Poincaré Invariance in pNRQCD

Sungmin Hwang
in collaboration with Matthias Berwein, Nora Brambilla, Antonio Vairo
Technische Universität München (T30f/T39)
sungmin.hwang@tum.de
12.09.2014, St. Petersburg

Wilson coefficients in EFTs

Example: Expand QCD Lagrangian in $1 / \mathrm{M}$

$$
\begin{equation*}
\mathcal{L}_{N R Q C D}=\phi^{\dagger} \mathcal{O} \phi+\chi^{\dagger} \mathcal{O}^{\prime} \chi+\cdots \tag{1}
\end{equation*}
$$

- Operators \mathcal{O} and \mathcal{O}^{\prime} come with Wilson coefficients.
- ... includes terms other than bilinear ones.
- How do we fix or find the relations between the coefficients?

Poincaré Invariance

The relations are found by imposing Poincaré invariance of the corresponding EFTs

- Construct the Poincaré generators of the EFTs.
- Impose the algebra conditions up to the desired order in $1 / M$.
- Constraints yield relations between the coefficients.
- Calculations done up to $\mathcal{O}(1 / M)$ in NRQCD. [Brambilla, Gromes, Vairo, 2003]

Outline

One can go to higher orders in $1 / M$ with a simpler method, the little group formalism in particular, rather than directly expanding the Poincaré generators in $1 / M$.

- Little Group and Induced Representation
- Wilson Coefficients in NRQCD
- Poincaré Invariance in pNRQCD
- Wilson Coefficients in pNRQCD
- Open Issues

Quantum Field Theory

A generic quantum field transforms under the Lorentz group as

$$
\begin{equation*}
\phi_{a} \rightarrow M(\Lambda)_{a b} \phi_{b}\left(\Lambda^{-1} x\right) \tag{2}
\end{equation*}
$$

$M(\Lambda)$ being a representation of the Lorentz group. In the infinitesimal form

$$
\begin{equation*}
\delta \phi=i\left(a_{0} h-\mathbf{a} \cdot \mathbf{p}-\boldsymbol{\theta} \cdot \mathbf{j}+\boldsymbol{\eta} \cdot \mathbf{k}\right) \phi \tag{3}
\end{equation*}
$$

and our interest lies upon the boost generator

$$
\begin{equation*}
\mathbf{k}=\mathbf{r} h-t \mathbf{p} \pm i \boldsymbol{\Sigma} \tag{4}
\end{equation*}
$$

a generic quantum field transfroms under the spatial boost \mathcal{B} as

$$
\begin{equation*}
\phi_{a}(x) \rightarrow\left(e^{\mp \eta \cdot \boldsymbol{\Sigma}}\right)_{a b} \phi_{b}\left(\mathcal{B}^{-1} x\right) \tag{5}
\end{equation*}
$$

Little group element

The little group element for the infinitesimal boost is given by

$$
\begin{align*}
W(\mathcal{B}(\eta), p) & \equiv L(\mathcal{B}(\eta) p)^{-1} \mathcal{B}(\eta) L(p) \\
& =1+\frac{i}{2}\left[\frac{1}{M+v \cdot p}\left(\eta^{\alpha} p_{\perp}^{\beta}-p_{\perp}^{\alpha} \eta^{\beta}\right) \mathcal{J}_{\alpha \beta}\right]+\mathcal{O}\left(\eta^{2}\right) \tag{6}
\end{align*}
$$

where $p_{\perp}^{\beta} \equiv p^{\beta}-(v \cdot p) v^{\beta}$ and

$$
\begin{align*}
\mathcal{J}_{1 / 2}^{\alpha \beta} & =\frac{i}{4}\left[\gamma^{\alpha}, \gamma^{\beta}\right] \\
\left(\mathcal{J}^{\alpha \beta}\right)_{\mu \nu} & =i\left(g_{\mu}^{\alpha} g_{\nu}^{\beta}-g_{\mu}^{\beta} g_{\nu}^{\alpha}\right) \tag{7}
\end{align*}
$$

Induced representation [Heinonen, Hill, Solon, 2012]

