Recent results on Charmonium(like) at Belle

Chengping Shen Beihang University for Belle Collaboration

September 8-12, 2014

Saint-Petersburg State University, Russia
Outline

- Update $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{K}^{+} \mathrm{K}^{-\mathrm{J}} / \psi$ and search for $\mathrm{Z}_{\mathrm{cs}}{ }^{ \pm} \rightarrow \mathrm{K}^{ \pm} \mathrm{J} / \psi$
- Observation of a new charged charmoniumlike state $\mathrm{Zc}(4200)$ in $B \rightarrow K \pi \mathrm{~J} / \psi$
- Update $\mathrm{e}+\mathrm{e}-\rightarrow \pi+\pi-\psi(2 \mathrm{~S}): \mathrm{Y}(4360)$ and $\mathrm{Y}(4660)$
- Search for $X(3872)$ like states decays to η_{c} modes

KEKB/Belle World maximum luminosity

KEKB:
HER: 8.0 GeV
LER: 3.5 GeV
crossing: 22 mrad
$\mathrm{E}_{\mathrm{CMS}}=\mathrm{M}(\mathrm{U}(4 \mathrm{~S}))$

First physics run on June 2, 1999
Last physics run on June 30, 2010
$L_{\text {peak }}=2.1 \times 10^{34} / \mathrm{cm}^{2} / \mathrm{s} \quad$ Ltot $>1 \mathrm{ab}^{-1}$

Peak lumi record at KEKB: L=2.1 x 1034/cm²/sec with crab cavities

The last beam abort of KEKB on June 30, 2010

First physics run on June 2, 1999 Last physics run on June 30, 2010 $L_{\text {peak }}=2.1 \times 10^{34} / \mathrm{cm}^{2} / \mathrm{s}$
$L>1 a b^{-1}$

Charmonium states

(I) The quark model describes most of charmonium remarkably well. $(c \bar{c})$

Example potential from Barnes, Godfrey, Swanson:

$$
V_{0}^{(c \bar{c})}(r)=-\frac{4}{3} \frac{\alpha_{s}}{r}+b r+\frac{32 \pi \alpha_{s}}{9 m_{c}^{2}} \tilde{\delta}_{\sigma}(r) \overrightarrow{\mathrm{S}}_{c} \cdot \overrightarrow{\mathrm{~S}}_{\bar{c}}
$$

(Coulomb + Confinement + Contact)

$$
\begin{array}{r}
V_{\text {spin-dep }}=\frac{1}{m_{c}^{2}}\left[\left(\frac{2 \alpha_{s}}{r^{3}}-\frac{b}{2 r}\right) \overrightarrow{\mathrm{L}} \cdot \overrightarrow{\mathrm{~S}}+\frac{4 \alpha_{s}}{r^{3}} \mathrm{~T}\right] \\
(\text { Spin-Orbit }+ \text { Tensor) }
\end{array}
$$

PRD72, 054026 (2005)

CHARMONIUM

Charmoniumlike states

The quark model describes most of charmonium remarkably well. $(c \bar{c})$

But the " $X Y Z$ " states point beyond the quark model. $(c \bar{c} g, c \bar{q} q \bar{c},(c \bar{q})(q \bar{c}), c \bar{c} \pi \pi)$

Most of the XYZ states were discovered by Belle and BaBar.

Pentaquark
$\mathrm{S}=+1$
Baryon

Tetraquark
Tightly bound diquark \& anti-diquark

Glueball

Color-singlet multigluon bound state

u
$q \bar{q}$-gluon hybrid mesons

$Z_{c}(3900)$ observed in two experiments!

