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Problem setting

• Initial condition: a very small hot droplet in the state of

thermal equilibrium with zero viscosity when the

thermalization was happen very quickly at very initial

moments of interaction.
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Problem setting

• Calculate σrθ viscosity of the 2-D charged and very dense

drop in the external field;

• The drop is very small r < 1 fm , charged and initially it is in

the state of local equilibrium;

• The drop is in an external field, for 2-D drop the field is a

electrical one only;

• The drop is unstable and we consider a process of the

drop’s expansion/compression basing on the microscopic

description of the process;

• Conclusion: we need to solve Vlasov equation for the

time-dependent distribution function.
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Plasma parameters

• Coulomb coupling parameter with a as some

characteristic length:

Γ =
Up

Ekin

∝
q2

a kB T
; a ∝

(

3

4πn

)1/3

,

with Γ ≥ 1 as a a strongly interacting plasma, and Γ < 1 as

a weekly interacting plasma;
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• Coulomb coupling parameter with a as some

characteristic length:

Γ =
Up

Ekin

∝
q2

a kB T
; a ∝

(

3

4πn

)1/3

,

with Γ ≥ 1 as a a strongly interacting plasma, and Γ < 1 as

a weekly interacting plasma;

• Our parameters:

m ∝ 1/a :
q2

amc2
∝

q2

c2
∝ Γ

a kB T

c2
< 1 ;

QExtq

amc2
≈

UExt
p

Ekin0

< 1
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External field configuration

• In the rest frame of the drop:

∆ϕ −
1

c2
∂2 ϕ

∂2 t
−

ϕ

r2DExt

= − 4π q n dVExt δ(~r − ~rs(t))

• Solution for the external field:

ϕ(~r, t) =
QExt

2π2

∫

d2k⊥ ek⊥(r⊥ − b)
∫

∞

−∞

ekz(z− v t)

k2
⊥
+ k2

z/γ + 1/r2DExt

where ~r = (r⊥, z) is position of the hot drop and the

position of the incident matter is given by ~rs = (b, vt) with

r⊥ = (rx, ry) , b = (bx, by).
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External field configuration

• At the relativistic limit when v ≈ c:

Az(~r, t) = ϕ(~r, t) = 2QExt δ(z − ct )K0(|r⊥ − b|/rD)

Ax(~r, t) = Ay(~r, t) = 0 .

• After a gauge transform

f = − 2QExt θ(z − ct)K0(|r⊥ − b|/rD)

ϕ(~r, t) = Az(~r, t) = 0

Ax(~r, t) = − 2QExt θ(z − ct) ∂x K0(|r⊥ − b|/rD)

Ay(~r, t) = − 2QExt θ(z − ct) ∂y K0(|r⊥ − b|/rD)
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External field configuration

• Cylindrical coordinates

Ar(~r, t) = Ax(~r, t) cos θ + Ay(~r, t) sin θ

Ar(~r, t) = −2QExtθ(τ)
∂K0(|r − b|/r0D)

∂r
= −2

QExt

r0D

∂K0(ξ0)

∂ξ0
θ(τ)

with τ = ct and ξ0 = r
r0D

.

• Electrical field:

Erext(r, τ) = − 2
QExt

r0D

∂K0(ξ0)

∂ξ0
δ(τ) = 2

QExt

r0D
K1(ξ0) δ(τ)

Transport properties – p. 7



Vlasov equation

• Usual form:

1

ζr

∂ fs
∂ τ

+
∂ fs
∂r

= −
q

c ζr
(Ers − Erext )

∂ fs
∂pr

, ζr = vr/c

• Integral form

fs(r, ~ζ, τ) = −
q

cζr

∫

dr
′

dτ
′

E (τ − τ
′

, r − r
′

) ·

·
(

Ers(r
′

, τ
′

)− Erext(r
′

, τ
′

)
) ∂ fs(r

′

, ~ζ, τ
′

)

∂pr(ζr)
+ f0(r − ζrτ, ~ζ) ,

with E = ζr θ(τ) δ( r − ζr τ )
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Vlasov equation

• Final expression

fs(r, ~ζ, τ) = −
4 π q2 n

rc

∫ τ

0
dτ

′ ∂fs(r − ~ζ(τ − τ
′

), ~ζ, τ
′

)

