Dyons and Confinement at $T \neq 0$

Victor Petrov

Petersburg Nuclear Physics Institute
September 8, 2014, Russia

Known facts about pure glue at $T \neq 0$

Order
parameter
Polyakov loop

- Confinement:

$$
<\mathcal{P}\rangle=0
$$

- Deconfinement:
$<\mathcal{P}\rangle \neq 0$

Vacuum energy: almost constant in confinement phase (very few d.o.f), in the deconfinement phase approaches σT^{4} (Stephen Boltzman) with $\sigma \sim N_{c}^{2}$ d.o.f (gluons). Strong phase transition of Hagedorne type at $T_{c}=230 \mathrm{MeV}$.

Known facts about pure glue at $T \neq 0$

Order
parameter
Polyakov loop

- Confinement:

$$
<\mathcal{P}\rangle=0
$$

- Deconfinement:
$<\mathcal{P}\rangle \neq 0$

Vacuum energy: almost constant in confinement phase (very few d.o.f), in the deconfinement phase approaches σT^{4} (Stephen Boltzman) with $\sigma \sim N_{c}^{2}$ d.o.f (gluons). Strong phase transition of Hagedorne type at $T_{c}=230 \mathrm{MeV}$.
Description of QCD at non-zero temperature should include confinement

Scenario of confinement

Two scenario are possible:

Scenario of confinement

Two scenario are possible:

- $\langle\mathcal{P}\rangle=0$ appears as result of strong fluctuations, vacuum is essentially quantum.

Scenario of confinement

Two scenario are possible:

- $\langle\mathcal{P}\rangle=0$ appears as result of strong fluctuations, vacuum is essentially quantum.
- The state with $<\mathcal{P}>=0$ is the most favorable (as a result of non-perturbative effects). Fluctuations above this state are small and situation is semi-classical

Scenario of confinement

Two scenario are possible:

- $\langle\mathcal{P}\rangle=0$ appears as result of strong fluctuations, vacuum is essentially quantum.
- The state with $<\mathcal{P}>=0$ is the most favorable (as a result of non-perturbative effects). Fluctuations above this state are small and situation is semi-classical

Scenario of confinement

Two scenario are possible:

- $\langle\mathcal{P}\rangle=0$ appears as result of strong fluctuations, vacuum is essentially quantum.
- The state with $<\mathcal{P}>=0$ is the most favorable (as a result of non-perturbative effects). Fluctuations above this state are small and situation is semi-classical

Semiclassical scenario:

True for $N=1$ SUSY Yang-Mills at all temperatures (no phase transition)

Scenario of confinement

Two scenario are possible:

- $<\mathcal{P}\rangle=0$ appears as result of strong fluctuations, vacuum is essentially quantum.
- The state with $<\mathcal{P}>=0$ is the most favorable (as a result of non-perturbative effects). Fluctuations above this state are small and situation is semi-classical

Semiclassical scenario:

True for $N=1$ SUSY Yang-Mills at all temperatures (no phase transition)

Maybe, true for QCD at temperatures below phase transition (?)

$N=1$ SUSY Yang Mills at high "temperatures"

Effective potential for holonomy

$$
\mathcal{P}=\mathbf{P} \exp i \int_{0}^{T} A_{4} d t \equiv e^{i \beta v_{i} Y_{i}}
$$

(Y_{i} - Cartan generators)

- No perturbative contribution (supersymmetry)
- Non-perturbative contribution: semiclassical solutions (Y.M. eqs of motion with non-trivial holonomy) - dyons.
Dyons carry electric and magnetic charges. N=1 Y.M.theory $=$ Coulomb gas of dyons in $d=3$ reminds Polyakov's model. Bosonized by complex scalar field (prepotential is holomorfic):

$$
\begin{equation*}
\mathcal{L}=\left|\partial_{\mu} \boldsymbol{\Phi}\right|^{2}+M^{2}\left|\exp \left(-\frac{4 \pi}{\alpha} \phi\right)-\exp \left(-\mathbf{4} \pi \frac{\mathbf{4 \pi}}{\alpha}(\mathbf{2} \pi \mathbf{T}-\boldsymbol{\Phi})\right)\right|^{2} \tag{1}
\end{equation*}
$$

