Quark Confinement and the Hadron Spectrum XI

Contribution ID: 20

Type: Poster

Contribution of plasminos to the shear viscosity of a hot and dense Yukawa-Fermi gas

Tuesday 9 September 2014 18:50 (1h 30m)

The shear viscosity of a hot and dense Yukawa-Fermi gas will be determined, using the standard Green-Kubo relation, according to which the shear viscosity is given by the retarded correlator of the traceless part of viscous energy-momentum tensor. We approximate this retarded correlator using a one-loop skeleton expansion, and express the bosonic and fermionic shear viscosities, η_b and η_f , in terms of bosonic and fermionic spectral widths, Γ_b and Γ_{\pm} . Here, the subscripts \pm correspond to normal and collective (plasmino) excitations of fermions. We study, in particular, the effect of these excitations on thermal properties of $\eta_f[\Gamma_{\pm}]$. To do this, we determine first the dependence of Γ_b and Γ_{\pm} on momentum p, temperature T, chemical potential μ and $\xi_0 \equiv m_b^0/m_f^0$, in a one-loop perturbative expansion in the orders of the Yukawa coupling. Here, m_b^0 and m_f^0 are T and μ independent bosonic and fermionic masses, respectively. We then numerically determine $\eta_b[\Gamma_b]$ and $\eta_f[\Gamma_{\pm}]$, and study their thermal properties. It turns out that whereas Γ_b and Γ_+ decrease with increasing T or μ , Γ_{-} increases with increasing T or $\mu.$ This behavior qualitatively changes by adding thermal corrections to m_b^0 and m_f^0 , while the difference between Γ_+ and Γ_- keeps increasing with increasing T or μ . Moreover, η_b (η_f) increases (decreases) with increasing T or μ . We show that the effect of plasminos on η_f becomes negligible with increasing (decreasing) $T(\mu)$.

Reference

N. Sadooghi and F. Taghinavaz, *Contribution of plasminos to the shear viscosity of a hot and dense Yukawa-Fermi gas*, arXiv: 1404.1552, Accepted for publication in Phys. Rev. **D** (2014).

Summary

The contribution of plasmino modes to the shear viscosity of a Yukawa-Fermi gas will be investigated at finite temperature and chemical potential.

Author: TAGHINAVAZ, Farid (Department of Physics, Sharif University of Technology)Co-author: Dr SADOOGHI, Neda (Department of Physics, Sharif University of Technology)

Presenter: TAGHINAVAZ, Farid (Department of Physics, Sharif University of Technology)

Session Classification: Poster Session

Track Classification: Poster Session