∂pr(ζr)
·

·
∫ r−ζr(τ−τ

′

)

dzz
∫

fs(z, v
′

r, v
′

θ, τ
′

)d2v
′

+

+
2 q QExt

c r0D
K1(ξ0 − ζr

τ

r0D
)
∂ fs0(r − ζrτ, ~ζ)

∂pr(ζr)
+ f0(r − ζrτ, ~ζ)

• At τ = 0 we have

fs0(r, pr) −
2 q QExt

c r0D
K1(ξ0 )

∂ fs0(r, pr)

∂pr(ζr)
= f0(r, pr)
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Vlasov equation

• Initial conditions:

fs0(r, ~ζ) =
∞
∑

i=0

F s0
i Λi

0 , Λ0 =
2 q QExt

mc2r0D
≈

U ext
p

Ekin

and in the first two orders of the approximation:

fs0(r, ~ζ) = f0(r, ~ζ) + Λ0 K1(ξ0 )
∂ f0(r, ~ζ)

∂ζr

• Solution of the equation:

fs(r, ~ζ, τ) =
∞
∑

i=0

fsi(r, ~ζ) τ
i
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Distribution function

• First order approximation:

fs1(r, ~ζ) = −ζr
∂f0(r, ~ζ)

∂r
− r2Λ

∂f0(r, ~ζ)

∂ζr
−

− ζr Λ0 K1(ξ0)
∂2 f0(r, ~ζ)

∂ζr∂r
− r2 ΛΛ0 K1(ξ0)

∂2 f0(r, ~ζ)

∂ζ2r

where Λ = 2πq2n
rmc2

.

• Applicability of this approximation scheme:

r2 Λ τ < 1 or Up /mc2 < 1
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Initial distribution function

• Initial equilibrium distribution function

f0(r, ~p) =
(

m

2π

)

δ(H⊥ − ωrPθ − kT⊥)G(pz) ,
∫

∞

−∞

G(pz) dpz = 1

where
(

m

2π

∫

∞

−∞

dvθ

∫

∞

−∞

dvrδ(H⊥ − ωrPθ − kT⊥)
)

r=0
= 1 ,

H⊥ =
1

2m

(

p2r + p2θ
)

+ qΦs0 ,

Pθ = r ( pθ − mωc r / 2 ) , ωc =
|q|B0

mc
, sq =

8 π q2

mω2
c

,

r2b =
2kT⊥/m

(ω+
r − ωr) (ωr − ω−

r )
, ω±

r =
ωc

2
{1 ± (1 − n sq)

1/2 } .
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Transport properties

• Radial velocity:

〈 vr 〉 =

∫

d2v vr fs
∫

d2v fs
= −cΛ0K1(ξ0 ) + τ

c r

r2b

(

2 k T⊥

mc2
+

2πq2n r2b
mc2

)

• Azimuthal flow velocity:

〈 vθ 〉 =

∫

d2v vθ fs
∫

d2v fs
= ωr r + τ Λ0 K1 ωr

• Transverse shear Viscosity coefficient:

σr,θ = nm
∫

d2v ( vr − 〈 vr 〉) ( vθ − 〈 vθ 〉) = nmτ c ( Λ0 K1 )
2
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Shear viscosity

• We have an anomalous viscosity, see references, where τ is

not a mean free path:

τ ∝ h̄ /m c , ηmax
rθ ∝ h̄ n ( Λ0 K1 )

2 ≈ h̄ n

(

U ext
p

Ekin

)2

• The entropy of the process remains constant,

s = s0 = const, therefore the ratio

η / s = η / s0

changes only because a change of the viscosity

coefficient η and overall ratio remain small.
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Summary:

• Shear viscosity arises as ”anomalous” in the Vlasov

equation framework for the non-equilibrium distribution

function;
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Summary:

• Shear viscosity arises as ”anomalous” in the Vlasov

equation framework for the non-equilibrium distribution

function;

• Shear viscosity depends on the external field value and

changes from zero to some maximum value but remaining

small anyway;

• The ratio of viscosity to the entropy also changes from zero

to some small value, the entropy remains constant during

all process of drop’s expansion/compression.

• For 3-D case of drop’s expansion/compression with

magnetic field included (in calculation) results must be

similar.
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