Contribution of $M \bar{M}$ and $L \bar{L}$ dyons, (SU(2)-group)

$N=1$ SUSY Yang Mills at high "temperatures"

- Minimum of Potential:

Condensate V

$$
v=\pi T, \quad\langle P\rangle=0
$$

(Confinement!) Dual gluon ϕ acquires a mass

$$
\mathcal{M}^{2}=M_{P V}^{2} \exp \left(-\frac{4 \pi^{2}}{g^{2}}\right)
$$

and accompanied by some (colorless) fermion to fit SUSY.
Picture is valid at all T while dyons are not necessary dominant at smaller T.

Dyons in QCD

- At $T \neq 0$ constant field A_{4} are gauge invariant (global rotation). $A_{4}=\vec{v} \cdot \vec{Y}\left(Y_{i}=\right.$ Cartans). "Condensates" v_{i} are gauge invariant and related to eigenvalues of Polyakov's line.
- Dyons are self-dual solutuions of Y.M. eqs with non-zero electric \& magnetic charges. There are r (rank) elementary monopoles based on simple roots with field is independent on time (M-monopole) and 1 based on highest root $\overrightarrow{\alpha_{H}}$ with potential periodic in time: (L-monopole). At large r

$$
A_{4}=\vec{v} \cdot \vec{Y}+\frac{\vec{m} \cdot \vec{Y}}{r}, \quad \mathcal{E}=\mathcal{H}=\vec{m} \cdot \vec{Y} \frac{\mathbf{r}}{r^{2}}
$$

Magnetic charge ($\vec{\alpha}^{*}$ is co-root):

$$
\vec{m}=\frac{1}{2}\left|\alpha_{H}\right| \vec{\alpha}^{*}, \quad \overrightarrow{\alpha^{*}}=2 \frac{\vec{\alpha}}{\vec{\alpha} \cdot \vec{\alpha}}
$$

Monopole has a core with a size $\rho=\vec{\alpha} \cdot \vec{v} /\left|\alpha_{H}\right|$.

Dyons in QCD

Highest co-root can be expanded in a simple co-roots

$$
\alpha_{H}^{*}=\varkappa_{1} \vec{\alpha}_{1}^{*}+\ldots+\varkappa_{r} \vec{\alpha}_{r}^{*}
$$

\varkappa_{i} - positive integers, their sum is dual Coxeter number $n_{C}=1+\varkappa_{1}+\ldots+\varkappa_{r}$.

- configuration - KVBLL instanton with zero electric and magnetic charge consists of n_{C} dyons: one L-monopole, \varkappa_{1} M-monopoles based on root $\overrightarrow{\alpha_{1}}, \ldots$. Example: $S U\left(N_{c}\right)$ group instanton $=N_{c}$ dyons (1 L-monopole and $N_{c}-1 \mathrm{M}$-monopoles), G_{2} group: instanton $=4$ dyons (1 L -monopole and 3 M-monopoles of 2 types).
- Action and topological charge (self-dual configuration)

$$
Q_{t}=\frac{\vec{m} \cdot \vec{v}}{2 \pi T}, \quad S=\frac{8 \pi^{2}}{g^{2}} \frac{\vec{m} \cdot \vec{v}}{2 \pi T}
$$

QCD is NOT SUSY: Interaction of Dyons in QCD

- Total action of n_{C} dyons in the instanton
$\sum S_{i}=S_{\text {inst }}=8 \pi^{2} / g^{2}$. Classical interaction of dyons absent (KvBLL - coloron is a classical solution interpolating between instanton and dyons)
- Quantum interaction consists of:
- Quantum determinant on non-zero modes - numerically small $\left(2 / 3 N_{c}\right.$ as compared to $4 N_{c}$
- Jacobian of transition to zero modes (metrics of the moduli space).
- Every dyon - 4 zero modes -3 translations and 1 $U(1)$-rotation ($4 n_{C}$ modes for KvBLL instanton)

$$
J^{2}=\operatorname{Det}\left(\int d^{3} x \psi_{\mu}^{(i)} \psi_{\mu}^{(j)}\right)
$$

-- determinant does not factorize.

