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Lattice QCD

...is a regularization of Euclidean-space QCD such that the path integral
can be done fully non-perturbatively.

» Euclidean spacetime becomes a periodic hypercubic lattice, with
spacing a and box size L3 X L;.

» Path integral over fermion degrees of freedom is done analytically, for
each gauge configuration. Solving the Dirac equation with a fixed
source yields a source-to-all quark propagator.

> Path integral over gauge degrees of freedom is done numerically using
Monte Carlo methods to generate an ensemble of gauge configurations.

» Various lattice Dirac operators have trade-offs: e.g., domain wall
(overlap) fermions have an approximate (exact) chiral symmetry at
finite lattice spacing, but are more computationally expensive than
Wilson fermions.

The a — 0 and L, L; — oo extrapolations need to be taken by using multiple
ensembles.
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Hadron matrix elements using lattice QCD

To find (forward) matrix elements, compute Cypi(t) = (N(t)N(0)) and
Capt(T,7) = (N(T)O(z)N(0))
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For O a quark bilinear, there are two kinds of quark contractions for Csp:
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Most of the focus has been on nucleon isovector observables, which have no
contribution from disconnected diagrams. These are typically
computed using the sequential propagator method:
1. Fix source; compute forward propagator.
2. Fix sink and T; compute backward (sequential) propagator.
3. Combine the two to compute many different O, for all € [0, T].
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Quark disconnected diagrams

T(@ 1) = > e¥¥(qrq(x)) = = " ¥ Te[rD ™ (x, )]
Estimate the all-to-all propagator stochastically using noise sources n that
satisfy E(nn') = I. By solving / = D™ "5, we get

D' (x,y) = EQ(x)n" (y)).

Various improvements on the basic scheme:

v

dilution

» hopping parameter expansion
> truncated solver

> exact low-mode deflation

Contribution to 3-point function is the correlation between the disconnected
loop T and the 2-point function.
— high statistics also needed for 2-point function.
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Systematic errors

Although calculations with fully-controlled systematics have been done for
other observables, this has yet to be done for nucleon structure.

» Quark masses: Most calculations use heavier-than-physical pion
masses and rely on an extrapolation to the physical point. Nucleon
structure calculations with close-to-physical pion masses have now
started to appear.

> Finite volume: m, Ls > 4 is a typically-aimed-for rule of thumb, but
careful Ly — oo extrapolations are generally not done.

> Finite temperature: Typically L; = 2L and this issue is not considered
separately from finite volume, but the isolation of the ground state
could be spoiled if L; is too small.

» Discretization: Some collaborations have used several lattice spacings
and found a negligible effect, but an a — 0 extrapolation is
nevertheless necessary.

» Excited states: The problem of correctly isolating the ground state has
seen increased attention in recent years; the size of excited-state effects
is observable-dependent.
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Systematic error: excited states

With interpolating operator O, compute, e.g.,

Caopt(t) = (O(HO7(0)) = Z o Ent
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For a nucleon, the signal-to-noise asymptotically decays as e (mv—3mx)t,
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With interpolating operator O, compute, e.g.,

Caopt(t) = (O(HO7(0)) = Z o Ent

n

o0y’

ICz(t) /(@ae™Y) ——

14} i

09 R

0.8 R

0.7 L L L L

For a nucleon, the signal-to-noise asymptotically decays as e (mv—3mx)t,

Jeremy Green (Mainz) Hadron structure from lattice QCD Confinement XI 7/34



Removal of excited states

» Standard ratio-plateau method: compute ratio

R(T,7) = Capt(T,7)/ Cope(T)

—AE ~AE(T- —AET
oo + cr0e” """ + core ( T)—|—c11e +..

then the midpoint 7 = T/2 has excited-state contamination that falls
off asymptotically as e 10772,

» Summation method (PoS(Lattice 2010) 147 [1011.1358]; ibid. 303 [1011.4393]):
compute sums

