by G5%

Wouter Verkerke, NIKHEF

L(N,0 | s,a)= Poisson(N | s+b(a)) ×Gauss(0 |a,1)

α

b
(α

)

-1 0 +1
0.9

1.0

1.1

Full MC result for JES at -5%

Full MC result for JES at +5%

Empirical approximation

of true response



What is a systematic uncertainty?

• It is an uncertainty in the Likelihood of your physics 

measurement

that is characterized deterministically, up to a set of parameters,

of which the true value is unknown.

• A fully specified systematic uncertainty defines 

– 1: A set of one or more parameters 

of which the true value is unknown, 

– 2: A response model that describes the effect of those 

parameters on the measurement

(sampled from full simulation, and interpolation)

– 3: A subsidiary measurement of the parameters

that constrains the values the parameters can take

(implies a specific distribution: Gaussian (default, CLT),

Poisson (low-stats counting), or otherwise)

Wouter Verkerke, NIKHEF



Names and conventions – ‘profiling’ & ‘constraints’

• The full likelihood function of the form 

is usually referred to by physicists as a ‘profile likelihood’, and 

systematics are said to be ‘profiled’ when incorporated this way

– Note: statisticians use the word profiling for something else

• Physicists often refer to the subsidiary measurement as a 

‘constraint term’

– This is correct in the sense that it constrains the parameter α, but this 

labeling commonly lead to mistaken statements (e.g. that it is a pdf for α)

– But it is not a pdf in the NP

Wouter Verkerke, NIKHEF

L(N,0 | s,a)= Poisson(N | s+b(a)) ×Gauss(0 |a,1)

Gauss(0 |a,1)Gauss(a | 0,1)



Systematic uncertainties on shape fits

• What about systematic uncertainties on distributions?

– So far illustrated systematics modeling with nuisance parameters in 

counting measurements for pedagogical reasons

• But same technique can be applied to Likelihood functions 

describing distributions (‘shape fits’)

– Will focus on binned distributions – as these are most common at the LHC

Wouter Verkerke, NIKHEF
L(


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Response modeling for distributions

• For a change in the rate, response 

modeling of histogram-shaped 

distribution is straightforward:

simply scale entire distribution

• But what about a systematic uncertainty that shifts the mean,

or affects the distribution in another way?

Wouter Verkerke, NIKHEF

Response function

for signal rate

Subsidiary 

measurement



Modeling of shape systematics in the likelihood

• Effect of any systematic uncertainty that affects the shape of a 

distribution can in principle be obtained from MC simulation 

chain

– Obtain histogram templates for distributions at ‘+1σ’ and ‘-1σ’ 

settings of systematic effect

• Challenge: construct an empirical response function based on 

the interpolation of the shapes of these three templates. 

Wouter Verkerke, NIKHEF

‘-1σ’ ‘nominal’ ‘+1σ’



Need to interpolate between template models

• Need to define ‘morphing’ algorithm to define 

distribution s(x) for each value of α

Wouter Verkerke, NIKHEF
s(x,α=-1)

s(x,α=0)

s(x,α=+1)

s(x)|α=-1

s(x)|α=0

s(x)|α=+1



Piecewise linear interpolation

• Simplest solution is piece-wise linear interpolation for each bin

Wouter Verkerke, NIKHEF

Piecewise linear

interpolation

response model

for a one bin

Extrapolation to |α|>1

Kink at α=0

Ensure si(α)≥0



Visualization of bin-by-bin linear interpolation of distribution

Wouter Verkerke, NIKHEF

x
α



Limitations of piece-wise linear interpolation

• Bin-by-bin interpolation looks spectacularly easy and simple, 

but be aware of its limitations

– Same example, but with larger ‘mean shift’ between templates

Wouter Verkerke, NIKHEF

Note double peak structure around |α|=0.5



Other morphing strategies – ‘horizontal morphing’

• Other template morphing strategies exist that are less 
prone to unintended side effects

• A ‘horizontal morphing’ strategy was invented by Alex read. 

