NP in B mixing

NP in B mixing

NP in $\Delta F=2$

$$\mathcal{L}_{\Delta F=2} = \frac{z_{sd}}{\Lambda_{\rm NP}^2} (\overline{d_L} \gamma_\mu s_L)^2 + \frac{z_{cu}}{\Lambda_{\rm NP}^2} (\overline{c_L} \gamma_\mu u_L)^2 + \frac{z_{bd}}{\Lambda_{\rm NP}^2} (\overline{d_L} \gamma_\mu b_L)^2 + \frac{z_{bs}}{\Lambda_{\rm NP}^2} (\overline{s_L} \gamma_\mu b_L)^2.$$

CPC NP

$\begin{array}{lll} \Delta m_K/m_K & \sim \\ \Delta m_D/m_D & \sim \\ \Delta m_B/m_B & \sim \\ \Delta m_{B_s}/m_{B_s} & \sim \end{array}$	$7.0 \times 10^{-15},$ $8.7 \times 10^{-15},$ $6.3 \times 10^{-14},$ $2.1 \times 10^{-12},$	$\Rightarrow \Lambda_{ m NP} \gtrsim \langle$	$\begin{cases} \sqrt{z_{sd}} \ 1 \times 10^3 \text{ TeV} \\ \sqrt{z_{cu}} \ 1 \times 10^3 \text{ TeV} \\ \sqrt{z_{bd}} \ 4 \times 10^2 \text{ TeV} \\ \sqrt{z_{bs}} \ 7 \times 10^1 \text{ TeV} \end{cases}$	Δm_K Δm_D Δm_B Δm_{B_s}
$\Delta m_{B_s}/m_{B_s} \sim$	2.1×10 ,		$(\sqrt{z_{bs}} / \times 10^{-1} \text{ ev})$	Δm_{B_s}

CPV NP

	· · -		_	
ϵ_K	\sim	$2.3 \times 10^{-3},$	$\int \sqrt{z_{sd}} \ 2 \times 10^4 \text{ TeV}$	ϵ_K
$A_{\Gamma}/y_{ m CP}$	\lesssim	0.2,	$\rightarrow \Lambda_{\rm ND} > \int \sqrt{z_{cu}} 3 \times 10^3 {\rm TeV}$	A_{Γ}
$S_{\psi K_S}$	=	$0.67\pm0.02,$	$\neg T_{\rm NP} \approx \sqrt{z_{bd}} 8 \times 10^2 {\rm TeV}$	$S_{\psi K}$
$S_{\psi\phi}$	\lesssim	1.	$\sqrt{z_{bs}} \ 7 imes 10^1 \ { m TeV}$	$S_{\psi\phi}$

NP in $\Delta F=2$

$$\mathcal{L}_{\Delta F=2} = \frac{z_{sd}}{\Lambda_{\rm NP}^2} (\overline{d_L} \gamma_\mu s_L)^2 + \frac{z_{cu}}{\Lambda_{\rm NP}^2} (\overline{c_L} \gamma_\mu u_L)^2 + \frac{z_{bd}}{\Lambda_{\rm NP}^2} (\overline{d_L} \gamma_\mu b_L)^2 + \frac{z_{bs}}{\Lambda_{\rm NP}^2} (\overline{s_L} \gamma_\mu b_L)^2.$$

CPC NP

$\Delta m_K/m_K$	\sim	$7.0 \times 10^{-15},$
$\Delta m_D/m_D$	\sim	$8.7 \times 10^{-15},$
$\Delta m_B/m_B$	\sim	$6.3 \times 10^{-14},$
$\Delta m_{B_s}/m_{B_s}$	\sim	$2.1 \times 10^{-12},$

 $\Rightarrow \begin{array}{l} z_{sd} \lesssim 8 \times 10^{-7} (\Lambda_{\rm NP}/{\rm TeV})^2, \\ z_{cu} \lesssim 5 \times 10^{-7} (\Lambda_{\rm NP}/{\rm TeV})^2, \\ z_{bd} \lesssim 5 \times 10^{-6} (\Lambda_{\rm NP}/{\rm TeV})^2, \\ z_{bs} \lesssim 2 \times 10^{-4} (\Lambda_{\rm NP}/{\rm TeV})^2, \end{array}$