And we postulate the transformation of a massive field with mass M through the induced representation

$$
\begin{equation*}
\phi_{a}(x) \rightarrow D[W(\Lambda, i \partial)]_{a b} \phi_{b}\left(\Lambda^{-1} x\right) \tag{8}
\end{equation*}
$$

where D is the representation of the little group, and W is the little group element associated with the Lorentz transformation Λ. The transformation of the field in particular under the Lorentz boost is,

$$
\begin{equation*}
\phi_{a}(x) \rightarrow \exp \left[\mp \boldsymbol{\eta} \cdot\left(\frac{\boldsymbol{\Sigma} \times \boldsymbol{\partial}}{M+\sqrt{M^{2}-\boldsymbol{\partial}^{2}}}\right)\right]_{a b} \phi_{b}\left(\mathcal{B}^{-1} x\right) \tag{9}
\end{equation*}
$$

when the reference frame is chosen $v=(1,0,0,0)$.

Non-relativistic expansion (1/3)

Up until now, we have figured out the boost transformation of a relativistic field in the little group formalism. Let us combine this with a non-relativistic expansion so that we can apply it later to NRQCD and pNRQCD. Extract the rest mass by

$$
\begin{equation*}
\phi_{a}(x)=e^{-i M t} \phi_{a}^{\prime}(x) \tag{10}
\end{equation*}
$$

and take the non-relativisitic field normalization

$$
\begin{equation*}
\phi_{a}(x)=e^{-i M t}\left(\frac{M^{2}}{M^{2}-\partial^{2}}\right)^{1 / 4} \phi_{a}^{\prime \prime}(x) \tag{11}
\end{equation*}
$$

then how does this non-relativistic field $\phi_{a}^{\prime \prime}(x)$ transform under the Lorentz boost?

Non-relativistic expansion (2/3)

From the "inverse" non-relativistic normalization

$$
\begin{equation*}
\phi_{a}^{\prime \prime}(x)=\left(\frac{M^{2}}{M^{2}-\partial^{2}}\right)^{-1 / 4} e^{i M t} \phi_{a}(x) \tag{12}
\end{equation*}
$$

we can extract the Lorentz boost of the (free-) field

$$
\begin{align*}
\phi_{a}^{\prime \prime}(x) \rightarrow & \left(\frac{M^{2}}{M^{2}-\boldsymbol{\partial}^{2}}\right)^{-1 / 4} e^{i M t} \\
& \times \exp \left[\mp \boldsymbol{\eta} \cdot\left(\frac{\boldsymbol{\Sigma} \times \boldsymbol{\partial}}{M+\sqrt{M^{2}-\boldsymbol{\partial}^{2}}}\right)\right]_{a b} \phi_{b}\left(\mathcal{B}^{-1} x\right) \\
= & \left(\frac{M^{2}}{M^{2}-\boldsymbol{\partial}^{2}}\right)^{-1 / 4} e^{i M t} \exp \left[\mp \boldsymbol{\eta} \cdot\left(\frac{\boldsymbol{\Sigma} \times \boldsymbol{\partial}}{M+\sqrt{M^{2}-\boldsymbol{\partial}^{2}}}\right)\right]_{a b} \\
& \times e^{-i M t^{\prime}}\left(\frac{M^{2}}{M^{2}-\boldsymbol{\partial}^{\prime 2}}\right)^{1 / 4} \phi_{b}^{\prime \prime}\left(x^{\prime}\right) \tag{13}
\end{align*}
$$

where $x^{\prime} \equiv \mathcal{B}^{-1} x$.

Non-relativistic expansion (3/3)

Therefore, the Lorentz transformation (boost) of the non-relativistic field in $1 / \mathrm{M}$ expansion is given by

$$
\begin{align*}
& \phi_{a}^{\prime \prime}(x) \rightarrow\left\{1+i M \boldsymbol{\eta} \cdot \mathbf{x}-\frac{i \boldsymbol{\eta} \cdot \boldsymbol{\partial}}{2 M}-\frac{i \boldsymbol{\eta} \cdot \boldsymbol{\partial} \boldsymbol{\partial}^{2}}{4 M^{3}}\right. \\
& \left.+\frac{(\boldsymbol{\Sigma} \times \boldsymbol{\eta}) \cdot \boldsymbol{\partial}}{2 M}\left[1+\frac{\boldsymbol{\partial}^{2}}{4 M^{2}}\right]+\mathcal{O}\left(1 / M^{4}\right)\right\} \phi_{a}^{\prime \prime}\left(\mathcal{B}^{-1} x\right) \tag{14}
\end{align*}
$$

and this is the transformation of the non-interacting and non-relativistic field. Can this be implemented into the interacting theory?

