Holographic Glueball Decay Rates in the Witten-Sakai-Sugimoto Model

Anton Rebhan

Institute for Theoretical Physics TU Wien, Vienna, Austria

September 8, 2014

Holographic Glueball Decay

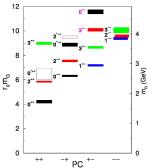
FAIR physics question

in particular for PANDA@FAIR:

What are the characteristic properties of glueballs?

Spectrum of bare glueballs (prior to mixing with $q\bar{q}$ states) more or less known from lattice:

Morningstar & Peardon hep-lat/9901004:



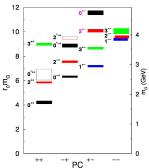
FAIR physics question

in particular for PANDA@FAIR:

What are the characteristic properties of glueballs?

Spectrum of bare glueballs (prior to mixing with $q\bar{q}$ states) more or less known from lattice:

Morningstar & Peardon hep-lat/9901004:



Need to know coupling to $\bar{q}q$ to identify glueball content of isoscalar mesons – not available from lattice

A. Rebhan

September 8, 2014 2 / 19

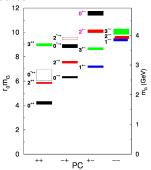
FAIR physics question

in particular for PANDA@FAIR:

What are the characteristic properties of glueballs?

Spectrum of bare glueballs (prior to mixing with $q\bar{q}$ states) more or less known from lattice:

Morningstar & Peardon hep-lat/9901004:



Gauge/gravity duality a new tool to study glueball properties from first principles

A. Rebhan

A D N A B N A B

Outline

- Introduction to holographic QCD top-down: Witten[1998]-Sakai-Sugimoto[2004] model
 = supergravity limit of conjectured full string-theoretic dual of QCD (2 parameters only: 1 coupling + 1 mass scale!:-)
- Glueballs from anti-de Sitter supergravity revisited

New results on:

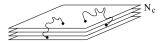
 Glueball decay into pions from Sakai-Sugimoto model (work with Frederic Brünner & Denis Parganlija) [paper in preparation]

<ロ> (日) (日) (日) (日) (日) (日) (0) (0)

Original AdS/CFT correspondence

J. M. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998) "pedestrian's guide": S. S. Gubser and A. Karch, Ann. Rev. Nucl. Part . Sci. 59, 145 (2009)

D3-branes



(type IIB) string theory on 5D anti-de Sitter space ($\times S_5$)

 $\mathcal{N} = 4 \ {\rm SU}(\infty)$ super-YM theory on 4D boundary of AdS₅

$$rac{(ext{curvature radius})^4}{(ext{string length})^4} = rac{R^4}{\ell_s^4}$$

supergravity limit $\ell_s \ll R$ relatively easy

 $g^2_{
m YM} N_c \equiv \lambda$ 't Hooft coupling

strong coupling limit $\lambda \gg 1$ impossibly difficult

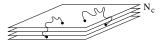
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回日 のの()

 \Leftrightarrow

 \Leftrightarrow

Witten model: Holographic nonsupersymmetric QCD

E. Witten, Adv. Theor. Math. Phys. 2, 505 (1998):

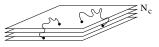


(日) (同) (三) (三)

Type-IIA string theory with $N_c \rightarrow \infty D4$ branes dual to 4 + 1-dimensional super-Yang-Mills theory

Witten model: Holographic nonsupersymmetric QCD

E. Witten, Adv. Theor. Math. Phys. 2, 505 (1998):



Type-IIA string theory with $N_c \rightarrow \infty D4$ branes dual to 4 + 1-dimensional super-Yang-Mills theory

supersymmetry completely broken by compactification on "thermal-like" circle $x_4 \equiv x_4 + 2\pi/M_{\rm KK \ (Kaluza-Klein)}$

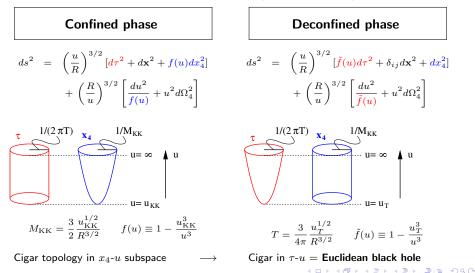
- \bullet antisymmetric b.c. for adjoint fermions: masses $\sim M_{\rm KK}$
- \bullet adjoint scalars not protected by gauge symmetry: also masses $\sim M_{\rm KK}$