CPV NP

	1 11			Т		(1, 1)
ϵ_{K} \sim	2.3	3×10^{-3} .		z_{sd}^{I}	\lesssim	$6 \times 10^{-9} (\Lambda_{\rm NP}/{\rm TeV})^2$,
				z^{I}	<	$1 \times 10^{-7} (\Lambda_{\rm NP}/{\rm TeV})^2$.
$A_{\Gamma}/y_{\rm CP}$	5 0.2	2,	\rightarrow	~cu	\sim	
$S_{a'bKa} =$	= 0.6	67 ± 0.02 .	\rightarrow	z_{bd}^{I}	\lesssim	$1 \times 10^{-6} (\Lambda_{\rm NP}/{\rm TeV})^2$,
$\sim \psi \Lambda S$		· _ ·· _ ;		z_1^I	<	$2 \times 10^{-4} (\Lambda_{\rm ND}/{\rm TeV})^2$.
$S_{\psi\phi}~\lesssim$	5 1.			$\sim 0s$	\sim	

NP in $\Delta F=2$

$$\mathcal{L}_{\Delta F=2} = \frac{z_{sd}}{\Lambda_{\rm NP}^2} (\overline{d_L} \gamma_\mu s_L)^2 + \frac{z_{cu}}{\Lambda_{\rm NP}^2} (\overline{c_L} \gamma_\mu u_L)^2 + \frac{z_{bd}}{\Lambda_{\rm NP}^2} (\overline{d_L} \gamma_\mu b_L)^2 + \frac{z_{bs}}{\Lambda_{\rm NP}^2} (\overline{s_L} \gamma_\mu b_L)^2.$$

SM (∧_{SM}~v)

$$\Im(z_{sd}^{\text{SM}}) \sim \frac{\lambda_t^2}{64\pi^2} |V_{td}V_{ts}^*|^2 \sim 10^{-10}$$
$$\Re(z_{sd}^{\text{SM}}) \sim \frac{\lambda_c^2}{64\pi^2} |V_{cd}V_{cs}^*|^2 \sim 5 \times 10^{-9}$$
$$|z_{bd}^{\text{SM}}| \sim \frac{\lambda_t^2}{64\pi^2} |V_{td}V_{tb}^*|^2 \sim 9 \times 10^{-8}$$
$$|z_{bs}^{\text{SM}}| \sim \frac{\lambda_t^2}{64\pi^2} |V_{ts}V_{tb}^*|^2 \sim 3 \times 10^{-6}$$

 $\begin{array}{ll} z_{sd} &\lesssim 8 \times 10^{-7} \; (\Lambda_{\rm NP}/{\rm TeV})^2, \\ z_{cu} &\lesssim 5 \times 10^{-7} \; (\Lambda_{\rm NP}/{\rm TeV})^2, \\ z_{bd} &\lesssim 5 \times 10^{-6} \; (\Lambda_{\rm NP}/{\rm TeV})^2, \\ z_{bs} &\lesssim 2 \times 10^{-4} \; (\Lambda_{\rm NP}/{\rm TeV})^2, \end{array}$

$$egin{aligned} z_{sd}^I &\lesssim 6 imes 10^{-9}~(\Lambda_{
m NP}/{
m TeV})^2, \ z_{cu}^I &\lesssim 1 imes 10^{-7}~(\Lambda_{
m NP}/{
m TeV})^2, \ z_{bd}^I &\lesssim 1 imes 10^{-6}~(\Lambda_{
m NP}/{
m TeV})^2, \ z_{bs}^I &\lesssim 2 imes 10^{-4}~(\Lambda_{
m NP}/{
m TeV})^2. \end{aligned}$$

NP in $\Delta F = I$

$$\mathcal{L}_{\Delta F=1} = y_{sd} \frac{v^2}{\Lambda_{NP}^2} \frac{g}{c_W} \bar{d}_L Z s_L + y_{cu} \frac{v^2}{\Lambda_{NP}^2} \frac{g}{c_W} \bar{u}_L Z c_L + y_{bd} \frac{v^2}{\Lambda_{NP}^2} \frac{g}{c_W} \bar{d}_L Z b_L + y_{bs} \frac{v^2}{\Lambda_{NP}^2} \frac{g}{c_W} \bar{s}_L Z b_L$$

SM (∧_{SM}~v)

$$\begin{aligned} |y_{sd}^{\rm SM}| &\sim \frac{\lambda_t^2}{64\pi^2} |V_{td}V_{ts}^*| \sim 5 \times 10^{-7} \\ |y_{bd}^{\rm SM}| &\sim \frac{\lambda_t^2}{64\pi^2} |V_{td}V_{tb}^*| \sim 10^{-5} \end{aligned} \Longrightarrow \\ |y_{bs}^{\rm SM}| &\sim \frac{\lambda_t^2}{64\pi^2} |V_{ts}V_{tb}^*| \sim 6 \times 10^{-5} \end{aligned}$$

$$\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu}) \sim 8 \times 10^{-11} ,$$

$$\mathcal{B}(B_d \to \mu^+ \mu^-) \sim 10^{-10} ,$$

$$\mathcal{B}(B_s \to \mu^+ \mu^-) \sim 4 \times 10^{-9} .$$