– Interpolates the cumulative distribution function instead of the distribution

– Especially suitable for shifting distributions

– Here shown on a continuous distribution, but also works on histograms

– Drawback: computationally expensive, algorithm only worked out for 1 NP

Wouter Verkerke, NIKHEF

Integrate

Integrate

Interpolate Differentiate



Yet another morphing strategy – ‘Moment morphing’

• Given two template model f-(x) and f+(x) the strategy of moment 

morphing considers first two moment of template models

(mean and variance)

• The goal of moment morphing is to construct an interpolated 

function that has linearly interpolated moments

• It constructs this morphed function as combination of linearly 

transformed input models

– Where constants a,b,c,d are chosen such so that f(x,α) satisfies conditions [1]

Wouter Verkerke, NIKHEF

f (x,a)®a f-(ax+b)+ (1-a) f+(cx-d)

m- = x × f-(x)ò dx

V- = (x -m- )
2 × f-(x)ò dx

m+ = x × f+(x)ò dx

V+ = (x -m+ )
2 × f+(x)ò dx

m(a)=am- + (1-a)m+

V(a) =aV- + (1-a)V+
[1]

M. Baak & S. Gadatsch



Yet another morphing strategy – ‘Moment morphing’

• For a Gaussian probability model with linearly 

changing mean and width, moment morphing 

of two Gaussian templates is the exact solution

• But also works well on ‘difficult’ distributions

• Good computational performance

– Calculation of moments of templates is expensive,

but just needs to be done once, otherwise very fast (just linear algebra)

• Multi-dimensional interpolation strategies exist 
Wouter Verkerke, NIKHEF

f (x,a)®a f-(ax+b)+ (1-a) f+(cx-d)



There are other morphing algorithms to choose from

Wouter Verkerke, NIKHEF, 33

Vertical

Morphing

Horizontal

Morphing

Moment

Morphing

Gaussian

varying

width

Gaussian

varying

mean

Gaussian

to

Uniform
(this is

conceptually ambigous!)

n-dimensional

morphing? ✔ ✗ ✔



Piece-wise interpolation for >1 nuisance parameter

• Concept of piece-wise linear interpolation can be trivially 

extended to apply to morphing of >1 nuisance parameter.

– Difficult to visualize effect on full distribution, but easy to understand 

concept at the individual bin level

Wouter Verkerke, NIKHEF

Visualization of 2D interpolation



Shape, rate or no systematic?

• Be judicious with modeling of systematic with little or no 

significant change in shape (w.r.t MC template statistics)

– Example morphing of a very subtle change in the background model

– Is this a meaningful new degree of freedom in the likelihood model?

– A χ2 or KS test between

nominal and alternate

template can help to decide 

if a shape uncertainty is meaningul

– Most systematic uncertainties

affect both rate and shape, but can make

independent decision on modeling rate (which less likely to affect fit 

stability)
Wouter Verkerke, NIKHEF



Fit stability due to insignificant shape systematics

• Shape of profile likelihood in NP α clearly raises two points

• 1) Numerical minimization process will be ‘interesting’

• 2) MC statistical effects induce strongly defined minima that are fake

– Because for this example all three templates were sampled from the same parent 

distribution (a uniform distribution)

Wouter Verkerke, NIKHEF

+ 
- logl(a)=- log

L(a, ˆ̂m)
L(â, m̂)



Recap on shape systematics & template morphing 

• Implementation of shape systematic in 

likelihoods modeling distributions conceptually 

no different that rate systematics in counting 

experiments

• For template modes obtained from MC simulation template 

provides a technical solution to implement response function

– Simplest strategy piecewise linear interpolation,

but only works well for small changes

– Moment morphing better adapted to modeling

of shifting distributions

– Both algorithms extend to n-dimensional

interpolation to model multiple systematic NPs

in response function

– Be judicious in modeling ‘weak’ systematics:

MC systematic uncertainties will dominate likelihood Wouter Verkerke, NIKHEF

L(

mll |m,aLES )= m ×Gauss(mll

(i), 91× (1+ 2aLES,1)+ (1-m) ×Uniform(mll
(i))éë ùû

i

Õ ×Gauss(0 |aLES,1)



Other uncertainties in MC shapes – finite MC statistics 

• In practice, MC distributions used for template fits have finite 

statistics.