Transformation of the interacting theory

It is natural to postulate the transformation of the field just by promoting ∂ to D

$$
\begin{equation*}
\phi_{a}(x) \quad \rightarrow \quad D[W(\Lambda, i D)]_{a b} \phi_{b}\left(\Lambda^{-1} x\right) \tag{15}
\end{equation*}
$$

and the Lorentz boost is thereby given

$$
\begin{equation*}
\phi_{a}(x) \quad \rightarrow \quad \exp \left[\mp \boldsymbol{\eta} \cdot\left(\frac{\boldsymbol{\Sigma} \times \mathbf{D}}{M+\sqrt{M^{2}-\mathbf{D}^{2}}}\right)+\mathcal{O}(g)\right]_{a b} \phi_{b}\left(\mathcal{B}^{-1} x\right) \tag{16}
\end{equation*}
$$

in which $\mathcal{O}(g)$ contains all quantum corrections which vanish in the free-theory, so that the non-relativistic expansion is

$$
\begin{align*}
\phi_{a}^{\prime \prime}(x) & \rightarrow\left\{1+i M \boldsymbol{\eta} \cdot \mathbf{x}-c_{1} \frac{i \boldsymbol{\eta} \cdot \mathbf{D}}{2 M}-c_{2} \frac{i \boldsymbol{\eta} \cdot \mathbf{D D}^{2}}{4 M^{3}}+c_{3} \frac{(\boldsymbol{\Sigma} \times \boldsymbol{\eta}) \cdot \mathbf{D}}{2 M}\right. \\
& \left.+c_{4} \frac{(\boldsymbol{\Sigma} \times \boldsymbol{\eta}) \cdot \mathbf{D}}{2 M} \frac{\mathbf{D}^{2}}{4 M^{2}}+\mathcal{O}\left(g, 1 / M^{4}\right)\right\} \phi_{a}^{\prime \prime}\left(\mathcal{B}^{-1} x\right) \tag{17}
\end{align*}
$$

Non-relativistic QCD (NRQCD)

Let us apply this method to NRQCD, in particular. Integrating out the hard scale M from the full QCD Lagrangian, one obtains

$$
\begin{equation*}
\mathcal{L}_{N R Q C D}=\mathcal{L}_{\text {heavy }}(\phi, \chi)+\mathcal{L}_{\text {light }}(\psi) \tag{18}
\end{equation*}
$$

in which the light and heavy quarks are decoupled at the leading order, and we consider the heavy part of the Lagrangian, which contains the Pauli spinors of heavy quark ϕ and antiquark χ. Apply the Lorentz boost for the NR field and we observe

$$
\begin{equation*}
0=\delta \mathcal{L}_{\text {heavy }}=\frac{1}{M} \delta \mathcal{L}_{1}+\frac{1}{M^{2}} \delta \mathcal{L}_{2}+\frac{1}{M^{3}} \delta \mathcal{L}_{3}+\cdots \tag{19}
\end{equation*}
$$

up to total derivatives.

Wilson Coefficients in NRQCD

There exist other constraints

$$
\begin{equation*}
\left[k^{i}, k^{j}\right]=-i \epsilon^{i j k} J^{k} \tag{20}
\end{equation*}
$$

which fix the parameters in the boost generator of the non-relativistic field. Our results of fixing NRQCD boost coefficients ($c_{i}=1$, for $i \in\{1,2,3,4\}$) coincide with the literature [Heinonen, Hill, Solon, 2012], which simply implies that their ansatz on the interacting theory works. The reason why such ansatz works up to this order still remains to be answered.