S(T)= Y R(T.1) = b+ T +dTe ™ 4.,

then find their slope, which gives ¢y with errors that fall off as Te "F07,

> Alternatives: use the variational method with several interpolating
operators; or extrapolate T — co using excited-state fits.
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Variance reduction

New technique: all-mode averaging (AMA)
(T. Blum et al., PRD88 094503 [1208.4349]; see poster by Eigo Shintani)
Using a set of covariant symmetries G (translations, etc.):

i 1
omp) — 9 _ ol L ___ " olarp),
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where O@PPY is a computationally-cheaper approximation to O that is
strongly correlated with it.

Becoming an essential component of calculations at the physical pion mass.
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© Benchmark observables
@ Axial charge
@ Electromagnetic form factors
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Axial charge ga

From n — p transition with zero momentum transfer:

<P(P,5,)|L—'}’y)’5d|”(P,5)> = gAap(P,S/)YuYSUn(P,S)-

v

Well-measured experimentally from beta decay of polarized neutrons:
g4 = 1.2701(25).

Is an isovector quantity, so only connected diagrams are required.

v

v

Is a forward matrix element, which can be determined from a relatively
simple analysis.

v

g4 = (May-ad = AZ,_4 can be understood as the contribution from
(u — d) quark spin to nucleon angular momentum.
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Axial charge ga
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Axial charge ga
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Works that extend below 300 MeV, have m, L > 4, and control exc. states.
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Axial charge g4 systematics: excited states
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Axial charge g4 systematics: excited states
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Axial charge g4 systematics: infinite volume extrapolation
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Few fully-controlled studies; fit them with floating norm
galmyL,...) = A(...)(1+ Be~™m=!)
— implies —1.1(5)% shift at m, L = 4 (y?/dof = 20/9).
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Electromagnetic form factors

Proton matrix elements of vector current parameterized by Dirac and Pauli
form factors:

(p',s emlp,s) = a(p’, S>(Y”F1(Q2)+iaﬂv;’—sz(Q2)) u(p,s),
mp

where g = p’ — p, @* = —¢*. Or alternatively, by the electric and magnetic
Sachs form factors,

Ge(@) = A(@) - Z5R(Q),  Gu(@) = A(Q) + R(QY).

At Q? = 0, these give the charge and magnetic moment of the proton, and
their derivatives define the mean-squared electric and magnetic radii:

GUQ@) = 1-L()PQ+0(QY).  Co(@) = p” (1= ()P Q@ + 0(QY)).
To eliminate disconnected diagrams, we take the isovector combination,
Gi = G g = GEpp Flo=F,—F,
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Isovector F;(Q?): excited states
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Isovector F,(Q?): excited states
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Electromagnetic form factors: excited states

Importance of good control over excited states generally reported whenever
they have been studied:

v

LHPC: m,, € [149,356] MeV (JG et al, PLB 734, 290 [1209.1687]; 1404.4029)

v

PNDME: m, = 220,310 MeV (T. Bhattacharya et al., PRD 89, 094502 [1306.5435])
ETMC: m, = 135,375 MeV (G. Koutsou, Lattice 2014)
Mainz: m, € [195,473] MéV (G. von Hippel, Lattice 2014)

v

v
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Isovector G¢(Q?): comparison with experiment
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(JG et al., PoS Lattice 2013, 276 [1310.7043]; 1404.4029)

