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Challenging Opportunities

QCD phase transitions 
□ External parameters analogous to T, µB, B, E, etc… 
□B-field like effects on the chiral properties 
□No sign problem in the lattice-QCD simulation 
QCD-based vacuum structures induced by R 
□Quantum phase transition of chiral restoration 
□Deconfinement??? (too difficult to analyze so far) 
“Simplest” real-time physics problem 
□E-field like effects on the particle production 
□ Early Universe and Black Holes (future extension) 
□Application to the thermalization in HIC
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Chemical Potential  μNuclear Superfluid B

B

Magnetic Catalysis 
Magnetic Inhibition 
Chiral Spirals

µI

Pion Condensation  
FFLO States (with mismatched Fermi surfaces)

R
Chiral Gap Effect (this talk) 
Many other unknowns (future problems)
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“Solvable” Studies
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Inagaki-Muta-Odintsov (1997) 
and many references therein

de Sitter space

Anti de Sitter space

Maximally symmetric  
Constant scalar curvature (R > 0)

Maximally symmetric  
Constant scalar curvature (R < 0)

Fermion sector can be exactly treatable  
Chiral models in the MFA can be “exactly solvable”
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“Solvable” Studies
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Inagaki-Muta-Odintsov (1997) 
and many references therein

de Sitter space

Anti de Sitter space
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Figure 16: Behavior of the effective potential in H2.

In two dimensions the effective potential (135) reduces to [29]

V D=2(σ)

µ2
=

[
1

2λ
+

tr1

4π

(
ln

1

aµ
− 1

)](
σ

µ

)2

+
tr1

4πµ2

∫ σ

0
dss [ψ(1 + sa) + ψ(sa)] . (136)

Evaluating the effective potential (136) numerically we easily see that only the broken phase is realized
in two dimensions. In Fig. 16 the behavior of the effective potential given by Eq. (136) is illustrated.

Differentiating (136) with respect to σ we get

∂V D=2

∂σ
= σ

{
1

λ
−

tr1

4π

[
ln(a2µ2) − ψ(1 + σa) − ψ(σa)

]}
. (137)

A careful study of ∂V/∂σ shows that due to the presence of the last term in (137), σ = 0 is never
stationary for any value of λ and finite a. Owing to the fact that

∂V D=2

∂σ

∣∣∣∣
σ=0

= −
tr1

4πa
< 0 , (138)

the chiral symmetry is always broken in two-dimensional anti-de Sitter space.[29]
In arbitrary dimensions (2 ≤ D < 4) we easily find

∂V

∂σ

∣∣∣∣
σ=0

= −
tr1

(4π)D/2
a1−DΓ

(
D

2

)
< 0 . (139)

Thus the chiral symmetry is always broken down in anti-de Sitter space (i.e., a negative curvature
spacetime) in arbitrary dimensions 2 ≤ D < 4 as is mentioned in §3.
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NJL model results in the MFA

Symmetry breaking  
weakened — restored like T

Symmetry breaking  
strengthened — like B

Effective (1+1)D: Gorbar (1999)
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Barriers for QCD research

Too complicated calculations 
□ “Exactly solvable” problems often come with 

(unnecessarily) too complicated expressions (with 
special functions having complex arguments etc etc). 

□ Is there any “intuitive” way to understand? 
!

QCD-unfriendly textbook knowledge 
□ Some “standard” techniques established but… there is 

no introductory guide for QCD physicists. 
□ For example: One-loop effective action is known but 

not for the QCD physics like chiral phase transition.
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For Example
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Parker-Toms

2(m2 +R/12)2

Is this a general result? (The answer is Yes) 
If so, how can it be consistent with Chiral Symmetry?
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(Some) Technical Details
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Det[i�aeµarµ �M ] = Det
h
�⇤+M2 +

R

4

i

Still depends on R etc
R-resummed form of the heat kernel (Parker et al)

Tr e�t[�@2
⌧��+M2+R/4]

=
1

(4⇡t)2
e�t[�@2

⌧+M2+R/4�R/6](1 + · · · )

Requiring gtt =1

R/12 Rµ⌫ , Rµ⌫�⇢
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Remarks

Scalar curvature dominance for large dimensions 
!
!
!
!
T independently introduced from the geometry
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Rµ⌫⇢�Rµ⌫⇢�

R2
=

2

D(D � 1)

Rµ⌫Rµ⌫

R2
=

1

D

Rigorous for (anti) de Sitter 
Generally true for large D

Conformal trans. to gtt =1 in Minkowski 
Introducing T in Euclidean

Schwarzchild BH is R-flat but after conformal trans. R>0



September 8, 2014 @ St.Petersburg

Chiral Invariant “Mass Gap”
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M2 ! M2 +
R