pNRQCD - Energy Scale \& Power Counting

Potential non-relativistic QCD (pNRQCD) is derived by integrating out the relative momentum between quark and antiquark, $M v \sim 1 / r$ (with $v \ll 1$ and $\mathbf{r}=\mathbf{x}_{1}-\mathbf{x}_{2}$), from NRQCD; i.e., multipole expansion. Let $\mathbf{R}=\left(\mathbf{x}_{1}+\mathbf{x}_{2}\right) / 2$ (c.o.m. frame), then we have the following power counting scheme:

$$
\begin{align*}
\nabla_{r}, \frac{1}{r} & \sim M v \tag{21}\\
\partial_{0}, \nabla_{R}, A_{\mu} & \sim M v^{2} \tag{22}\\
\mathbf{E}, \mathbf{B} & \sim M^{2} v^{4} \tag{23}
\end{align*}
$$

pNRQCD - Degrees of freedom

Field contents:
I Quark-antiquark colour singlet S and octet O^{a} configuration
II 2×2 spin matrix $S_{i j}$, $O_{i j}^{a}$, for quark spin i and antiquark spin j
III Degrees of freedom depend on relative and COM coordinates as well as time; $S=S(t, \mathbf{R}, \mathbf{r}), O^{a}=O^{a}(t, \mathbf{R}, \mathbf{r})$
IV Multipole expanded gluon fields $A_{\mu}^{a}(t, \mathbf{R})$
Writing S and O^{a} as 3×3 matrices in colour space

$$
\begin{equation*}
S \rightarrow \frac{1}{\sqrt{3}} S I_{3}, \quad O^{a} \rightarrow O=\sqrt{2} O^{a} T^{a} \tag{24}
\end{equation*}
$$

so that $\operatorname{Tr}\left[S^{\dagger} S\right]=S^{\dagger} S, \operatorname{Tr}\left[O^{\dagger} O\right]=O^{a \dagger} O^{a}, \operatorname{Tr}\left[S^{\dagger} \mathbf{E} O\right]=S^{\dagger} \mathbf{E}^{a} O^{a}$.

pNRQCD - Lagrangian

And the Lagrangian up to order $M v^{3}$ (+ c.o.m. kinetic term):

$$
\begin{align*}
\mathcal{L}_{P N R Q C D}= & \operatorname{Tr}\left[S^{\dagger}\left(i \partial_{0}+\frac{\nabla_{R}^{2}}{4 M}+\frac{\nabla_{r}^{2}}{M}-V_{S}^{(0)}(r)+\frac{1}{M} V_{S}^{(1)}(r)\right) S\right. \\
& +O^{\dagger}\left(i D_{0}+\frac{\mathbf{D}_{R}^{2}}{4 M}+\frac{\nabla_{r}^{2}}{M}-V_{O}^{(0)}(r)+\frac{1}{M} V_{O}^{(1)}(r)\right) O \\
& +V_{A}(r)\left(S^{\dagger} \mathbf{r} \cdot \mathbf{E} O+\text { h.c. }\right) \\
& \left.+\frac{V_{B}(r)}{2}\left(O^{\dagger} \mathbf{r} \cdot \mathbf{E} O+O^{\dagger} O \mathbf{r} \cdot \mathbf{E}\right)\right] \tag{25}
\end{align*}
$$

We match this to NRQCD by the interpolating fields (for U being a Wilson line and $x_{1 / 2}=R \pm \frac{1}{2} r$):

$$
\begin{aligned}
& x_{j}^{\dagger}\left(x_{2}\right) U\left(x_{2}, x_{1}\right) \phi_{i}\left(x_{1}\right) \rightarrow Z_{S}^{(1)} S_{i j}+Z_{S}^{(2)} r \mathbf{r} \cdot g \mathbf{E}^{a} O_{i j}^{a}+\cdots \\
& \chi_{j}^{\dagger}\left(x_{2}\right) U\left(x_{2}, \mathbf{R}\right) T^{a} U\left(\mathbf{R}, x_{1}\right) \phi_{i}\left(x_{1}\right) \rightarrow Z_{O}^{(1)} O_{i j}^{a}+Z_{O}^{(2)} r \mathbf{r} \cdot g \mathbf{E}^{a} S_{i j}+\cdots
\end{aligned}
$$