• Limited MC statistics represent an uncertainty on your model 

 how to model this effect in the Likelihood?

Wouter Verkerke, NIKHEF



Other uncertainties in MC shapes – finite MC statistics 

• Modeling MC uncertainties: each MC bin has a Poisson uncertainty

• Thus, apply usual ‘systematics modeling’ prescription.  

• For a single bin – exactly like original counting measurement

Lbin-i(m, si,bi )= Poisson(Ni |m × si +bi )

×Poisson(Ni
MC-s | si )

×Poisson(Ni
MC-b | bi )

Fixed signal, bkg MC prediction

Signal, bkg

MC nuisance params

Subsidiary measurement for signal MC

(‘measures’ MC prediction si with Poisson uncertainty)



Nuisance parameters for template statistics

• Repeat for all bins

• Result: accurate model for MC statistical uncertainty, but lots of 

nuisance parameters (#samples x #bins)...

Binned likelihood 

with rigid template

Response function

w.r.t. s, b as parameters

2x Nbins subsidiary 

measurements

of s ,b from s~,b~



The effect of template statistics

• When is it important to model the effect of template 

statistics in the likelihood

– Roughly speaking the effect of template statistics becomes 

important when Ntempl< 10x Ndata (from Beeston & Barlow)

• Measurement of effect of template statistics in 

previously shown toy likelihood model, where

POI is the signal yield

Wouter Verkerke, NIKHEF, 41

‘model 2 – Beeston-Barlow likelihood’

‘model 1 – plain template likelihood’

NMC=Ndata

NMC=10Ndata

Note that even at

NMC=10Ndata

uncertainty on POI 

can be underestimated

by 10% without BB



Reducing the number NPs – Beeston-Barlow ‘lite’ 

• Another approach that is being used is called ‘BB’ – lite

• Premise: effect of statistical fluctuations on sum of templates is 

dominant  Use one NP per bin instead of one NP per 

component per bin 

L(


N |

n)= P(Ni |ni)

bins

Õ P(si + bi |ni
bins

Õ )

L(


N |

g )= P(Ni |gi(si + bi))

bins

Õ P(si + bi |gi(si + bi
bins

Õ ))

Response function

w.r.t. n as parameters

Subsidiary measurements

of n from s~+b~

Normalized NP lite model (nominal value of all γ is 1)

L(


N |

s,


b)= P(Ni | si +bi)
bins

Õ P(si | si
bins

Õ ) P(bi |bi
bins

Õ )

‘Beeston-Barlow’

‘Beeston-Barlow lite ’



Pruning complexity – MC statistical for selected bins

• Can also make decision to model MC statistical uncertainty on a 

bin-by-bin basis

– No modeling for high statistics bins

– Explicit modeling for low-statistics bins

Wouter Verkerke, NIKHEF

L(


N |

g )= P(Ni |gi(si + bi))

bins

Õ P(si + bi |gi(si + bi
low-stats bins

Õ )) d(gi)
hi-stats bins

Õ



Adapting binning to event density

• Effect of template statistics can also be controlled by rebinning

data such all bins contain expected and observed events

– For example choose binning such that expected background has a uniform 

distribution (as signals are usually small and/or uncertain they matter less)

Wouter Verkerke, NIKHEF



Intermezzo – Software tools for likelihood modeling

• Techniques shown to model systematic uncertainties can lead 

to complex likelihood functions

– Realistic analyses describe many distributions, with O(10) to O(100) 

systematic uncertainties

• Not trivial to write these by hand – but various tools have been 

developed in the past decade to implement these techniques

• Will highlight a few key feature of RooFit/RooStats tool suite

– Joined software development project ROOT/ATLAS/CMS over past 6 years

– My personal favorite

Wouter Verkerke, NIKHEF



Modular software design

Wouter Verkerke, NIKHEF

RooFit/HistFactory

Language for building

probability models

Comprises datasets,

likelihoods, minimization,

toy data generation,

visualization and persistence

RooStats

Suite of statistical tests

operating on RooFit

probability models 

(RooFit Workspace)



