# Gravitational waves from spinning neutron stars

Ian Jones

Mathematical Sciences, University of Southampton, UK



◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶

## Context: Gravitational wave searches



- LIGO, Virgo & GEO600 detectors have collected large amounts of data at/near initial design sensitivity.
- $ightarrow \sim$  100 papers published, all upper limits.
- Advanced LIGO and Virgo will improve astrophysical reach; aLIGO expected to take data late 2015.

- Motivation behind gravitational wave astronomy is two-fold:
  - 1. To confirm a key prediction of General Relativity
  - 2. To probe physics in extreme regimes
- I will talk about GWs from spinning neutron stars

#### Gravitational wave emission form 'mountains'

A neutron star rotating steadily with spin f<sub>spin</sub> at distance r radiates GWs:

$$h = 3 \times 10^{-29} \left(\frac{\epsilon}{10^{-7}}\right) \left(\frac{f_{\rm spin}}{10 \, {\rm Hz}}\right)^2 \left(\frac{1 \, {\rm kpc}}{r}\right),$$

where the ellipticity  $\epsilon = (I_{yy} - I_{xx})/I_{zz}$  may be non-zero due to:

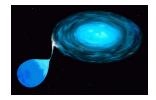
- 1. Strains in solid crust, or possibly core, or
- 2. Magnetic forces.
- Emission is at 2f<sub>spin</sub> (although can get harmonic at f<sub>spin</sub> if superfluid pinning occurs and is misaligned with body-axes (DIJ 2010)).

#### Maximum/likely values of e depends upon physics of high density interior.



Possible targets include:

- Known isolated pulsars
- Accreting neutron stars
- Central Compact Objects
- 'Gravitars'




The Crab nebula (HST)



Possible targets include:

- Known isolated pulsars
- Accreting neutron stars
- Central Compact Objects
- 'Gravitars'



Artist's impression!



Possible targets include:

- Known pulsars
- Accreting neutron stars
- Central Compact Objects
- 'Gravitars'

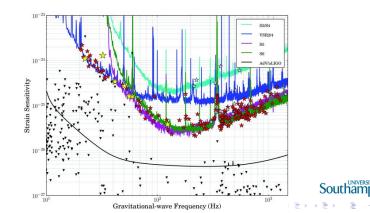




Possible targets include:

- Known pulsars
- Accreting neutron stars
- Central Compact Objects
- 'Gravitars'



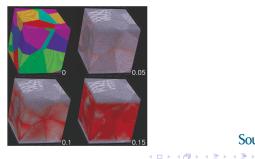

Not seen electromagnetically!



・ロット (雪) (日) (日)

# **Direct upper limits**

- Direct upper limits already obtained, from non-detection of GWs by LIGO/Virgo.
- 'Spin-down limit' beaten for two pulsars (Aasi et al (2014); see Figure).
- ▶ For Crab, no more than  $\sim$  1% of spin-down energy going into gravitational wave channel,  $\epsilon \lesssim 10^{-4}$ .
- ► For Vela, no more than  $\sim$  10% of spin-down energy going into gravitational wave channel,  $\epsilon \lesssim 6 \times 10^{-4}$ .
- Need theoretical modelling to say when upper limits start to get interesting.




#### Elastic mountains: 'normal' neutron stars

Maximum elastic mountain size determined by balance between gravitational and elastic forces:

$$\epsilon \approx \frac{\mu V_{\text{crust}}}{GM^2/R} \times u_{\text{break}} \approx 10^{-6} \left(\frac{u_{\text{break}}}{10^{-1}}\right)$$

- Shear modulus has long been known to be  $\lesssim 10^{29}$  erg cm<sup>-3</sup>.
- Recent large-scale molecular dynamics of Horowitz & Kadau (2009) indicate very high breaking strain, θ<sub>max</sub> ~ 0.1 (see Figure)
- Plastic flow may relax crust on longer timescales (Chugunov & Horowitz 2010).





#### Elastic mountains: more exotic scenarios

- Exotic states of matter *might* lead to solid cores giving larger maximum allowed ellipticites.
- ▶  $\epsilon_{max} \sim 10^{-1}$  possible for solid quark stars,  $10^{-3}$  for hybrid stars (Johnson-McDaniel & Owen 2013).
- Crystalline colour superconducting quark matter also relevant (Mannarelli et al 2007) leading to similarly large maximum ellipticities (Haskell et al 2007 and Lin 2007)
- Lack of detection of such a large mountain *does not* rule out such exotic states of matter ...
- ... need estimates of likely ellipticities, not just upper bounds!



(日) (日) (日) (日) (日) (日) (日)

#### Magnetic mountains

 Magnetic field lines have an effective tension, and deform star (Chandrasekhar & Fermi 1953). Roughly,

$$\epsilon \sim \frac{\int B^2 dV}{GM^2/R} \sim 10^{-12} \left(\frac{B}{10^{12}\,\mathrm{G}}\right)^2$$

If protons form type II superconductor, magnetic field confirmed to fluxtubes. Effect of this is to increase tension by a factor of H<sub>c</sub>/B, where H<sub>c</sub> ~ 10<sup>15</sup> G, increasing ellipticity:

$$\epsilon \sim 10^{-9} \frac{B}{10^{12} \,\mathrm{G}}.$$

Either way, ellipticities are small, GWs undetectable.

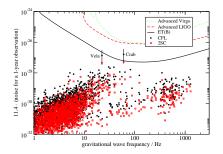


# 'Exotic' magnetic mountains

- If CFL or 2SC phases occur in neutron star cores, can get colour-magnetic flux tubes (lida & Baym 2002, lida 2005, Alford & Sedrakian 2010).
- This leads to flux tube tension ~ 10<sup>3</sup> larger than in protonic superconductivity case. Glampedakis, DIJ & Samuelsson (2012) estimate ellipticity:

$$\epsilon_{\rm CFL} \sim 10^{-7} \left(\frac{f_{\rm vol}}{1/2}\right) \left(\frac{B_{\rm int}}{10^{12}\,\rm G}\right) \left(\frac{\mu_{\rm q}}{400\,\rm MeV}\right)^2, \label{eq:ecfl}$$

where


- *f*<sub>vol</sub> = fraction of stellar volume in deconfined state,
- ► B<sub>int</sub> = internal magnetic field strength,
- $\mu_q = quark$  chemical potential.

Can allow for internal field to be some multiple of external field:

$$B_{\text{int}} = \alpha B_{\text{ext}}.$$

#### 'Exotic' magnetic mountains cont ...

- For given stellar parameters f<sub>vol</sub>, α and μ<sub>q</sub> can then balance observed spin-down of pulsars against combined GW & EM torque to estimate B<sub>int</sub> and hence h.
- GW amplitudes scale as  $h \sim f_{\rm vol} \alpha \mu_q^2$ ; for sensible values ( $f_{\rm vol} = 0.5$ ,  $\alpha = 2$ ,  $\mu_q = 400$  MeV) obtain:



Clearly of interest for Crab and Vela pulsars.



# Summary

- Search for GWs from spinning neutron stars ongoing.
- Maximum/likely levels of emission sensitive to high density equation of state.
- Key outstanding issues:
  - 1. What determine *realistic* level of ellipticity of solid phase(s)?
  - 2. What is strength and geometry of internal magnetic field?
  - 3. In the event of a detection, how can we distinguish between the various deformation mechanisms?

New data late ~ 2015. Watch this space!

