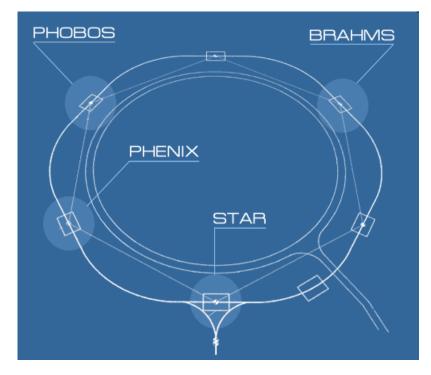
Results from Cu+Au collisions at 200 GeV in PHENIX experiment

Berdnikov Ya.A., Ivanishchev D.A., Kotov D.O., Riabov V.G., Riabov Yu.G., <u>Safonov A.S.</u>, Samsonov V.M. for the PHENIX collaboration

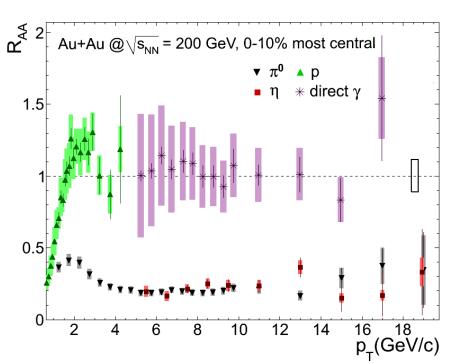
PNPI SPbSPU



RHIC

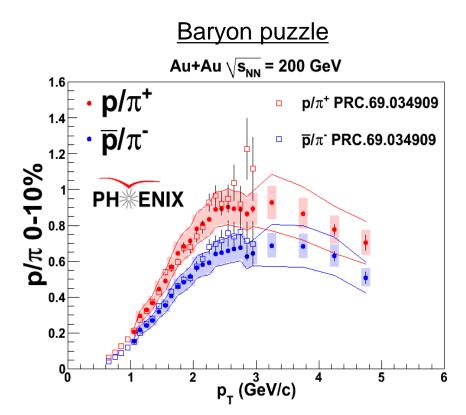
• RHIC (Brookhaven National Laboratory, USA) is currently one of the biggest operating beam-tobeam colliders meant for study of heavy nuclei interactions at high energies;

• Lattice QCD predicts hadron-quark phase transition of nuclear matter in conditions of extremely high energy densities ($\epsilon > 1 \text{ GeV/fm}^3$) and temperatures ($T \sim 170 \text{ MeV}$);


• Similar conditions can arise in heavy ion interactions.

Nuclei system	√s _{NN} , GeV
Au+Au	7, 9, 39, 62, 130, 200
d+Au	200
Cu+Cu	22, 62, 200
p↑+p↑	22, 62, 200, 500
Cu+Au	200
U+U	192

Subject of research


In 2005 succession of crucial events allowed all collaborations at RHIC to make a statement about detection of new state of nuclear matter – strongly interacting QGP – ideal liquid with parton degrees of freedom.

Jet quenching

•π⁰-mesons yield is suppressed fivefold;

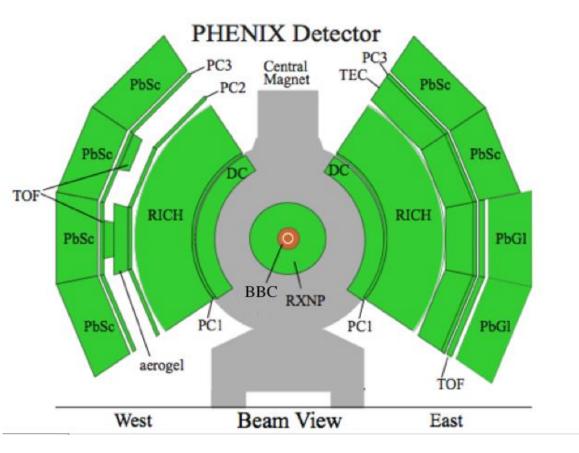
- Direct γ yield not suppressed up to $p_T \sim 14$ GeV/c:
- ✓ Energy loss of hard partons in dense nuclear matter in the final state.

- Sudden increase in p/π yields from peripheral to central nuclei interactions;
- ✓ Recombination of partons in QGP.