RooFit core design philosophy

• Mathematical objects are represented as C++ objects

variable RooRealVar

function RooAbsReal

PDF RooAbsPdf

space point RooArgSet

list of space points RooAbsData

integral RooRealIntegral

RooFit classMathematical concept

)(xf

x

x


dxxf

x

x


max

min

)(

)(xf

5



RooFit core design philosophy 

• Instead of ‘double Likelihood(double paramVec[])’, 

a flexible modular structure of ‘programmed’ functions

RooRealVar x RooRealVar m RooRealVar s

RooGaussian g

RooRealVar x(“x”,”x”,-10,10) ;

RooRealVar m(“m”,”y”,0,-10,10) ;

RooRealVar s(“s”,”z”,3,0.1,10) ;

RooGaussian g(“g”,”g”,x,m,s) ;

RooWorkspace w(“w”) ;

w.import(g) ;

Math

RooFit
diagram

RooFit
code

6

RooWorkspace (keeps all parts together)

Gauss(x,μ,σ)



RooFit core design philosophy - Workspace

• Alternatively, a simple math-like ‘factory language’ can quickly 

populates a workspace with the same objects

RooRealVar x RooRealVar m RooRealVar s

RooGaussian g

RooWorkspace w(“w”) ;

w.factory(“Gaussian::g(x[-10,10],m[0],s[5])”) ;

Math

RooFit
diagram

RooFit
code

6

RooWorkspace

Gauss(x,μ,σ)



Example 1: counting expt

• Will now demonstrate how to 

construct a model for a 

counting experiment with

a systematic uncertainty

Wouter Verkerke, NIKHEF

// Subsidiary measurement of alpha

w.faxtory(“Gaussian::subs(0,alpha[-5,5],1)”) ;

// Response function mu(alpha)

w.factory(“expr::mu(‘s+b(1+0.1*alpha)’,s[20],b[20],alpha)”) ;  

// Main measurement 

w.factory(“Poisson::p(N[0,10000],mu)”);

// Complete model Physics*Subsidiary

w.factory(“PROD::model(p,subs)”) ;

L(N | s,a)= Poisson(N | s+b(1+0.1a)) ×Gauss(0 |a,1)



Example 2 : binned L with syst

• Example of template morphing

systematic in a binned likelihood

Wouter Verkerke, NIKHEF

L(


N |a,

s
-
,

s
0
,

s
+
)= P(Ni | si(a,si

-
,si

0
,si

+
)

bins

Õ )×G(0 |a,1)

si (a,...)=
si
0 +a × (si

+ - si
0 ) "a > 0

si
0 +a × (si

0 - si
-) "a < 0

ì

í
ï

îï

// Import template histograms in workspace

w.import(hs_0,hs_p,hs_m) ;

// Construct template models from histograms

w.factory(“HistFunc::s_0(x[80,100],hs_0)”) ;

w.factory(“HistFunc::s_p(x,hs_p)”) ;

w.factory(“HistFunc::s_m(x,hs_m)”) ;

// Construct morphing model

w.factory(“PiecewiseInterpolation::sig(s_0,s_,m,s_p,alpha[-5,5])”) ; 

// Construct full model

w.factory(“PROD::model(ASUM(sig,bkg,f[0,1]),Gaussian(0,alpha,1))”) ;



Example 3 – BB-lite + morphing

• Template morphing model

with Beeston-Barlow-lite

MC statistical uncertainties

L(


N |

s,


b)= P(Ni |gi ×[si(a,si
-
,si

0
,si

+
)+bi ])

bins

Õ P(si + bi |gi ×[si + bi]
bins

Õ )G(0 |a,1)

si (a,...)=
si
0 +a × (si

+ - si
0 ) "a > 0

si
0 +a × (si

0 - si
-) "a < 0

ì

í
ï

îï

// Import template histograms in workspace

w.import(hs_0,hs_p,hs_m,hb) ;

// Construct parametric template morphing signal model

w.factory(“ParamHistFunc::s_p(hs_p)”) ;
w.factory(“HistFunc::s_m(x,hs_m)”) ;

w.factory(“HistFunc::s_0(x[80,100],hs_0)”) ;
w.factory(“PiecewiseInterpolation::sig(s_0,s_,m,s_p,alpha[-5,5])”) ; 