Boost transformations in pNRQCD - $1 / 3$

Free quark and antiquark fields transform under the little group as

$$
\begin{align*}
\chi\left(t, \mathbf{r}_{2}\right) \rightarrow & \left(1-i M \boldsymbol{\eta} \cdot \mathbf{r}_{2}+\frac{i}{2 M} \boldsymbol{\eta} \cdot \nabla_{2}-\frac{1}{4 M} \boldsymbol{\eta} \cdot\left(\boldsymbol{\nabla}_{2} \times \boldsymbol{\sigma}\right)\right) \\
& \chi\left(t-\boldsymbol{\eta} \cdot \mathbf{r}_{2}, \mathbf{r}_{2}-\boldsymbol{\eta} t\right) \\
\phi\left(t, \mathbf{r}_{1}\right) \rightarrow & \left(1+i M \boldsymbol{\eta} \cdot \mathbf{r}_{1}-\frac{i}{2 M} \boldsymbol{\eta} \cdot \nabla_{1}+\frac{1}{4 M} \boldsymbol{\eta} \cdot\left(\boldsymbol{\nabla}_{1} \times \boldsymbol{\sigma}\right)\right) \\
& \phi\left(t-\boldsymbol{\eta} \cdot \mathbf{r}_{1}, \mathbf{r}_{1}+\boldsymbol{\eta} t\right) \tag{26}
\end{align*}
$$

Time discrepancy is solved by expanding the time arguments of the $Q \bar{Q}$ pair (define $t^{\prime}=t-\boldsymbol{\eta} \cdot \mathbf{R}, \mathbf{R}^{\prime}=\mathbf{R}-\eta t$, and $\mathbf{r}^{\prime}=\mathbf{r}$)

$$
\begin{align*}
& \chi\left(t-\boldsymbol{\eta} \cdot \mathbf{r}_{2}, \mathbf{r}_{2}-\boldsymbol{\eta} t\right)^{\dagger} \phi\left(t-\boldsymbol{\eta} \cdot \mathbf{r}_{1}, \mathbf{r}_{1}+\boldsymbol{\eta} t\right) \\
= & {\left[\left(1+\frac{1}{2} \boldsymbol{\eta} \cdot \mathbf{r}^{\prime} \partial_{t^{\prime}}\right) \chi\left(t^{\prime}, \mathbf{R}^{\prime}-\frac{1}{2} \mathbf{r}^{\prime}\right)\right]^{\dagger} } \\
& \left(1-\frac{1}{2} \boldsymbol{\eta} \cdot \mathbf{r}^{\prime} \partial_{t^{\prime}}\right) \phi\left(t^{\prime}, \mathbf{R}^{\prime}+\frac{1}{2} \mathbf{r}^{\prime}\right) \tag{27}
\end{align*}
$$

Boost transformations in pNRQCD - 2/3

As replacing the temporal derivatives by spatial derivatives via equations of motion, the transformed $Q \bar{Q}$ pair is given by

$$
\begin{align*}
& \chi^{\prime \dagger}\left(t, \mathbf{r}_{2}\right) \phi^{\prime}\left(t, \mathbf{r}_{1}\right)=\left(1+i M \boldsymbol{\eta} \cdot\left(\mathbf{r}_{1}+\mathbf{r}_{2}\right)-\frac{i}{2 M} \boldsymbol{\eta} \cdot\left(\boldsymbol{\nabla}_{1}+\boldsymbol{\nabla}_{2}\right)\right. \\
& -\frac{i}{4 M}(\boldsymbol{\eta} \cdot \mathbf{r})\left(\boldsymbol{\nabla}_{1}^{2}-\nabla_{2}^{2}\right)+\frac{1}{4 M} \boldsymbol{\eta} \cdot\left(\boldsymbol{\nabla}_{1} \times \boldsymbol{\sigma}^{(1)}+\boldsymbol{\nabla}_{2} \times \boldsymbol{\sigma}^{(2)}\right) \\
& \left.+\mathcal{O}\left(1 / M^{3}\right)\right) \chi^{\dagger}\left(t^{\prime}, \mathbf{r}_{2}^{\prime}\right) \phi\left(t^{\prime}, \mathbf{r}_{1}^{\prime}\right) \tag{28}
\end{align*}
$$