BES3 at 4.26 GeV: PRL110,252001
Belle with ISR: PRL110, 252002

- $M=3899.0 \pm 3.6 \pm 4.9 \mathrm{MeV}$
- $\Gamma=46 \pm 10 \pm 20 \mathrm{MeV}$
- 307 ± 48 events
- $>8 \sigma$

- $M=3894.5 \pm 6.6 \pm 4.5 \mathrm{MeV}$
- $\Gamma=63 \pm 24 \pm 26 \mathrm{MeV}$
- 159 ± 49 events
- $>5.2 \sigma$

$Z_{c}(3900)$ observed in two experiments!

BES3 at 4.26 GeV: PRL110,252001

Belle with ISR: PRL110, 252002

What is $Z_{c}(3900)$?

- Couples to $\bar{c} \mathrm{c}$
- Has electric charge
- At least 4-quarks
- What is its nature?

Predictions and more

- $\overline{\mathrm{D}} \mathrm{D}^{*}$ molecule?
- Tetraquark state?
- Cusp?
- Threshold effect?
experimental information will be essential to understand its nature.
\rightarrow A partner Z_{c} in B decays ?

Amplitude analysis of $B \rightarrow J / \psi K \pi$

- 4-dimensional amplitude analysis similar to $Z_{c}(4430)^{+}$ quantum number measurement. $\quad \Phi=\left(M_{K \pi}^{2}, M_{J / \psi \pi}^{2}, \theta_{J / \psi}, \varphi\right)$.
- Resonances: all $K^{*}(10$ resonances $)$ and $Z_{c}(4430)^{+}$.
- Search for additional Z_{c}^{+}is performed.

Resonance	Fit fraction	Significance (local)
$K_{0}^{*}(800)$	$\left(7.1_{-0.5}^{+0.7}\right) \%$	22.5σ
$K^{*}(892)$	$\left(69.0_{-0.5}^{+0.6}\right) \%$	166.4σ
$K^{*}(1410)$	$\left(0.3_{-0.1}^{+0.2}\right) \%$	4.1σ
$K_{0}^{*}(1430)$	$\left(5.9_{-0.4}^{+0.6}\right) \%$	22.0σ
$K_{2}^{*}(1430)$	$\left(6.3_{-0.4}^{+0.3}\right) \%$	23.5σ
$K^{*}(1680)$	$\left(0.3_{-0.1}^{+0.2}\right) \%$	2.7σ
$K_{3}^{*}(1780)$	$\left(0.2_{-0.1}^{+0.1}\right) \%$	3.8σ
$K_{0}^{*}(1950)$	$\left(0.1_{-0.1}^{+0.1}\right) \%$	1.2σ
$K_{2}^{*}(1980)$	$\left(0.4_{-0.1}^{+0.1}\right) \%$	5.3σ
$K_{4}^{*}(2045)$	$\left(0.2_{-0.1}^{+0.1}\right) \%$	3.8σ
$Z_{c}(4430)^{+}$	$\left(0.5_{-0.1}^{+0.4}\right) \%$	5.1σ
$Z_{c}(4200)^{+}$	$\left(1.9_{-0.5}^{+0.7}\right) \%$	8.2σ

Zc(4200)!

TABLE I. Fit results in the default model. Errors are statístical only.

J^{P}	0^{-}	1^{-}	1^{+-}	2^{-}	2^{+}
Mass, MeV / c^{2}	4318 ± 48	4315 ± 40	4196_{-29}^{+31}	4209 ± 14	4203 ± 24
Width, MeV	720 ± 254	220 ± 80	370 ± 70	64 ± 18	121 ± 53
Significance (Wilks)	3.9σ	2.3σ	8.2σ	3.9σ	1.9σ

Projections of fit results

NEW

- New Z_{c}^{+}is found $\left(J^{P}=1^{+}\right)\left[Z_{c}(4200)^{+}, 6.2 \sigma\right.$ with syst. error].

$$
M=4196_{-29-13}^{+31+17} \mathrm{MeV} / \mathrm{c}^{2}, \Gamma=370_{-70-132}^{+70+70} \mathrm{MeV} .
$$