12
Consistent with QCD chiral symmetry?

Curvature should not break chiral symmetry…? 
Analogous to the thermal mass:

iS�1 ⇠ p0�
0 � m2

T

p0
�0 �M

Thermal self-energy
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Chiral Gap Effect
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For concreteness, using the NJL notation:

⇢ = G2
⇥
h ̄ i2 + h ̄�5⌧ i2

⇤

M2 ! M2 +
R

12

⇢ ! ⇢+
R

12G2

Chiral variant

Chiral invariant

M2
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Effective Potential
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V = a(T � Tc)⇢+ �⇢2 + · · ·
In flat space:

In curved space:

V =
h
a(T � Tc) +

�R

6G2

i
⇢+ �⇢2 + · · ·

T ⇤
c = Tc �

�R

6G2a

Qualitatively explains  
  “solvable” calculations  
      for dS and AdS
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Puzzle?
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?Tachyonic? 
Needs some new  
  “condensate”? 
Stabilized by non-zero  
   thermal mass?
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Implication to Deconfinement
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FIG. 1. Coupling strength between dynamical quarks and
the gluonic sector quantified through the center symmetry
breaking � as a function of dimensionless curvature R/T 2.

gauge, �i’s correspond to the diagonal components of the
temporal gauge potential A⌧ .

As we already saw, the e↵ective mass is shifted by
R/12, and a straightforward summation over the Matsu-
bara frequencies yields ⌦T=0

loop

+ ⌦T
loop

with

�⌦T
loop

= �2N
f

V

Z
d3p

(2⇡)3
Tr

h
ln
�
1 + Le��("p�µ)

�

+ ln
�
1 + L† e��("p+µ)

�i
,

(14)

where the quasi-particle energy dispersion is "p ⌘p
p2 +M2

e↵

+R/12. This is a simple expression but it
encompasses the essence of all complicated calculations
as done in Refs. [25, 26]. In flat space, usually, M

e↵

con-
trols the explicit breaking of center symmetry. As soon
as a non-zero R is turned on, thermally excited fermions
are suppressed by not only M

e↵

but also R. Therefore,
even in the chiral symmetric limit, if R is larger than
T , fermion excitations are almost absent, so that center
symmetry can be an approximate symmetry.

To quantify this speculation, let us plot the (dimen-
sionless) magnitude of the center symmetry breaking for
µ = 0; i.e., � ⌘ (�4/V )

�
⌦T

loop

[� = 1] � ⌦T
loop

[� = �1]
�
.

As we see in Fig. 1, because of a small coe�cient 1/12, we
need to have hundreds times as large R as T 2 to realize
decoupling.

Once the decoupling happens, the gluonic sector
should behave as pure Yang-Mills theory. Thus, the
quark deconfinement transition should be of first order
rather than smooth crossover. One may think that the
deconfinement is also eased by large R, and indeed, we re-
mark that the infrared singularity is weakened in curved
spacetime [27].

Higher-order corrections: Higher-order corrections
from the heat kernel expansion can be easily taken into

account in our scheme. These terms involve combinations
of Riemann and Ricci curvature tensors and correct the
grand potential by �⌦

loop

. We can utilize Eq. (5) to show
that it is related to the leading-order term as

�⌦
loop

= a
2

✓
@

@M2

e↵

◆
2

⌦
loop

. (15)

It is a non-trivial finding that the correction terms take
a form of mass derivatives. Then, we notice that a
mass shift can reproduce the above result as ⌦

loop

[M2

e↵

+
�M2

e↵

] ⇡ ⌦
loop

[M2

e↵

]+�⌦
loop

[M2

e↵

]. We can show that the
coe�cient a

2

is negative in general, and then the mass
squared correction turns out to be purely imaginary:

�M2

e↵

= i
p

|a
2

| , (16)

or the self-energy has an imaginary part. Actually, one
can confirm a

2

< 0 by plugging Eq. (6) into a
2

in Eq. (5).
The appearance of complex energy dispersion indicates
that the vacuum is not stable. In fact, the curvature in-
duced particle production, as observed in Ref. [22], sug-
gests an alteration of the vacuum persistence. Further in-
vestigations to deepen our understanding on the physical
interpretation of these complex corrections is necessary.
Finally, let us also point out that Eq. (15) is propor-

tional to the chiral susceptibility �. Since � is enhanced
at the chiral phase transition, there may be an interesting
interplay between the chiral dynamics and the curvature
e↵ect at critical point.