PHENIX Experiment

Charged particles

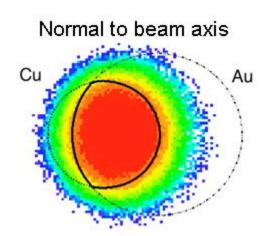
 Drift chambers (DC): δp/p = 0.7% + 1.1%-p
 Pad chambers (PC):

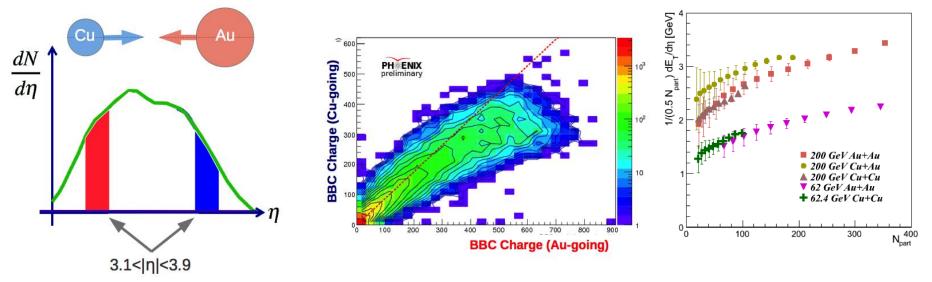

 σ_z =1.7 mm, σ_{ϕ} = 2.4 mm

Energy measurement

 EMCalorimeter: δE/E ≈ 4.5% + 8.0%/√E (GeV)

Particle identififcation


- 1. Time-of-flight systems:
- TOF.East (σ_τ ~ 120 ps);
- TOF.West (σ_τ ~ 84 ps); π/K separation:
 0.3 < p_T (GeV/c) < 2.2
 - 2. EMCal: $\sigma_{\tau} \sim 500$ ps.

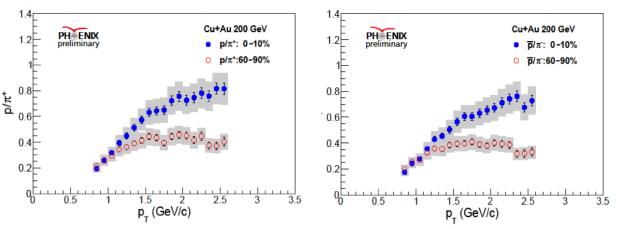


Central spectrometer: $\Delta \phi = 2 \cdot \pi/2$, |y| < 0.35

Cu+Au interactions

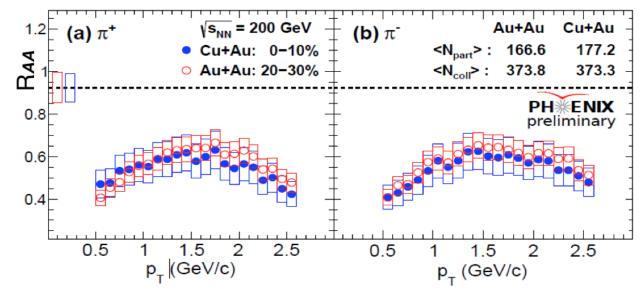
- In 2012 PHENIX have seen first Cu+Au interactions at 200 GeV:
 - ✓ PHENIX Experiment gathered ≈4.6*10⁹ events;
 - ✓ Influence of system asymmetry in the initial state (geometric and density) on particle production mechanisms.

- Following problems are to be discussed in the present report:
 - ✓ Does the "baryon puzzle" analogous to the one in Au+Au occur in Cu+Au interactions?

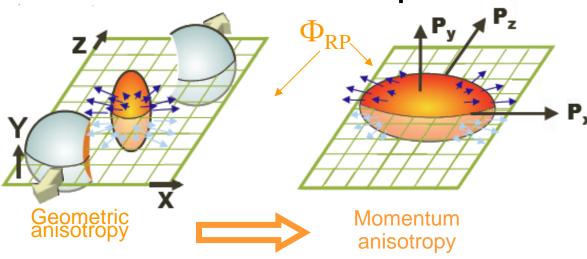

✓
$$R_{AA}(Cu+Au) = R_{AA}(Au+Au)$$
 or $R_{AA}(d+Au)$?

✓ Odd harmonics of elliptic flow?