// Construct parametric background model (sharing gamma’s with s_p)

w.factory(“ParamHistFunc::bkg(hb,s_p)”) ;

// Construct full model with BB-lite MC stats modeling

w.factory(“PROD::model(ASUM(sig,bkg,f[0,1]),

HistConstraint({s_0,bkg}),Gaussian(0,alpha,1))”) ;



The workspace – the portable likelihood function

• The workspace concept has revolutionized the way people 
share and combine analysis

– Completely factorizes process of building and using likelihood functions

– You can give somebody an analytical likelihood of a (potentially very complex) 
physics analysis in a way to the easy-to-use, provides introspection, and is easy 
to modify.

Wouter Verkerke, NIKHEF 

RooWorkspace

RooWorkspace w(“w”) ;

w.import(sum) ;

w.writeToFile(“model.root”) ;

model.root



Using a workspace 

Wouter Verkerke, NIKHEF 
Wouter Verkerke, NIKHEF 

RooWorkspace

// Resurrect model and data

TFile f(“model.root”) ;

RooWorkspace* w = f.Get(“w”) ;

RooAbsPdf* model = w->pdf(“sum”) ;

RooAbsData* data = w->data(“xxx”) ;

// Use model and data

model->fitTo(*data) ;

RooPlot* frame = 

w->var(“dt”)->frame() ;

data->plotOn(frame) ;

model->plotOn(frame) ;



The full ATLAS Higgs combination in a single workspace…

F(x,p)

x p

Atlas Higgs combination model (23.000 functions, 1600 

parameters)

Model has ~23.000 function objects, ~1600 parameters

Reading/writing of full model takes ~4 seconds

ROOT file with workspace is ~6 Mb



Being a good physicist – Understand your model!

• Full (profile) likelihood treats physics and subsidiary 

measurement on equal footing

• Our mental picture:

• Is this picture (always) correct?

Wouter Verkerke, NIKHEF

L(N,0 | s,a)= Poisson(N | s+b(1+0.1a))×Gauss(0 |a,1)

Physics measurement Subsidiary measurement

“measures s” “measures α”

“dependence on α

weakens inference on s”



Understanding your model – what constrains your NP

• The answer is no – not always! Your physics measurement

may in some circumstances constrain α better than your 

subsidiary measurement.

• Doesn’t happen in Poisson counting example 

– Physics likelihood has no information to distinguish effect of s from effect of 

α

• But if physics measurement is based on a distribution or 

comprises multiple distributions this is well possible 

Wouter Verkerke, NIKHEF

L(N,0 | s,a)= Poisson(N | s+b(1+0.1a))×Gauss(0 |a,1)

Physics measurement Subsidiary measurement



Understanding your model – what constrains your NP

• A case study – measuring jet multiplicity (3j,4j,5j)

• Signal mildly peaks in 4j bin, sits on top of a falling background

Wouter Verkerke, NIKHEF

L(


N |m,a
JES )= Poisson(

i=3,4,5

Õ Ni | (m × si ×+bi ) × rs(aJES ))) ×Gauss(0 |aJES,1)

Effect of changing μEffect of changing αJES



Understanding your model – what constrains your NP

• Now measure (μ,α) from data – 80 events

• Is this fit OK?

– Effect of JES uncertainty propagated in to μ via response modeling in 
likelihood. Increases total uncertainty by about a factor of 2

– Estimated uncertainty on α is not precisely 1, as one would expect
from unit Gaussian subsidiary measurement…  

Wouter Verkerke, NIKHEF

m̂ =1.0±0.37

â = 0.01± 0.83

Estimators of

μ, α correlated

due to similar

response in physics

measurement

Uncertainty

on μ with/without 

effect of JES



Understanding your model – what constrains your NP

• The next year – 10x more data  (800 events)

repeat measurement with same model

• Is this fit OK?

– Uncertainty of JES NP much reduced w.r.t. subsidiary meas. (α = 0 G 1)

– Because the physics likelihood can measure it better than the subsidiary 

measurement (the effect of μ, α are sufficiently distinct that both can be 

constrained at high precision) Wouter Verkerke, NIKHEF

m̂ = 0.90±0.13

â = -0.23±0.31

Estimators of

μ, α correlated

due to similar

response in physics

measurement



Understanding your model – what constrains your NP

• Is it OK if the physics measurement constrains NP associated 

with a systematic uncertainty better than the designated 

subsidiary measurement?