 \rightarrow dual to pure-glue YM theory 3+1-dimensional at scales $\ll M_{\rm KK}$

but supergravity approximation needs weak curvature, cannot take limit $M_{\rm KK} \to \infty$

Deconfinement phase transition

Thermal circle in Euclidean time τ in addition to compactified x_4 Hawking-Page transition when $2\pi T = M_{\rm KK}$ (thus $\sim 1 \text{ GeV ?}$)



A. Rebhan

Glueballs in confined phase

 \exists scalar and tensor glueballs corresponding to 5D dilaton Φ and graviton G_{ij} Csaki, Ooguri, Oz & Terning 1999

<□> <同> <同> <目> <目> <目> <日> <同> <日> <日> <日> <日< のへで

Glueballs in confined phase

 \exists scalar and tensor glueballs corresponding to 5D dilaton Φ and graviton G_{ij} Csaki, Ooguri, Oz & Terning 1999

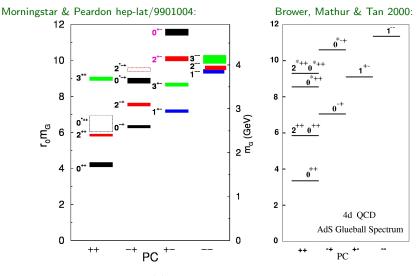
Type-IIA supergravity compactified on x_4 -circle many more modes: Constable & Myers 1999; Brower, Mathur & Tan 2000

Mode	S_4	T_4	V_4	N_4	M_4	L_4
Sugra fields	G_{44}	Φ, G_{ij}	C_1	B_{ij}	C_{ij4}	G^{α}_{α}
J^{PC}	0++	$0^{++}/2^{++}$	0^{-+}	1^{+-}	1	0^{++}
n=0	7.30835	22.0966	31.9853	53.3758	83.0449	115.002
n=1	46.9855	55.5833	72.4793	109.446	143.581	189.632
n=2	94.4816	102.452	126.144	177.231	217.397	277.283
n=3	154.963	162.699	193.133	257.959	304.531	378.099
n=4	228.709	236.328	273.482	351.895	405.011	492.171

Lowest mode not from dilaton, but from "exotic polarization" - in 11D notation:

$$\begin{split} \underline{\delta g_{44}} &= -\frac{r^2}{L^2} f \, H(r) G(x), \quad \delta g_{\mu\nu} = \frac{r^2}{L^2} \left[\frac{1}{4} H(r) \eta_{\mu\nu} - \left(\frac{1}{4} + \frac{3R^6}{5r^6 - 2R^6} \right) H(r) \frac{\partial_\mu \partial_\nu}{M^2} \right] G(x) \\ \delta g_{11,11} &= \frac{r^2}{L^2} \frac{1}{4} H(r) G(x), \quad \delta g_{rr} = -\frac{L^2}{r^2} f^{-1} \frac{3R^6 H(r) G(r)}{5r^6 - 2R^6}, \quad \delta g_{r\mu} = \frac{90r^7 R^6 H(r) \partial_\mu G(x)}{M^2 L^2 (5r^6 - 2R^6)^2} \end{split}$$

Lattice glueballs vs. supergravity glueballs

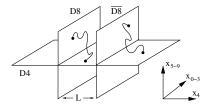


(mass scales matched on 2^{++}) \rightarrow seemingly good qualitative agreement!

Sakai-Sugimoto model: Adding chiral quarks

T. Sakai, S. Sugimoto, Prog. Theor. Phys. 113, 843 (2005) add N_f D8- and $\overline{\text{D8}}$ -branes, separated in x_4 , $N_f \ll N_c$ (probe branes)

	0	1	2	3	4	5	6	7	8	9
D4	x	x	x	х	х					
$D8/\overline{D8}$	×	x	x	x		x	x	х	x	х



 $\begin{array}{l} \text{4-8, 4-8} \text{ strings} \\ \rightarrow \text{ fundamental, massless} \\ \text{ chiral fermions} \end{array}$

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

flavor symmetry $U(N_f)_L \times U(N_f)_R$

for now: maximal separation in x_4 (antipodal on x_4 circle): $L = \pi/M_{\rm KK}$

Massless pions, massive vector mesons, massive η'