——Additional Zc
_ Z(4430) only

- Exclusion levels $\left(J^{P}=0^{-}, 1^{-}, 2^{-}, 2^{+}\right): 6.1 \sigma, 7.4 \sigma, 4.4 \sigma 7.0 \sigma$.
- The $Z_{c}(4430)^{+}$is significant (4.0σ, evidence for new decay miode).
$\mathrm{Zc}(3900)$ is also tried to add:

J^{P}	0^{-}	1^{-}	1^{+}	2^{-}	2^{+}
Mass, MeV / c^{2}	3889.8 ± 3.3	3890.3 ± 3.1	3890.6 ± 3.3	3891.1 ± 3.2	3891.5 ± 3.3
Width, MeV	43.2 ± 6.5	37.8 ± 7.9	39.2 ± 8.1	39.4 ± 8.5	41.2 ± 7.7
Significance	2.4σ	1.1σ	0.1σ	$<0.1 \sigma$	0.2σ

Zc(3900) is not needed!
\rightarrow A partner with s quark Zcs?

Zcs? History: previous published results

Phys. Rev. D 77, 011105(R) (2008)

1. cross section is measured between 4-6 GeV.
2. There is one very broad structure;
3. Two events near the Y (4260) mass
4. We did not show Dalitz Plot before!

Updated $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{K}^{+} \mathrm{K}^{-} \mathrm{J} / \psi$

Event selections are almost the same as in Phys. Rev. D 77, 011105(R) (2008)

Shaded hist.: J/ ψ mass sidebands

- Fit with $\psi(4415)$ $\chi^{2} / \mathrm{ndf}=30 / 11$
$>\mathrm{M}=4747 \pm 117 \mathrm{MeV}$
$>\Gamma=671 \pm 86 \mathrm{MeV}$

4-6 GeV: 213 events 35 bkg, 178 ± 16 signal

$$
\sigma_{i}=\frac{n_{i}^{\mathrm{obs}}-f \times n_{i}^{\mathrm{bkg}}}{\mathcal{L}_{i} \cdot \epsilon_{i} \cdot \mathcal{B}\left(J / \psi \rightarrow \ell^{+} \ell^{-}\right)}
$$

Search for $\mathrm{Z}_{\mathrm{cs}} \rightarrow \mathrm{KJ} / \psi$ states

No evident structure in $\mathrm{K}^{+-\mathrm{J} / \psi}$ mass distribution under current statistics

$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \pi^{+} \pi^{-} \psi(2 \mathrm{~S})$: history

- BaBar and Belle observed Y(4360)
- Belle observed additional Y(4660)
- Babar updated results in good agreement with Belle
$Y(4660)$ confirmed

Updated $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \pi^{+} \pi^{-} \psi(2 \mathrm{~S})$

Dots: data; Blank hist: MC simulations; Shaded hist: bkg from $\psi(2 S)$ sidebands.
Left: with $4.0<M_{\pi^{+} \pi^{-} \psi(2 S)}<5.5 \mathrm{GeV} / c^{2}$.

- Middle: from $Y(4360), 4.0<M_{\pi^{+} \pi^{-} \psi(2 S)}<4.5 \mathrm{GeV} / \mathrm{C}^{2}$, looks like $f_{0}(600)$
- Right: from $Y(4660), 4.5<M_{\pi^{+} \pi^{-} \psi(2 S)}<4.9 \mathrm{GeV} / \mathrm{C}^{2}$, should be $f_{0}(980)$, confirmed in BaBar update.