– From the statisticians point of view: no problem, simply a product of two 

likelihood that are treated on equal footing ‘simultaneous measurement’

– From physicists point of view? Measurement is only valid is model is valid.

• Is the probability model of the physics measurement valid?

• Reasons for concern

– Incomplete modeling of systematic uncertainties,

– Or more generally, model insufficiently detailed 

Wouter Verkerke, NIKHEF

L(


N |m,a
JES )= Poisson(

i=3,4,5

Õ Ni | (m × si ×+bi ) × rs(aJES ))) ×Gauss(0 |aJES,1)



Understanding your model – what constrains your NP

• What did we overlook in the example model?

– The background rate has no uncertainty!

• Insert modeling of background uncertainty

• With improved model
accuracy estimated
uncertainty on both
αJES, μ goes up again…

– Inference weakened
by new degree of
freedom αbkg

– NB αJES estimate still
deviates a bit from normal
distribution estimate… Wouter Verkerke, NIKHEF

L(

N |m,a

JES,abkg)= Poisson(
i=3,4,5

Õ Ni | (m × si ×+bi ×rb(abkg)) ×rs(aJES ))) ×Gauss(0 |aJES,1) ×Gauss(0 |abkg,1)

Background rate

subsidiary measurement

Background rate

response function

m̂ = 0.93±0.29

â
JES = 0.90±0.70

(âbkg =1.36±0.20)



Understanding your model – what constrains your NP

• Lesson learned: if probability model of a physics measurement 

is insufficiently detailed (i.e. flexible) you can underestimate

uncertainties

• Normalized subsidiary measurement provide an excellent 

diagnostic tool

– Whenever estimates of a NP associated with unit Gaussian subsidiary 

measurement deviate from α = 0 G 1then physics measurement is 

constraining or biases this NP.

• Is ‘over-constraining’ of systematics NPs always bad?

– No, sometimes there are good arguments why a physics measurement can 

measure a systematic uncertainty better than a dedicated calibration 

measurement (that is represented by the subsidiary measurement)

– Example: in sample of reconstructed hadronic top quarks tbW(qq), the pair 

of light jets should always have m(jj)=mW.  For this special sample of jets it 

will possible to calibrate the JES better than with generic calibration 

measurement

Wouter Verkerke, NIKHEF



Commonly heard  arguments in discussion on over-constraining

• Overconstraining of a certain systematic is OK “because this is 

what the data tell us”

– It is what the data tells you under the hypothesis that your model is correct. The 

problem is usually in the latter condition

• “The parameter αJES should not be interpreted as Jet Energy Scale 

uncertainty provided by the jet calibration group”

– A systematic uncertainty is always combination of response prescription and one 

or more nuisance parameters uncertainties.

– If you implement the response prescription of the systematic, then the NP in your 

model really is the same as the prescriptions uncertainty 

• “My estimate of αJES = 0 G 0.4 doesn’t mean that the ‘real’ Jet 

Energy Scale systematic is reduced from 5% to 2%

– It certainly means that in your analysis a 2% JES uncertainty is propagated to the 

POI instead of the “official” 5%.

– One can argue that the 5% shouldn’t apply because your sample is special and 

can be calibrated better by a clever model, but this is a physics argument that 

should be documented with evidence for that (e.g. argument JES in tbW(qq) 

decays)
Wouter Verkerke, NIKHEF



Dealing with over-constraining – introducing more NPs

• Some systematic uncertainties are not captured well by one 

nuisance parameter. 

• Written prescription often not clear on number of nuisance 

parameters: 

• Does “the JES uncertainty is 5% for all jets” mean one NP
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i.e. JES miscalibration is coherent for all jets

 You can calibrate high pT jets with a low pT jet sample

5%



Dealing with over-constraining – introducing more NPs

• Some systematic uncertainties are not captured well by one 

nuisance parameter. 