D8 brane action:

$$S_{\rm D8} = -T_{\rm D8} {\rm Tr} \int d^9 x e^{-\Phi} \sqrt{-\det(\tilde{g}_{MN} + (2\pi\alpha')F_{MN})} + S_{\rm CS}$$
$$a_{\rm D2}^2 N^2 \int d^9 x e^{-\Phi} \sqrt{-\det(\tilde{g}_{MN} + (2\pi\alpha')F_{MN})} + S_{\rm CS}$$

$$= \frac{g_{YM}^2 N_c^2}{216\pi^3} \int d^4x \, dz \, \text{Tr} \left[\frac{1}{2} (1+z^2)^{-1/3} F_{\mu\nu}^2 + (1+z^2) F_{\mu z}^2 \right] + \dots$$

• massless pions in $A_z = \phi_0(z)\pi(x^{\nu})$, rho meson in $A^{(1)}_{\mu} = \psi_1(z)\rho_{\mu}(x^{\nu})$,

• more massive vector mesons and axial vector mesons in tower of $A^{(n)}_{\mu}$ modes

<ロ> (日) (日) (日) (日) (日) (日) (0) (0)

Massless pions, massive vector mesons, massive η'

D8 brane action:

$$S_{\rm D8} = -T_{\rm D8} {\rm Tr} \int d^9 x e^{-\Phi} \sqrt{-\det(\tilde{g}_{MN} + (2\pi\alpha')F_{MN})} + S_{\rm CS}$$

$$= \frac{g_{\rm YM}^2 N_c^2}{216\pi^3} \int d^4x \, dz \, {\rm Tr} \left[\frac{1}{2} (1+z^2)^{-1/3} F_{\mu\nu}^2 + (1+z^2) F_{\mu z}^2 \right] + \dots$$

- massless pions in $A_z = \phi_0(z)\pi(x^{\nu})$, rho meson in $A_{\mu}^{(1)} = \psi_1(z)\rho_{\mu}(x^{\nu})$,
- \bullet more massive vector mesons and axial vector mesons in tower of $A_{\mu}^{(n)}$ modes

eigenvalue of ψ_1 implies $m_{\rho} = \sqrt{0.669314} M_{\rm KK}$ \Rightarrow matching $m_{\rho} \approx 776$ MeV fixes $M_{\rm KK} = 949$ MeV ($\Rightarrow T_{deconf} = 151$ MeV) matching $f_{\pi} = \frac{\lambda N_c}{54\pi^4} M_{\rm KK}^2$ gives $\lambda = g_{\rm YM}^2 N_c \approx 16.6$

yields e.g.

- $m^2_{a_1}/m^2_{
 ho} pprox 2.4$ (versus 2.5 from experiment!)
- nonzero η' mass from anomaly inflow: Witten-Veneziano formula with $m_{\eta'} = \frac{\sqrt{N_f/N_c}}{3\sqrt{3\pi}} \lambda M_{\rm KK} \approx 967 \text{MeV}$ for $N_f = 3$ (exp.: 958 MeV !)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回日 のの()

ρ meson decay rate

D8 mode corresponding to ρ -meson stable, but can calculate effective action for mesons, in particular:

$$\mathcal{L}_{\rho\pi\pi} = -g_{\rho\pi\pi}\epsilon_{abc}(\partial_{\mu}\pi^{a})\rho^{b\mu}\pi^{c}$$
$$g_{\rho\pi\pi} = \sqrt{2} \int dz \frac{1}{\pi(1+z^{2})}\psi_{1}(z) = 33.98\,\lambda^{-\frac{1}{2}}N_{c}^{-\frac{1}{2}}$$

gives

$$\Gamma_{
ho}/m_{
ho} = \frac{g_{
ho\pi\pi}^2}{48\pi} \approx 0.1535$$
 (exp.: 0.191(1))

encourages calculation of gluon decay rates which could not be easily obtained from (Euclidean!) lattice QCD

<ロ> (日) (日) (日) (日) (日) (日) (0) (0)

Lattice vs. supergravity glueballs

seemingly good qualitative agreement by matchup up 2^{++}

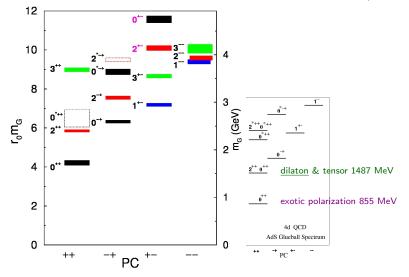
Morningstar & Peardon hep-lat/9901004: Brower, Mathur & Tan 2000: 12 12 1 U, 10 10 4 8 8 3 m_g (GeV) 0.++ r_om_g 6 6 4 4 1 2 2 4d QCD AdS Glueball Spectrum 0 0 ++++ PC PC

(but AdS spectrum somewhat stretched...)