(a) $4.0<M_{\pi^{+} \pi^{-} \psi(2 S)}<4.5 \mathrm{GeV} / \mathrm{c}^{2}$
(b) $4.5<M_{\pi^{+} \pi^{-} \psi(2 S)}<4.9 \mathrm{GeV} / \mathrm{C}^{2}$

Fit $\mathrm{M}\left(\pi^{+} \pi^{-} \psi(2 S)\right)$ with two resonances

Unbinned simultaneous maximum likelihood fit for $Y(4360)$ and $Y(4660)$. $A m p=B W_{1}+e^{i \phi} \cdot B W_{2} \quad \pi^{+} \pi^{-} J / \psi+\mu^{+} \mu^{-}$

Comparing to previous measurement:

- $M_{Y(4360)}$ and $M_{Y(4660)}$ are smaller. Previous measurement:

$$
\begin{aligned}
& M_{Y(4360)}=4361 \pm 9 \pm 9 \mathrm{MeV} / \mathrm{c}^{2} \\
& M_{Y(4660)}=4664 \pm 11 \pm 5 \mathrm{MeV} / \mathrm{c}^{2}
\end{aligned}
$$

- No obvious signal above $Y(4660)$.
- Some events accumulate at $Y(4260)$, especially the $\pi^{+} \pi^{-} J / \psi$ mode.
- If $Y(4260)$ is included in the fit, ...???

Parameters	Solution I	Solution II
$M_{Y(4360)}\left(\mathrm{MeV} / c^{2}\right)$	$4346 \pm 6 \pm 2$	
$\Gamma_{Y(4360)}(\mathrm{MeV})$	$111 \pm 10 \pm 7$	
$\mathcal{B} \cdot \Gamma^{Y(4360)}(\mathrm{eV})$	$10.6 \pm 0.6 \pm 0.7$	$9.2 \pm 0.8 \pm 0.7$
$M_{Y(4660)}{ }^{\left(\mathrm{MeV} / c^{-}\right)}$	$4644 \pm 12 \pm 8$	
$\Gamma_{Y(4660}(\mathrm{MeV})$	$59 \pm 12 \pm 2$	
$\mathcal{B} \cdot \Gamma^{Y(4660)}(\mathrm{eV})$	$6.8 \pm 1.6 \pm 0.7$	$1.8 \pm 0.3 \pm 0.1$
$\left.e^{+} e^{-}\right)$	$278 \pm 11 \pm 8$	$19 \pm 24 \pm 20$

$x^{2} / n d f=27.6 / 21 \quad\left(p=1.6 \times 10^{-9}\right)$.

15

Fit $\mathrm{M}\left(\pi^{+} \pi^{-} \psi(2 S)\right)$ with three resonances

Unbinned simultaneous maximum likelihood fit for $Y(4260), Y(4360)$ and $Y(4660)$. $A m p=B W_{1}+e^{i \phi_{1}} \cdot B W_{2}+e^{\phi_{2}} \cdot B W_{3}$.

Preliminary results:

Parameters	Solution I	Solution II	Solution III	Solution IV
$M_{Y(4260)}\left(\mathrm{MeV} / \mathrm{c}^{2}\right)$	4259(fix)			
$\Gamma_{Y(4260)}(\mathrm{MeV})$	134(fix)			
$\mathcal{B} \cdot \Gamma_{e^{+} e^{-}}^{Y(4260)}(e V)$	1.4 ± 0.6	1.6 ± 0.7	10.7 ± 1.4	9.3 ± 1.3
$M_{Y(4360)}\left(\mathrm{MeV} / \mathrm{c}^{2}\right)$	4363 ± 8			
$\Gamma_{Y(4360)}(\mathrm{MeV})$	80 ± 16			
$\mathcal{B} \cdot \Gamma_{e^{+} e^{-}}^{Y(4360)} \mathrm{eV}$	3.9 ± 1.0	4.6 ± 1.3	21.5 ± 3.7	18.2 ± 2.9
$M_{Y(4660)}\left(\mathrm{MeV} / \mathrm{c}^{2}\right)$	4657 ± 9			
$\Gamma_{Y(4660)}(\mathrm{MeV})$	68 ± 11			
$\mathcal{B} \cdot \Gamma_{e^{+} e^{-}}^{Y(4660)}(e V)$	2.0 ± 0.4	7.7 ± 0.9	8.4 ± 1.1	2.1 ± 0.4
$\left.\phi_{1}{ }^{(}\right)$	309 ± 26	300 ± 28	131 ± 5	140 ± 5
$\phi_{2}{ }^{(0)}$	25 ± 22	243 ± 14	329 ± 9	111 ± 26