QCD is NOT SUSY: Interaction of Dyons in QCD

Main effect at large distances - renormalization of the size of one dyon under the field of another

Size renormalized

$$
\rho \longrightarrow \rho+\frac{\mathbf{1}}{\mathbf{r}}
$$

Metrics of moduli space is hyper-Kähler (Ricci tensor is self-dual). Enough to restore...
-determinant quantum interaction

Statistical sum of Dyons in QCD

Statistical sum of dyon gas (SU(2) color)

$$
\begin{gathered}
\mathcal{Z}=\sum_{K_{L}, K_{M}} \frac{1}{K_{L}!K_{M}!}\left(\frac{\Lambda^{4} \beta^{2}}{8 \pi^{3}}\left(\frac{8 \pi^{2}}{g^{2}}\right)^{2}\right)^{K_{L}+K_{M}} \int d^{3} r_{1} \ldots \times \\
\operatorname{Det}\left(\begin{array}{cccc}
v+\sum_{1} \frac{1}{r_{i i}} & \cdots & \pm \frac{1}{r_{i i}} & \cdots \\
\pm \frac{1}{r_{21}} & 2 \pi T-v+\sum \frac{1}{r_{i j}} & \pm \frac{1}{r_{1 i}} & \cdots \\
\cdots & \cdots & \cdots & \cdots
\end{array}\right)
\end{gathered}
$$

Determinant interaction cannot be reduced to the pair dyon interaction, as in classical statistics. Nevertheless, in the thermodynamic limit it is equivalent to the field theory

Statistical sum of Dyons in QCD

For every dyon - one fermion and field

$$
\begin{gathered}
\mathcal{Z}=\int D \vec{\chi} D \vec{\chi}^{+} \mathbf{D} \mathbf{w}_{\mathbf{k}} \exp \left(\frac{T}{4 \pi} \int d^{3} x\left[\partial_{i} \chi_{k} \partial_{i} \chi_{k}^{+}+\xi \chi_{k}^{+} \frac{\partial^{2} \mathcal{F}}{\partial w_{k} \partial w_{n}} \chi_{n}\right]\right) \\
\exp \left(-\mathbf{4} \pi \mathbf{m}_{\mathbf{k}} \xi \frac{\partial \mathcal{F}}{\partial \mathbf{w}_{\mathbf{k}}}\right) \times \delta\left(\frac{\mathbf{T}}{\mathbf{4 \pi}} \partial^{2} \mathbf{w}_{\mathbf{k}}-\xi \frac{\partial \mathcal{F}}{\partial \mathbf{w}_{\mathbf{k}}}\right)
\end{gathered}
$$

where k - indices numerating Cartans ($1 \ldots$ rank, they label one of $U(1)^{N_{c}-1}$ subgroups.

$$
\mathcal{F}=\sum_{k}^{n_{c}} \varkappa_{k} e^{w_{k}-w_{k+1}}
$$

is affine Toda potential. ξ - fugacity of one dyon

Effective potential: non-perturbative contribution of dyons

Logarithm of statistical sum is effective potential for condensate \vec{v} :

$$
V_{e f f}(\vec{v})=-\zeta n_{C}\left(\frac{S_{1}(\vec{v})}{\varkappa_{1}}\right)^{\frac{\varkappa_{1}}{n_{C}}} \ldots\left(\frac{S_{n_{C}}(\vec{v})}{\varkappa_{n_{C}}}\right)^{\frac{\varkappa_{n} C}{n_{C}}}
$$

where $S_{1} \ldots S_{n_{C}}$ are actions of the n_{C} dyons which are present in KvBLL coloron. The minimum is in the point of maximal holonomy

$$
\vec{v}=4 \pi T \frac{\vec{\rho}}{n_{C}\left|\alpha_{H}\right|}, \quad \mathcal{P}_{\text {fundamental }}(\vec{v})=0
$$

where $\vec{\rho}$ is Weyl vector (which is the half of the sum of positive roots) Polyakov's line (fundamental) is zero in this point.