• Written prescription often not clear on number of nuisance 

parameters: 

• Or does “the JES uncertainty is 5% for all jets” mean 5 NPs?
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Dealing with over-constraining – introducing more NPs

• Some systematic uncertainties are not captured well by one 

nuisance parameter. 

• Written prescription often not clear on number of nuisance 

parameters: 

• If you assume one NP – chances are that your physics 

Likelihood 

will exploit this oversimplified JES model 

to overconstrain JES for high p
T

jets!
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i.e. JES miscalibration is coherent for all jets

 You can calibrate high pT jets with a low pT jet sample
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Modeling theory uncertainties

• Modeling of systematic uncertainties originating from theory 

sources can pose some extra & thorny problems

Wouter Verkerke, NIKHEF



Modeling theory uncertainties

• Difficulties are not in the modeling procedure, but in quantifying what 

precisely we know

• Difficulty 1 – What is distribution of the subsidiary measurement?

• Easy example – Top cross-section uncertainty

• Difficult example – Factorization scale uncertainty

Wouter Verkerke, NIKHEF

“XS Uncertainty  is 8%”  Gaussian subsidiary with 8% uncertainty

(because XS uncertainty is ultimately from a measurement)  

“Vary Factorization Scale by x0.5 and x”  F(α) is probably not Gaussian

So what distribution was meant?



Modeling theory uncertainties

• Difficult example – Factorization scale uncertainty

• Difficult arises from imprecision in original prescription.

– NB: Issue is physics question, not a statistical procedure question. Answer will 
also need to be motivated with physics arguments

• Note that you always assume some distribution (even if you do 
error propagation)  Profiling approach requires you to write
it out explicitly. This is good!

Wouter Verkerke, NIKHEF

“Vary Factorization Scale by x0.5 and x”  F(α) is probably not Gaussian

So what distribution was meant?



Modeling theory uncertainties

• Difficulty 2 – What are the parameters of the systematic model?

• Easy example – Factorization scale uncertainty

– One parameter: the factorization scale  Clearly described and connected to the 

underlying theory model

– You can ask yourself if there are additional uncertainties in the theory model 

(renormalization scale etc), this a valid, but distinct issue. 

• Difficult example – Hadronization/Fragmentation model

– Source uncertainty: you run different showering MC generators (e.g. HERWIG 

and PYTHIA) and you observe you get different results from your physics 

analysis

– How do you model this in the likelihood?

Wouter Verkerke, NIKHEF



Modeling theory uncertainties

• Worst type of ‘theory’ uncertainty are prescriptions that result in 

an observable difference that cannot be ascribed to clearly 

identifiable effects. Examples of such systematic prescriptions

– Evaluate measurement with Herwig and Pythia showering Monte Carlos 

and take the difference as systematic uncertainty

– Evaluate measurement with CTEQ and MRST parton density functions and 

take the difference as systematic uncertainty.

• I call these ‘2-point systematics’. 

– You have the technical means to evaluate (typically) two known different 

configurations, but reasons for underlying difference are not clearly 

identified.

Wouter Verkerke, NIKHEF



Specific issue with theory uncertainties

• It is difficult to define rigorous statistical procedures to deal with 

such 2-point uncertainties. So you need to decide

• If their estimated effect is small, you can pragmatically ignore 

these lack of proper knowledge and ‘just do something 

reasonable’ to model these effects in a likelihood

• If their estimated effect is large, your leading uncertainty is 

related to an effect that largely ununderstood effect. This is bad 

for physics reasons! 

– You should go back to the drawing board and design a new measurement 

that is less sensitive to these issues.

– E.g. If your inclusive cross-section uncertainty is dominated by fullfiducial

acceptance uncertainty due to Herwig/Pythia issue, shouldn’t you rather be 

publishing the fiducial cross-section?

Wouter Verkerke, NIKHEF



Specific issues with theory uncertainties

• Pragmatic solutions to likelihood modeling of ‘2-point systematics’

• Final solution will need to follow usual pattern

• Defining an (empirical) response 

function b(α) is the easy part

• A thorny question remains: 

What is the subsidiary measurement for α?

This should reflect you current knowledge on α.  