The significance of $Y(4260)$ is 2.1σ. Not significant, but effect is large.
FOUR solutions with equally good fit quality, which is $\chi^{2} /$ ndf $=24.8 / 19 \quad\left(p=3.2 \times 10^{-9}\right)$.

Search for $X(3872)$ decays to η_{c} modes

Motivation:

- X(3872) was first observed by Belle in $B \rightarrow K\left(J / \psi \pi^{+} \pi^{-}\right)$. Angular analysis of this mode performed by LHCb determined all quantum numbers: 1^{++}.
- If $X(3872)$ is a $D^{0} \bar{D}^{* 0}$ molecule, there may be other «X-like» particles with different quantum numbers, that are also bound states of $D^{(*)}$ mesons.
- X(3872): $\left(D^{0} \bar{D}^{* 0}-\bar{D}^{0} D^{* 0}\right)$ combination: $J^{P C}=1^{+-}$, decays $X \rightarrow \eta_{c} \omega, X \rightarrow \eta_{c} \rho$
- X(3730): $\left(D^{0} \bar{D}^{0}+\bar{D}^{0} D^{0}\right)$ combination: $J^{P C}=0^{++}$, decays $X \rightarrow \eta_{c} \eta, X \rightarrow \eta_{c} \pi^{0}$
- X(4014): $\left(D^{*} \bar{D}^{* 0}+\bar{D}^{* 0} D^{*}\right)$ combination: $J^{P C}=0^{++}$, decays $X \rightarrow \eta_{c} \eta, X \rightarrow \eta_{c} \pi^{0}$

Analysis features:

- X is produced in charged B decays: $B^{ \pm} \rightarrow K^{ \pm} X$
- $\eta_{\mathrm{c}} \rightarrow \mathrm{K}_{\mathrm{s}} \mathrm{K} \pi, \mathrm{K}_{\mathrm{s}} \rightarrow \pi^{+} \pi^{-}$
- combined fit of 2 decay modes of $\eta\left(\gamma \gamma\right.$ and $\left.\pi^{+} \pi^{-} \pi^{0}\right)$
- test mode $\mathrm{B}^{ \pm} \rightarrow \mathrm{K}^{ \pm} \psi(2 \mathrm{~S}), \psi(2 \mathrm{~S}) \rightarrow \mathrm{J} / \psi \pi^{+} \pi^{-}$gives results consistent with PDG - $\mathrm{B}^{ \pm}$decays into the same final states, but without intermediate X are studied ${ }_{17}$

Search for $X(3872)$ decays to η_{c} modes

Search for $X(3872)$ decays to η_{c} modes

Preliminary results

$\begin{aligned} & X \text { mass, } \\ & \mathrm{MeV} / \mathrm{c}^{2} \end{aligned}$	Decay mode $B^{ \pm} \rightarrow K^{ \pm} X$	Yield	$\begin{gathered} \mathrm{U} \\ (90 \% \text { C.L. }) \end{gathered}$
3872	$X \rightarrow \eta_{c} \pi^{+} \pi^{-}$	17.9 ± 16.5	3.0×10^{-5}
	$X \rightarrow \eta_{c} \omega$	6.0 ± 12.5	6.9×10^{-5}
3730	$\begin{gathered} X \rightarrow \eta_{c} \eta, \\ \eta \rightarrow \gamma \gamma \\ \eta \rightarrow \pi^{+} \pi^{-} \pi^{0} \end{gathered}$	$\frac{13.8 \pm 9.9}{1.4 \pm 1.0}$	4.6×10^{-5}
	$X \rightarrow \eta_{c} \pi^{0}$	-25.6 ± 10.4	5.7×10^{-6}
4014	$\begin{aligned} X & \rightarrow \eta_{c} \eta \\ \eta & \rightarrow \gamma \gamma \\ \eta & \rightarrow \pi^{+} \pi^{-} \pi^{0} \end{aligned}$	$\frac{8.9 \pm 11.0}{1.3 \pm 1.6}$	3.9×10^{-5}
	$X \rightarrow \eta_{c} \pi^{0}$	-8.1 ± 13.2	1.2×10^{-5}