Effective potentia: perturbative contribution of gluons

Quantum corrections in perturbation theory induce perturbative effective potential. In 1 loop:

$$
V_{\text {eff }}(\vec{v})=\frac{\pi^{2} \mathbf{N}_{\mathrm{gl}}}{45} \mathbf{T}^{3}+\frac{2 \pi^{2}}{3} \mathbf{T}^{3} \sum_{\text {all roots }}\left(\frac{\vec{\alpha}_{i} \vec{v}}{2 \pi T\left|\alpha_{H}\right|}\right)^{2}\left(1-\frac{\vec{\alpha}_{i} \vec{v}}{2 \pi T\left|\alpha_{H}\right|}\right)^{2}
$$

First term is Stephen-Boltzman energy, $N_{g /}$ is number of gluons, second - effective potential.
Minimum is in point of trivial holonomy $\mathcal{P}=0$. Effective potential falls with temperature as T^{3}.

Phase transition: confinement-deconfinement

- Perturbative potential falls with T
- Dyon Potential is stable

At $T=T_{c}$ minimum with $\mathcal{P}=0$ becomes more deep - 1st order phase transition to confinement.

Phase transition: confinement-deconfinement

Below T_{c} zero Polyakov's loop is supported by center of the group (G_{2} has no center - no confinement).

Physical properties of dyon vacuum

- T_{c} is stable in N_{c}
- Below T_{c} free energy is constant
- Phase transition is first order in $N_{c} \geq 3$ but second order in $S U(2)$.
- Numerically T_{c} is correct.

Physical properties of dyon vacuum

- T_{c} is stable in N_{c}
- Below T_{c} free energy is constant
- Phase transition is first order in $N_{c} \geq 3$ but second order in SU(2).
- Numerically T_{c} is correct.

One can add(????) anti-dyons and obtain more...

- Free energy below behaves as $O\left(N_{c}^{2}\right)$ (should be: $\frac{b}{4}<G_{\mu \nu}^{2}>$ Gluon condensate is $\sim(255)^{4} \mathbf{M e v}^{4}$.
- Topological susceptibility stable in N_{c} - different from instantons! (action $=O\left(1 / N_{c}\right)$ Numerically $<Q_{t}^{2}>=(187 \mathrm{Mev})^{4}$.

Thermodynamic properties of dyon vacuum

Thermodynamic properties are more or less OK. Example $\left(E_{v a c}-3 P\right) / T^{4}\left(P\right.$-pressure) at $T>T_{c}$. This quantity should be zero if all excitation are massless (gluons)

- Green - G_{2}-group
- Blue - SU(3)-group
- Red points $S U(3)$ lattice date (Karsch)

String tension

At temperature $T \neq 0$ there are two types of strings

- Heavy quark potential is defined from correlator of two Polyakov's lines.

$$
<P(0) P(\vec{r})>=e^{-\beta V(r)}, \quad V(r)=\sigma_{e l} r
$$

(correlator is determined by mass of lowest excitation)

- Spatial strings which are related to area behavior spatial Wilson loop

$$
W[C]=P \exp i \int A_{i} d x_{i} \approx \mathbf{e}^{-\sigma_{\mathrm{mag}} \operatorname{Area}}
$$

(one has to consider Polyakov's double layer of monopoles and find corresponding soliton.

String tension

Affine Toda chain is completely integrable model, all solitons are known and it has a remarkable property

Mass of lowest excitation $=$ Mass of the lowest soliton

String tension

Affine Toda chain is completely integrable model, all solitons are known and it has a remarkable property

Mass of lowest excitation $=$ Mass of the lowest soliton
Electrical string tension $=$ Magnetic string tension Restoration of Lorentz symmetry at small temperatures.