Production of light hadrons in Cu+Au@200 GeV


Proton to pi-meson yield ratios in Cu+Au interactions at 200 GeV

- «Baryon puzzle» occurs in central Cu+Au interactions:
 - ✓ the same for particles of different sign;
 - ✓ magnitude of the effect is comparable to the one in Au+Au.



Nuclear modification factors for pi-mesons in Cu+Au and Au+Au interactions at 200 GeV

- Pi-mesons yields are suppressed in central Cu+Au interactions:
 - ✓ At similar N_{part} values
 R_{AA} in Cu+Au and
 Au+Au are the same.

Elliptic flows

In noncentral nuclei interactions:

 $\frac{dN}{d\phi}$ $\propto 1 + 2v_2\cos 2(\phi - \Phi_{\rm RP})$

Coefficient v_2 is measure of elliptic flow magnitude!

1.0 1.5 2.0 2.5

KE_T/n_a (GeV)

0.0 0.5

Cu+Au@200 GeV

10-20%

0.12

0.10

0.08

0.06

0.04

0.02

0.12

0.10

0.08

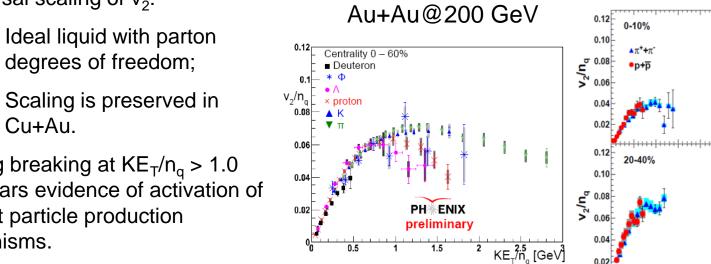
0.06

10.04

0.02

(d

PHENIX


Cu+Au (s_{NN} = 200 GeV

1.0 1.5 2.0

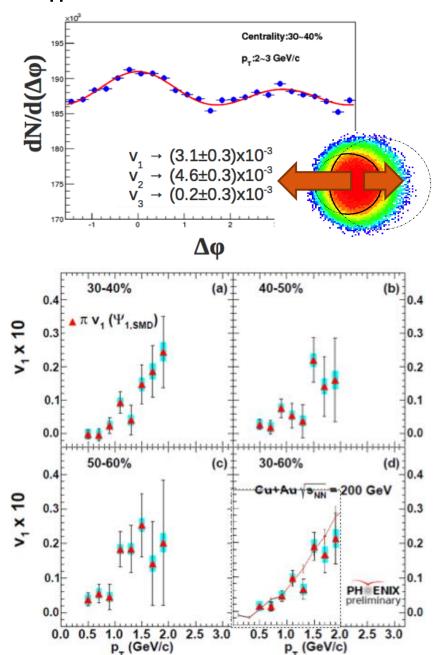
KE_T/n_a (GeV)

0.5

(b)

✓ Scaling is preserved in Cu+Au.

degrees of freedom;


Universal scaling of v₂:

 \checkmark

- GeV bears evidence of activation of
- •Scaling breaking at $KE_T/n_q > 1.0$ different particle production mechanisms.

Odd harmonics of v_n in Cu+Au

- Non-symmetric nuclei overlap region provides generation of distinct pressure gradients:
 - More particles escape from the side of Au;
 - ✓ Asymmetry of dN/d($\Delta \phi$);
 - ✓ High magnitude of v_1 (in Au+Au $v_1=0$);
 - Magnitude and sign of v₁ are described by flow dynamics models, in which nuclei alignment in every Cu+Au interaction is given separately for each event: E-by-E hydro, P.Bozek, Phys.Lett.B717(2012).

Conclusion

- 1. "Baryon puzzle" occurs in central Cu+Au interactions at 200 GeV generation of strongly interacting QGP;
- 2. Light hadrons yields in central Cu+Au interactions are suppressed;
- R_{AA} for light hadrons acquired in Cu+Au interactions are the same as values of R_{AA} in Au+Au interactions given equal number of nucleons taking part in the interaction;
- 4. Non-zero value of v_2 bears evidence of elliptic flow occurrence in Cu+Au interactions;
- 5. "Quark scaling" works for coefficients v_2 ;
- Existence of odd harmonics in angular distribution of particles produced in Cu+Au interactions is related to initial spatial and density asymmetry of colliding nuclei;
- Magnitude and sign of odd flow coefficients are described by theoretical models.