LHPC: m,

= 149 MeV, m, L = 4.2, ratio method, T = 1.16 fm

Comparison with Kelly-style fit from W. M. Alberico et al., PRC 79, 065204 [0812.3539].
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Isovector G¢(Q?): comparison with experiment
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(JG et al., PoS Lattice 2013, 276 [1310.7043]; 1404.4029)
LHPC: m,, = 149 MeV, m, L = 4.2, summation method
Comparison with Kelly-style fit from W. M. Alberico et al., PRC 79, 065204 [0812.3539].
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Isovector Gyy(Q?): comparison with experiment
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(JG et al., PoS Lattice 2013, 276 [1310.7043]; 1404.4029)
LHPC: m,, = 149 MeV, m,. L = 4.2, ratio method, T = 1.16 fm
Comparison with Kelly-style fit from W. M. Alberico et al., PRC 79, 065204 [0812.3539].
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Isovector Gyy(Q?): comparison with experiment
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LHPC: m,, = 149 MeV, m, L = 4.2, summation method
Comparison with Kelly-style fit from W. M. Alberico et al., PRC 79, 065204 [0812.3539].
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Electromagnetic form factors: disconnected diagrams

21
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ETMC also found < 1% contribution at m,; = 372 MeV (A. Vaquero, Lattice 2014)
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Radii and magnetic moment
Lattice momenta are restricted by periodic BCs:
27 \?
2
Qhin * (T) ’

which is ~ 0.05 GeV? on the largest lattices used for hadron structure.
To find r?, and k, we fit a simple function to F; ,(Q?), often a dipole,

F(0)

@\
(1+m—z)

D

F(@) =

Given that experimental form-factor data are much more precise and reach
smaller Q?, yet extracting radii from fits is still non-trivial, it is likely that
uncertainties from fitting in lattice calculations are typically
underestimated.
Nevertheless, this is useful for condensing form factors to fewer observables
and comparing different lattice calculations.
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Isovector Dirac radius (r?)"
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Selecting calculations with: (1) small m,; and
(2) summation or fitting to control excited states.
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Isovector Pauli radius (rzz)"
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Selecting calculations with: (1) small m,; and
(2) summation or fitting to control excited states.
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Targeting the proton radius problem

; p
70 discrepancy between ry from

ep scattering and spectroscopy Vvs.

Competing with experimental precision is currently beyond reach for lattice QCD, but the
discrepancy in (r})" is 10%, so discriminating between the two values may be within reach.
But finding r? from F1(Q?) needs better control. There are ways of doing this:

Jp spectroscopy.

» Larger volumes (possibly in just 1 dimension) to reduce Q2 .
» Twisted boundary conditions to access arbitrary Q2.

» Rome method for momentum-derivatives of matrix elements.

(G. M. de Divitiis et al, PLB 718, 589 [1208.5914])

> Recently studied for pion FFs in yPT: gives r? with finite-volume effects ~ L'/2e~™=

(B. Tiburzi, Lattice 2014; 1407.4059).
(Although the latter two do not work for disconnected diagrams.)

Preliminary
Rome-method
results from LHPC:

Jeremy Green (Mainz)

1.0 ‘ ‘ ‘periodic‘ BC ;—.‘—1 i

\ slope (Rome method) ———
0.9 B

*
0.8 |- = R
=
k-3

0.7 + b= |
0.6 - PRELIMINARY o |
0.5 L 1 1 1 1

0.0 0.1 0.2 0.3 0.4

0% (GeV?)
Hadron structure from lattice QCD

3.5

3.0

2.5

2.0

L

‘periodic‘ BC
% Rome method +—s— |
L
L g |
=
L ¥ i
=
T
+ PRELIMINARY CO
L L L L L
0.0 0.1 0.2 0.3 0.4
0% (GeV?)
Confinement XI 25/34



Scalar and tensor charges

(T. Bhattacharya et al., PRD 85, 054512 [1110.6448])

Precision neutron f-decay experiments may be sensitive to BSM physics;

leading contributions are controlled by the (not measured experimentally)
scalar and tensor charges:

(p(P,s")|ad|n(P,s)) = gsip(P,s")us(P,s),
(p(P,s")ac" d|n(P,s))y = grip(P,s")o"" uy(P,s).

» Tensor charge is also the isovector first moment of transversity:

8r = (Dsu-6d-

» Scalar charge is related via Feynman-Hellmann theorem to
neutron-proton mass splitting:

a(m, — mp)QCD
8 =——"F
d(mg — my)
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Tensor charge gr
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Systematics seem to be under reasonable control.