Thereafter, the singlet field transforms under the little group as

$$
\begin{align*}
& S^{\prime}(t, \mathbf{R}, \mathbf{r})=\left(1+2 i M \boldsymbol{\eta} \cdot \mathbf{R}-\frac{i}{4 M} \boldsymbol{\eta} \cdot \boldsymbol{\nabla}_{R}-\frac{i}{4 M}\left\{\boldsymbol{\eta} \cdot \mathbf{r}, \boldsymbol{\nabla}_{R} \cdot \nabla_{r}\right\}\right. \\
& +\frac{1}{8 M} \boldsymbol{\eta} \cdot \nabla_{R} \times\left(\boldsymbol{\sigma}^{(1)}+\boldsymbol{\sigma}^{(2)}\right)+\frac{1}{4 M} \boldsymbol{\eta} \cdot \boldsymbol{\nabla}_{r} \times\left(\boldsymbol{\sigma}^{(1)}-\boldsymbol{\sigma}^{(2)}\right) \\
& \left.+\mathcal{O}\left(1 / M^{3}\right)\right) S\left(t^{\prime}, \mathbf{R}^{\prime}, \mathbf{r}^{\prime}\right) \tag{29}
\end{align*}
$$

Boost transformations in pNRQCD - 3/3

And similarly the octet field is transformed as

$$
\begin{align*}
& O^{\prime}(t, \mathbf{R}, \mathbf{r})=\left(1+2 i M \boldsymbol{\eta} \cdot \mathbf{R}-\frac{i}{4 M} \boldsymbol{\eta} \cdot \mathbf{D}_{R}-\frac{i}{4 M}\left\{\boldsymbol{\eta} \cdot \mathbf{r}, \mathbf{D}_{R} \cdot \nabla_{r}\right\}\right. \\
& \left.+\frac{1}{8 M} \boldsymbol{\eta} \cdot \mathbf{D}_{R} \times\left(\boldsymbol{\sigma}^{(1)}+\boldsymbol{\sigma}^{(2)}\right)+\frac{1}{4 M} \boldsymbol{\eta} \cdot \nabla_{r} \times\left(\boldsymbol{\sigma}^{(1)}-\boldsymbol{\sigma}^{(2)}\right)\right) \\
& \times O\left(t^{\prime}, \mathbf{R}^{\prime}, \mathbf{r}^{\prime}\right)-\frac{i}{8} k_{O O a}^{(0,2)}(r)(\boldsymbol{\eta} \cdot \mathbf{r})\left(\mathbf{r} \cdot\left[g \mathbf{E}, O\left(t^{\prime}, \mathbf{R}^{\prime}, \mathbf{r}^{\prime}\right)\right]\right) \\
& -\frac{i}{8} k_{O O b}^{(0,2)}(r) \mathbf{r}^{2}\left(\boldsymbol{\eta} \cdot\left[g \mathbf{E}, O\left(t^{\prime}, \mathbf{R}^{\prime}, \mathbf{r}^{\prime}\right)\right]\right)+\ldots \tag{30}
\end{align*}
$$

where the coefficients $k_{O O a}^{(0,2)}$ and $k_{O O b}^{(0,2)}$ are determined under the condition that the Lagrangian is invariant under the Lorentz transformation.

Constraints: singlet sector (1/2)