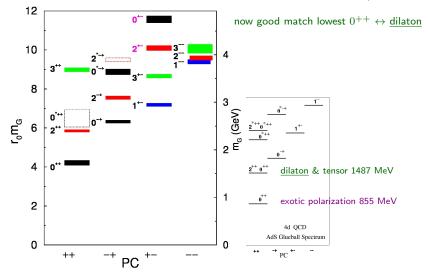
Sakai-Sugimoto model: glueball masses $\propto M_{\rm KK} = 949$ MeV fixed by $m_{
ho}$

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨヨ のの()

Sakai-Sugimoto model: glueball masses $\propto M_{
m KK} = 949$ MeV fixed by $m_{
ho}$



Sakai-Sugimoto model: glueball masses $\propto M_{
m KK} = 949$ MeV fixed by $m_{
ho}$



Should exotic polarization (δG_{44} with x_4 the compactified direction of SYM₄₊₁) be excluded as lowest glueball mode?

- possibly not part of spectrum of holographic QCD in limit $M_{\rm KK} \to \infty, \lambda \to 0$ (already asked by Constable & Myers)
- $\bullet\,$ simpler bottom-up AdS/QCD have dilaton mode as dual for lowest glueball

Should exotic polarization (δG_{44} with x_4 the compactified direction of SYM₄₊₁) be excluded as lowest glueball mode?

- possibly not part of spectrum of holographic QCD in limit $M_{\rm KK} \to \infty, \lambda \to 0$ (already asked by Constable & Myers)
- $\bullet\,$ simpler bottom-up AdS/QCD have dilaton mode as dual for lowest glueball
- next lowest scalar mode ~ 1487 MeV is (predominantly) dilaton mode (induces metric perturbations other than δG_{44})

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨヨ のの()

Glueball- $\bar{q}q$ couplings in Sakai-Sugimoto model

Gravitational modes stable in confined background, but can calculate *effective action for glueball-* $\bar{q}q$ *interactions* done for lowest (exotic) mode by Hashimoto, Tan & Terashima, Phys.Rev. D77 (2008) 086001, arXiv:0709.2208 revisited, corrected, and extended to other modes by Brünner, Parganlija & AR, Acta Phys. Polon. Supp. 7 (2014) 533 and in prep. "Exotic" mode:

$$S_{G\pi\pi} = \operatorname{Tr} \int d^4x \frac{1}{2} \partial_\mu \pi \, \partial_\nu \pi \left(\breve{c}_1 \eta^{\mu\nu} - c_1 \frac{\partial^\mu \partial^\nu}{M_G^2} \right) G$$

"Dilatonic" mode:

$$S_{D\pi\pi} = \text{Tr} \int d^4x \frac{1}{2} \partial_\mu \pi \, \partial_\nu \pi \, \tilde{c}_1 \left(\eta^{\mu\nu} - \frac{\partial^\mu \partial^\nu}{M_D^2} \right) D$$

Tensor glueball:

$$S_{T\pi\pi} = \text{Tr} \int d^4x \,\partial_\mu \pi \,\partial_\nu \pi \,\bar{c}_1 T^{\mu\nu}$$

with $\{c_1, \check{c}_1, \check{c}_1, \bar{c}_1\} = \{62.66, 16.39, 17.23, 21.10\} \times \lambda^{-1} N_c^{-1/2} M_{\rm KK}^{-1}$ (and many more vertices, involving also ρ_{μ} at this order)

Glueball decay rates in Sakai-Sugimoto model

Results for decay into two pions:

Exotic mode:
$$\Gamma_{G \to \pi\pi}/M_G \approx \frac{13.79}{\lambda N_c^2} \approx 0.092 \quad (M_G \approx 855 \text{MeV})$$

Dilaton mode: $\Gamma_{D \to \pi\pi}/M_D \approx \frac{1.359}{\lambda N_c^2} \approx 0.009 \quad (M_D \approx 1487 \text{MeV})$
Tensor mode: $\Gamma_{T \to \pi\pi}/M_T \approx \frac{2.174}{\lambda N_c^2} \approx 0.0145 \quad (M_T \approx 1487 \text{MeV})$

NB: relative width of lowest (exotic) scalar mode much larger than next ones!? another hint that it should be discarded?