Upper limits on the

$$
\begin{gathered}
\mathcal{B}\left(\mathrm{B}^{ \pm} \rightarrow \mathrm{K}^{ \pm} \mathrm{X}\right) \cdot \mathcal{B}\left(\mathrm{X} \rightarrow \eta_{\mathrm{c}} \mathrm{~h}\right) \\
\text { for } \mathrm{h}=\pi^{+} \pi^{-}, \omega, \eta, \pi^{0}
\end{gathered}
$$

Upper limits on the

$$
\begin{aligned}
& \mathcal{B}\left(\mathrm{B}^{ \pm} \rightarrow \mathrm{K}^{ \pm} \eta_{\mathrm{c}} \mathrm{~h}\right) \\
& \quad \text { for } \mathrm{h}=\pi^{+} \pi^{-}, \omega, \eta, \pi^{0}
\end{aligned}
$$

Decay mode	Yield	U (90\% C.L.)
$B^{ \pm} \rightarrow K^{ \pm} \eta_{c} \pi^{+} \pi^{-}$	155 ± 72	3.9×10^{-4}
$B^{ \pm} \rightarrow K^{ \pm} \eta_{c} \omega$	-41 ± 27	5.3×10^{-4}
$B^{ \pm} \rightarrow K^{ \pm} \eta_{c} \eta$,		
$\eta \rightarrow \gamma \gamma$		
$\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}$	-14.1 ± 26.1	2.2×10^{-4}
	-1.8 ± 3.4	
$B^{ \pm} \rightarrow K^{ \pm} \eta_{c} \pi^{0}$	-1.9 ± 12.1	6.2×10^{-5}

Summarv

- The $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{K}^{+} \mathrm{K}^{-} \mathrm{J} / \psi$ cross sections are updated. There are clear $\mathrm{K}^{+} \mathrm{K}^{-\mathrm{J}} / \psi$ signal events.
- No clear structure Zcs is observed in the $\mathrm{K}^{ \pm} \mathrm{J} / \psi$.
- The $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \pi^{+} \pi^{-} \psi(2 S)$ cross sections and $\mathrm{Y}(4360), \mathrm{Y}(4660)$ parameters are updated.
- The $Y(4260)$ was tried in the fit. The significance is $<3 \sigma$, but it has significant effect on $Y(4360)$ and $Y(4660)$ parameters.
- 4D amplitude analysis of $\mathrm{B}^{0} \rightarrow \mathrm{~J} / \psi \mathrm{K}^{-} \pi^{+}$decays has been performed. A new charged charmoniumlike state $\mathrm{Zc}(4200)^{+} \rightarrow$ $\mathrm{J} / \psi \pi^{+}$is observed $\left(6.2 \sigma, \mathrm{~J}^{\mathrm{P}}=1^{+}\right)$.
- Evidence for a new decay channel $\mathrm{Zc}(4430)^{+} \rightarrow \mathrm{J} / \psi \pi^{+}$
\bullet We study $B^{ \pm} \rightarrow K^{ \pm} X$ with X decays: $\eta_{c} \pi^{+} \pi^{-}, \eta_{c} \omega, \eta_{c} \eta$, $\eta_{c} \pi^{0}$. No signal was observed in any of the studied decay channels.