Wouter Verkerke, NIKHEF

L(N | s,a)= Poisson(N | s+b(a))×SomePdf (0 |a)
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Specific issues with theory uncertainties

• Subsidiary measurement of a theoretical 2-point uncertainty 
effectively quantifies the ‘knowledge’ on these models

– Extra difficult to make meaningful statement about this, since meaning of 
parameter is not well embedded in underlying theory model

– But again, all procedures need to assume some distribution… Profiling requires 
you to spell it out

• Some options and their effects

Wouter Verkerke, NIKHEF

HerwigPythia Pythia HerwigPythia Pythia HerwigPythia Pythia

Prefers Herwig at 1σ All predictions ‘between’

Herwig and Pythia equally

probable

Only ‘pure’ Herwig

and Pythia exist

Gaussian
Box with 

Gaussian wings Delta fuctions



Two-point systematics on non-counting measurements

• In a counting experiment you can argue 

that for every conceivable background rate 

there exists a value of the NP that 

corresponds to that rate

– Even if ‘SHERPA’ was never used to construct

the model, you can still represent its outcome

• This is not generally true for distributions.

A shape interpolation between 

‘pythia’ and ‘herwig’ does not

necessarily describe shape of 

‘sherpa’ (or of Nature!)

– Fundamental modeling

problem!

– You may need more

parameters… 

Wouter Verkerke, NIKHEF

αgen

b

B
a

c
k
g

ro
u

n
d

ra
te

Nuisance parameter

Pythia

Herwig

Sherpa



Dealing with ‘two-point’ uncertainties

• Key issue: How many d.o.f. does you systematic uncertainty 

have?

• Especially important in the discussion to what extent a two-point 

response function can be over-constrained.

– A result α2p = 0.5 + 1 has ‘reasonable’ odds to cover the ‘true generator’ 

assuming all generators are normally scattered in an imaginary ‘generator 

space’

Wouter Verkerke, NIKHEF
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generator

Modeled uncertainty (1 dimension)

assuming ‘nature is on line’
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under the assumption that effect

of ‘position in model space’ in 

any dimension is similar on

response function 



Dealing with ‘two-point’ uncertainties

• Key issue: How many d.o.f. does you systematic uncertainty 

have?

• Especially important in the discussion to what extent a two-point 

response function can be over-constrained.

– Does a hypothetical overconstrained result α2p = 0.1 + 0.2 ‘reasonably’ 

cover the generator model space?

Wouter Verkerke, NIKHEF

Pythia

Herwig

Sherpa

Nature

Next years

generator

Modeled uncertainty (1 dimension)

assuming ‘nature’ is on line

Effectively captured uncertainty

under the assumption that effect

of ‘position in model space’ in 

any dimension is similar on

response function 



Summary

• The key challenge for experimental physicist is to construct the 

likelihood function describing his analysis/experiment

• ‘Profiling’ is a technique allows to effectively incorporate all 

model uncertainties that are traditionally thought of as 

‘systematic uncertainties’ 

– By empirically parametrizing the response of the full simulation chain

• Profiling enable used of all fundamental statistical inference 

techniques (frequentist/Bayesian), which start with the likelihood

– A ‘profile likelihood’ allows execution of fundamental statistical techniques 

without cutting corners

– Confidence intervals with guaranteed coverage, Bayesian posteriors, etc

Wouter Verkerke, NIKHEF



Summary

• Profile likelihood implements and diagnoses many analysis issues 

that are missed by naïve approaches to systematic uncertainties 

(e.g. error prop)

– “Posterior correlation” – Effect of correlations between systematics introduced 

by features of the physics measurement

– “Overconstraining” – Either input magnitude was too conservative, or response 

model for systematic uncertainty was too simple (you’d like to know in either 

case)

– “Imprecisely specified systematics” – Profiling requires physicist to explicit spell 

out precise model that is used

• But is important to run diagnostics on a profile likelihood model

– Default interpretation in case of overconstraining is ‘input uncertainty too 

conservative’, which may lead to underestimated uncertainties if simplistic 

response model was the real problem

• ‘Profiling’ is the best way we know to incorporate systematic 

uncertainties is probability models

Wouter Verkerke, NIKHEF