From the singlet sector of the pNRQCD

$$
\begin{align*}
& \mathcal{L}_{S}=S^{\dagger}\left(i \partial_{0}+\frac{1}{2 M}\left\{c_{S}^{(1,-2)}, \nabla_{r}^{2}\right\}+\frac{c_{S}^{(1,0)}}{4 M} \nabla_{R}^{2}-V_{S}^{(0)}-\frac{V_{S}^{(1)}}{M}\right. \\
& +\frac{V_{P^{2} S a}}{8 M^{2}} \nabla_{R}^{2}+\frac{1}{2 M^{2}}\left\{\nabla_{r}^{2}, V_{p^{2} S b}\right\}+\frac{V_{L^{2} S_{a}}}{4 M^{2} r^{2}}\left(\mathbf{r} \times \nabla_{R}^{2}\right)^{2} \\
& +\frac{V_{L^{2} S b}}{4 M^{2} r^{2}}\left(\mathbf{r} \times \nabla_{r}\right)^{2}-\frac{V_{S_{12} S}}{M^{2} r^{2}}\left(3\left(\mathbf{r} \cdot \boldsymbol{\sigma}^{(1)}\right)\left(\mathbf{r} \cdot \boldsymbol{\sigma}^{(2)}\right)-\mathbf{r}^{2} \boldsymbol{\sigma}^{(1)} \cdot \boldsymbol{\sigma}^{(2)}\right) \\
& -\frac{V_{S^{2} S}}{4 M^{2}} \boldsymbol{\sigma}^{(1)} \cdot \boldsymbol{\sigma}^{(2)}+\frac{i V_{L S S a}}{4 M^{2}}\left(\mathbf{r} \times \nabla_{R}\right) \cdot\left(\boldsymbol{\sigma}^{(1)}-\boldsymbol{\sigma}^{(2)}\right) \\
& \left.+\frac{V_{L S S b}}{4 M^{2}}\left(\mathbf{r} \times \nabla_{r}\right) \cdot\left(\boldsymbol{\sigma}^{(1)}+\boldsymbol{\sigma}^{(2)}\right)\right) S \tag{31}
\end{align*}
$$

Constraints: singlet sector (2/2)

By imposing Lorentz invariance, $\delta \mathcal{L}_{S}=0$, in which

$$
\begin{aligned}
\delta \mathcal{L}_{S}= & S^{\dagger}\left(i\left(1-c_{S}^{(1,0)}\right) \boldsymbol{\eta} \cdot \nabla_{R}-\frac{1}{2 M}\left(1-c_{S}^{(1,0)}\right) \boldsymbol{\eta} \cdot \nabla_{R} \partial_{0}\right. \\
& -\frac{i}{M}\left(V_{p^{2} S_{a}}+V_{L^{2} S_{a}}+\frac{1}{2} V_{S}^{(0)}\right) \boldsymbol{\eta} \cdot \nabla_{R} \\
& +\frac{i}{M r^{2}}\left(V_{L^{2} S_{a}}+\frac{r}{2} \partial_{r} V_{S}^{(0)}\right)(\boldsymbol{\eta} \cdot \mathbf{r})\left(\mathbf{r} \cdot \nabla_{R}\right) \\
& \left.+\frac{1}{2 M}\left(V_{L S S_{a}}+\frac{1}{2 r} \partial_{r} V_{S}^{(0)}\right) \boldsymbol{\eta} \cdot\left(\boldsymbol{\sigma}^{(1)}-\boldsymbol{\sigma}^{(2)}\right) \times \mathbf{r}\right) S(32)
\end{aligned}
$$

the Wilson coefficients are constrained

$$
\begin{align*}
& c_{S}^{(1,0)}=1, \quad V_{p^{2} S_{a}}+V_{L^{2} S_{a}}+\frac{1}{2} V_{S}^{(0)}=0 \\
& V_{L^{2} S a}=-\frac{r}{2} \partial_{r} V_{S}^{(0)}, \quad V_{L S S_{a}}=-\frac{1}{2 r} \partial_{r} V_{S}^{(0)} \tag{33}
\end{align*}
$$

matches with the literature [Brambilla, Gromes, Vairo, 2003].

Summary and Outlook

Summary

- Induced representation of the non-relativistic field
- Wilson coefficients in NRQCD
- Wilson coefficients in pNRQCD (singlet sector)

Outlook

- Higher order terms in NRQCD
- Higher order terms in pNRQCD (in progress)
- Dark matter with heavy mass (Hill's group in UChicago)
- Sterile neutrinos (in preparation)
- (Group theoretic) Reason why this method is valid remains to be answered

References

N. Brambilla, D. Gromes, and A. Vairo (2003)

Poincaré invariance constrains on NRQCD and potential NRQCD Phys. Lett. B 576, 314-327.

R J. Heinonen, R. Hill, and M. Solon (2012)
Lorentz invariance in heavy particle effective theories Phys. Rev. D 86, 094020 (2012).