String tension

Affine Toda chain is completely integrable model, all solitons are known and it has a remarkable property

Mass of lowest excitation $=$ Mass of the lowest soliton
Electrical string tension $=$ Magnetic string tension Restoration of Lorentz symmetry at small temperatures. String tension is stable in N_{c} and numerically OK.

k-strings

If $N_{c} \neq 2$ there different nonminimal strings corresponding to different representations of the group.
How string tension depends on representation?

k-strings

If $N_{c} \neq 2$ there different nonminimal strings corresponding to different representations of the group.
How string tension depends on representation?
All non-trivial representations can be classified by k-ality: minimal is antisymmetric tensor of k rank.

k-strings

If $N_{c} \neq 2$ there different nonminimal strings corresponding to different representations of the group.
How string tension depends on representation?
All non-trivial representations can be classified by k-ality: minimal is antisymmetric tensor of k rank. We obtained the string tensions equal to

$$
\sigma_{k}=\sigma_{0} \sin \frac{\pi k}{N_{c}}, \quad \sigma_{e l}=\sigma_{m a g}
$$

k-strings

If $N_{c} \neq 2$ there different nonminimal strings corresponding to different representations of the group.
How string tension depends on representation?
All non-trivial representations can be classified by k-ality: minimal is antisymmetric tensor of k rank. We obtained the string tensions equal to

$$
\sigma_{k}=\sigma_{0} \sin \frac{\pi k}{N_{c}}, \quad \sigma_{e l}=\sigma_{m a g}
$$

Not a Casimir scaling!!!. NOW lattice people are thinking this is correct!

Conclusions

Model based on dyons

- Reproduces all known from the lattice qualitative features of pure glue theory. Dependence on N_{c} and temperature are all correct.

Conclusions

Model based on dyons

- Reproduces all known from the lattice qualitative features of pure glue theory. Dependence on N_{c} and temperature are all correct.
- Ideologically completely follows t'Hooft-Polyakov scenario of confinement

Conclusions

Model based on dyons

- Reproduces all known from the lattice qualitative features of pure glue theory. Dependence on N_{c} and temperature are all correct.
- Ideologically completely follows t'Hooft-Polyakov scenario of confinement
- In spite of the fact that the model is quite crude, it appears to be numerically successful

Direct check

Presented ideas can be checked directly on the lattice. One has to measure effective potential for Polyakov's line

- Fix analogue of $A_{4}(x)=0$ gauge. We fix all $U(\mathbf{x}, i)$ on all time slices $i=0, \ldots N_{t}-2$. The last time slice

$$
\mathcal{P}(\mathbf{x})=U_{4}\left(\mathbf{x}, N_{t}-1\right)=\operatorname{diag}\left\{e^{i \varphi_{1}} \ldots e^{-i \sum \varphi_{i}}\right\}
$$

- Statistical sum is:

$$
Z=\int D \mathcal{P} \int \mathrm{DU}_{\mathbf{i}} \mathrm{e}^{-\beta \mathbf{S}\left[\mathbf{U}_{\mathbf{i}}, \mathcal{P}\right]}
$$

- The inner integral in space links is effective potential for Polyakov’ line
Direct measurement was done in Diakonov, Gattringer, Schaldah, 2012 for $S U(2)$ and $S U(3)$ color groups

Direct check

Unfortunately they met new type of perturbative ultraviolet divergence. In paper of 2013 we described the data in the mean field approximation. Free energy:

$$
\begin{aligned}
f= & \varepsilon_{\mathrm{vac}}+\frac{\log \left(\frac{N_{t}}{2 \pi \beta}\right)-2 c_{2}}{2 N_{t}}+\frac{\log \left(4 \sin ^{2} \varphi\right)}{\mathbf{N}_{\mathrm{t}}}+ \\
& +\frac{\pi^{2}}{3 N_{t}^{4}}\left[-\frac{1}{5}+4\left(\frac{\varphi}{\pi}\right)^{2}\left(\mathbf{1}-\frac{\varphi}{\pi}\right)^{2}\right] .
\end{aligned}
$$

This U.V. divergence is related to the known linear (Coulomb) divergency of Polyakov's line in perturbation theory. Polyakov's line should be first renormalized. Divergency obscures the lattice measurements.