Jeremy Green (Mainz) Hadron structure from lattice QCD Confinement XI 27/34



Scalar charge gs
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Large statistical error makes systematics hard to resolve.
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Momentum fraction

Forward matrix element of traceless quark/gluon energy-momentum tensor:
(A1 Tyylp. Ay = (X)qa(p. AV y u(p.2),

Cd
where T:V =gy*iD"gand Tg”V = Glraag,via,
> (X)q,g is the average momentum fraction carried by quarks g and g, or
gluons; focus has been on isovector combination (x),_g.

» Sum rule:

(X + ) (g =1
q
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Isovector quark momentum fraction (x),_q4

BChPT
32c64 fine
32c96 coarse
24c24 coarse

24c48 coarse
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CTEQ6
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(JG et al. (LHPC), PLB 734, 290 [1209.1687])
Broad agreement: large excited-state effects (which may grow at small my).
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[sovector quark momentum fraction (x),_4: excited states
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[sovector quark momentum fraction (x),_4: excited states
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Three calculations of disconnected contributions

ETMC (A. Abdel-Rehim et al,,

PRD 89, 034501 [1310.6339]):
Nf =2+ 1+ 1twisted
mass, a = 0.082 fm,
m; = 372 MeV,

m,L = 4.97, truncated
solver + one-end trick,
147k samples of Cypt.

LHPC (5. Meinel, Lattice 2014):
Nf =2+ 1 clover,
a=0.114 fm,

m,; = 317 MeV,

my;L =5.87,

hierarchical probing,
99k samples of Cypt.

LANL (B. Yoon, Lattice 2014):
Nf =2+ 1+ 1 mixed
(clover on staggered
sea), a = 0.12 fm,

m,; = 305 MeV,

my, L = 4.54, truncated
solver + hopping
parameter expansion,
61k samples of Cypt

using AMA.
Ratios of disconnected/connected:
Obs ETMC LHPC LANL
gt —0.12(2)  -0.12(2)  -0.19(2)
gut? —0.002(2)  —0.005(10) —0.039(8)
gt 0.101(15)  1.756(94)  0.328(25)
(X ytd 0.05(13) 0.24(4) —

Sufficient statistics are achievable; study of systematics is still needed.
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Other activities

Far too much for a 25 minute talk, e.g.:

>

>

>

v

Sigma terms
Axial form factors (Mainz, ETMC, ...)
Form factors of energy-momentum tensor (ETMC, yQCD, ...)

Polarized, and transversity generalized FFs (ETMC, ...)
Other hadrons:
> Pion scalar form factor (Mainz, HPQCD, JLQCD/TWQCD)
» Electromagnetic form factors of:
> Pions (various collaborations)
> Excited nucleons (CSSM)
> Octet baryons (CSSM/QCDSF/UKQCD)
> Charmed baryons (K. Utku Can et al.)

» Axial charges (ETMC, CSSM/QCDSF/UKQCD)
Polarizibilities (George Washington U; see A. Alexandru, Tues. 15:30)
Light cone operators

» Direct calculation of PDFs (X. Ji; H.-W. Lin et al; ETMC)
> Transverse momentum-dependent PDFs (M. Engelhardt et al.)
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Summary

Quark-connected nucleon matrix elements and form factors are
approaching maturity:

» Calculations are now ongoing at the physical pion mass.

» Trade-off between exponential decay of excited states and exponential
growth of noise remains a challenge.

» Control over other systematics is within sight.
Disconnected contributions are now being taken seriously:

» Prototype calculations done and ongoing for quark-disconnected and
gluonic observables.

» Some efforts for renormalization and mixing have been done.
Calculations of other observables are in a more exploratory stage:

» PDFs and TMDs.

» Structure of other baryons.

» Structure of excited hadrons.
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