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨヨ のの()

Glueball decay rates in Sakai-Sugimoto model

Results for decay into two pions:

Exotic mode: $\Gamma_{G \to \pi\pi}/M_G \approx \frac{13.79}{\lambda N_c^2} \approx 0.092 \quad (M_G \approx 855 \text{MeV})$ Dilaton mode: $\Gamma_{D \to \pi\pi}/M_D \approx \frac{1.359}{\lambda N_c^2} \approx 0.009 \quad (M_D \approx 1487 \text{MeV})$ Tensor mode: $\Gamma_{T \to \pi\pi}/M_T \approx \frac{2.174}{\lambda N_c^2} \approx 0.0145 \quad (M_T \approx 1487 \text{MeV})$

NB: relative width of lowest (exotic) scalar mode much larger than next ones!? another hint that it should be discarded?

Most likely experimental candidates for meson with dominant scalar glueball content: $f_0(1500)$ or $f_0(1710)$

$$\begin{split} & \Gamma^{(\text{ex})}(f_0(1500) \to \pi\pi)/(1505\text{MeV}) = 0.025(3) \\ & \Gamma^{(\text{ex})}(f_0(1710) \to \pi\pi)/(1722\text{MeV}) = 0.017(4) \leftarrow \text{favored by arXiv:1408.4921} \\ (\text{the latter follows from BES data with large backgrounds;} \\ & \text{older WA102 data would give } 0.009(2)!) \end{split}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Glueball decay rates in Sakai-Sugimoto model

Results for decay into two pions:

Exotic mode: $\Gamma_{G \to \pi\pi}/M_G \approx \frac{13.79}{\lambda N_c^2} \approx 0.092 \quad (M_G \approx 855 \text{MeV})$ Dilaton mode: $\Gamma_{D \to \pi\pi}/M_D \approx \frac{1.359}{\lambda N_c^2} \approx 0.009 \quad (M_D \approx 1487 \text{MeV})$ Tensor mode: $\Gamma_{T \to \pi\pi}/M_T \approx \frac{2.174}{\lambda N_c^2} \approx 0.0145 \quad (M_T \approx 1487 \text{MeV})$

NB: relative width of lowest (exotic) scalar mode much larger than next ones!? another hint that it should be discarded?

Most likely experimental candidates for meson with dominant scalar glueball content: $f_0(1500)$ or $f_0(1710)$

$$\begin{split} \Gamma^{(\mathrm{ex})}(f_0(1500) \to \pi\pi)/(1505 \mathrm{MeV}) &= 0.025(3) \\ \Gamma^{(\mathrm{ex})}(f_0(1710) \to \pi\pi)/(1722 \mathrm{MeV}) &= 0.017(4) \leftarrow \text{favored by arXiv:1408.4921} \\ \text{(the latter follows from BES data with large backgrounds;} \end{split}$$

older WA102 data would give 0.009(2)!)

Experimental candidate for tensor glueball: $\Gamma^{(ex)}(f_J(2200))/(2231 \text{MeV}) = 0.010(4)$

Glueball decay rates in Sakai-Sugimoto model (cont'd)

Branching ratios:

General pattern

• Narrow widths

$$\Gamma_{Glueball \to \pi\pi} \propto \lambda^{-1} N^{-2}$$

• Strong suppression for

$$\Gamma_{Glueball \to 4\pi} \propto \lambda^{-3} N^{-4}$$

not really suppressed in $f_0(1500),\,f_J(2200),$ but perhaps in $f_0(1710)$ can be due to mixing in of $\bar q q$

• Even stronger suppression for $Glueball \rightarrow 4\pi^0$

(direct $\Gamma_{GB\to 4\pi^0} \propto \lambda^{-7} N^{-4}$ from F^4 terms in DBI action also $\Gamma_{GB\to GB+2\pi^0\to 4\pi^0} \propto \lambda^{-6} N^{-3}$, but kinematically suppressed)

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三回日 ののの

Summary – Glueballs in Witten-Sakai-Sugimoto model

After fitting just m_{ρ} to fix $M_{\rm KK} = 949 \text{ MeV}$

- good prediction of higher vector and axial vector mesons masses,
- good prediction of deconfinement/chiral transition temperature,
- good prediction of glueball masses if "exotic mode" discarded;

after fitting f_π to also fix 't Hooft coupling at $\lambda=16.6$

- good prediction of rho decay rates
- good prediction of anomalous $m'_{
 ho} \propto N_c^{-\frac{1}{2}} \lambda M_{\rm KK}$
- $\bullet\,$ narrow partial width $glueball \rightarrow \pi\pi$, quite compatible with experimental data
- strong suppression of $glueball \rightarrow 4\pi$, in particular $\rightarrow 4\pi^0$

Warrants further studies!

(日) (同) (三) (三) (三) (○) (○)

Summary – Glueballs in Witten-Sakai-Sugimoto model

After fitting just m_{ρ} to fix $M_{\rm KK} = 949 \text{ MeV}$

- good prediction of higher vector and axial vector mesons masses,
- good prediction of deconfinement/chiral transition temperature,
- good prediction of glueball masses if "exotic mode" discarded;

after fitting f_π to also fix 't Hooft coupling at $\lambda=16.6$

- good prediction of rho decay rates
- good prediction of anomalous $m'_{
 ho} \propto N_c^{-\frac{1}{2}} \lambda M_{\rm KK}$
- $\bullet\,$ narrow partial width $glueball \rightarrow \pi\pi$, quite compatible with experimental data
- strong suppression of $glueball \rightarrow 4\pi$, in particular $\rightarrow 4\pi^0$

Warrants further studies!

Plans:

- inclusion of nonzero mass for strange quark
- mixing with quarkonia (suppressed by $N_c^{-\frac{1}{2}}$)
- medium effects (finite baryon density)

[S. Janowski, F. Giacosa & D. Rischke, arXiv:1408.4921] extended Linear Sigma Model (eLSM) with dilaton as effective glueball field identifies now the narrow state $f_0(1710)$ as almost pure glueball

[S. Janowski, F. Giacosa & D. Rischke, arXiv:1408.4921] extended Linear Sigma Model (eLSM) with dilaton as effective glueball field identifies now the narrow state $f_0(1710)$ as almost pure glueball

but needs very large gluon condensate to have narrow glueball width: $C^4 \equiv \langle \frac{\alpha_s}{\pi} F_{\mu\nu}^2 \rangle \sim (1.8 \,\text{GeV})^4$

whereas sum rules and lattice give $C \sim 0.3 \dots 0.6 \, {
m GeV}$

<ロ> (日) (日) (日) (日) (日) (日) (0) (0)

[S. Janowski, F. Giacosa & D. Rischke, arXiv:1408.4921] extended Linear Sigma Model (eLSM) with dilaton as effective glueball field identifies now the narrow state $f_0(1710)$ as almost pure glueball

but needs very large gluon condensate to have narrow glueball width: $C^4 \equiv \langle \frac{\alpha_s}{\pi} F_{\mu\nu}^2 \rangle \sim (1.8\,{\rm GeV})^4$ whereas sum rules and lattice give $C \sim 0.3\dots 0.6\,{\rm GeV}$

Gluon condensate in Witten-Sakai-Sugimoto model calculated in [Kanitscheider, Skenderis & Taylor JHEP 0809] as $C^4 \equiv \langle \frac{\alpha_s}{\pi} F_{\mu\nu}^2 \rangle = \frac{2}{3^7 \pi^4} N_c \lambda M_{\rm KK}^4 \simeq (0.28 \, {\rm GeV})^4$

while we find very narrow glueball widths $\Gamma/M\propto\lambda^{-1}N_c^{-2}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回日 のの()

[S. Janowski, F. Giacosa & D. Rischke, arXiv:1408.4921] extended Linear Sigma Model (eLSM) with dilaton as effective glueball field identifies now the narrow state $f_0(1710)$ as almost pure glueball

but needs very large gluon condensate to have narrow glueball width: $C^4 \equiv \langle \frac{\alpha_s}{\pi} F_{\mu\nu}^2 \rangle \sim (1.8\,{\rm GeV})^4$ whereas sum rules and lattice give $C \sim 0.3\dots 0.6\,{\rm GeV}$

Gluon condensate in Witten-Sakai-Sugimoto model calculated in [Kanitscheider, Skenderis & Taylor JHEP 0809] as $C^4 \equiv \langle \frac{\alpha_s}{\pi} F_{\mu\nu}^2 \rangle = \frac{2}{3^7 \pi^4} N_c \lambda M_{\rm KK}^4 \simeq (0.28 \,{\rm GeV})^4$

while we find very narrow glueball widths $\Gamma/M \propto \lambda^{-1} N_c^{-2}$

suggests that gluon condensate not so simply related to parameters of eLSM

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回日 のの()