Discussions and summary: Our analysis indicates
that the predominant e↵ect on fermions in curved space
is the appearance of a chiral symmetric mass gap due to
the scalar curvature R, which we call the chiral gap ef-
fect. We have shown that the mass shift is systematically
formulated in a form of the resummed expansion with
respect to the Riemann and the Ricci curvature tensors.
The chiral gap e↵ect gives an intuitive explanation for
the nature of the chiral phase transition in curved space;
chiral symmetry tends to get restored with R > 0, while
the chiral condensate and the chiral transition tempera-
ture becomes larger with R < 0. Importantly, the chiral
gap e↵ect also suggests decoupling between the chiral dy-
namics and the quark deconfinement.
In principle, lattice QCD simulations can verify our

conjecture. So far, however, it is not easy to formulate
the problem numerically for a geometry that constantly
curves in space. The di�culty originates from the sin-
gularity associated with polar coordinates that are most
convenient to describe curved geometries. In this sense,
therefore, our analysis may be useful to guide future at-
tempts to simulate QCD in curved space or specifically
in the Schwarzchild metric.
In the future, it will be indispensable to study the glu-

onic sector more carefully in curved space, for which lat-
tice simulations are the most powerful tool, but not nec-
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FIG. 1. Coupling strength between dynamical quarks and
the gluonic sector quantified through the center symmetry
breaking � as a function of dimensionless curvature R/T 2.

gauge, �i’s correspond to the diagonal components of the
temporal gauge potential A⌧ .

As we already saw, the e↵ective mass is shifted by
R/12, and a straightforward summation over the Matsu-
bara frequencies yields ⌦T=0

loop
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with
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where the quasi-particle energy dispersion is "p ⌘p
p2 +M2

e↵

+R/12. This is a simple expression but it
encompasses the essence of all complicated calculations
as done in Refs. [25, 26]. In flat space, usually, M

e↵

con-
trols the explicit breaking of center symmetry. As soon
as a non-zero R is turned on, thermally excited fermions
are suppressed by not only M

e↵

but also R. Therefore,
even in the chiral symmetric limit, if R is larger than
T , fermion excitations are almost absent, so that center
symmetry can be an approximate symmetry.

To quantify this speculation, let us plot the (dimen-
sionless) magnitude of the center symmetry breaking for
µ = 0; i.e., � ⌘ (�4/V )

�
⌦T

loop

[� = 1] � ⌦T
loop
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As we see in Fig. 1, because of a small coe�cient 1/12, we
need to have hundreds times as large R as T 2 to realize
decoupling.

Once the decoupling happens, the gluonic sector
should behave as pure Yang-Mills theory. Thus, the
quark deconfinement transition should be of first order
rather than smooth crossover. One may think that the
deconfinement is also eased by large R, and indeed, we re-
mark that the infrared singularity is weakened in curved
spacetime [27].

Higher-order corrections: Higher-order corrections
from the heat kernel expansion can be easily taken into

account in our scheme. These terms involve combinations
of Riemann and Ricci curvature tensors and correct the
grand potential by �⌦

loop

. We can utilize Eq. (5) to show
that it is related to the leading-order term as
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It is a non-trivial finding that the correction terms take
a form of mass derivatives. Then, we notice that a
mass shift can reproduce the above result as ⌦
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is negative in general, and then the mass
squared correction turns out to be purely imaginary:
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= i
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|a
2

| , (16)

or the self-energy has an imaginary part. Actually, one
can confirm a

2

< 0 by plugging Eq. (6) into a
2

in Eq. (5).
The appearance of complex energy dispersion indicates
that the vacuum is not stable. In fact, the curvature in-
duced particle production, as observed in Ref. [22], sug-
gests an alteration of the vacuum persistence. Further in-
vestigations to deepen our understanding on the physical
interpretation of these complex corrections is necessary.
Finally, let us also point out that Eq. (15) is propor-

tional to the chiral susceptibility �. Since � is enhanced
at the chiral phase transition, there may be an interesting
interplay between the chiral dynamics and the curvature
e↵ect at critical point.

Discussions and summary: Our analysis indicates
that the predominant e↵ect on fermions in curved space
is the appearance of a chiral symmetric mass gap due to
the scalar curvature R, which we call the chiral gap ef-
fect. We have shown that the mass shift is systematically
formulated in a form of the resummed expansion with
respect to the Riemann and the Ricci curvature tensors.
The chiral gap e↵ect gives an intuitive explanation for
the nature of the chiral phase transition in curved space;
chiral symmetry tends to get restored with R > 0, while
the chiral condensate and the chiral transition tempera-
ture becomes larger with R < 0. Importantly, the chiral
gap e↵ect also suggests decoupling between the chiral dy-
namics and the quark deconfinement.
In principle, lattice QCD simulations can verify our

conjecture. So far, however, it is not easy to formulate
the problem numerically for a geometry that constantly
curves in space. The di�culty originates from the sin-
gularity associated with polar coordinates that are most
convenient to describe curved geometries. In this sense,
therefore, our analysis may be useful to guide future at-
tempts to simulate QCD in curved space or specifically
in the Schwarzchild metric.
In the future, it will be indispensable to study the glu-

onic sector more carefully in curved space, for which lat-
tice simulations are the most powerful tool, but not nec-

Explicit center symmetry breaking:
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the gluonic sector quantified through the center symmetry
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gauge, �i’s correspond to the diagonal components of the
temporal gauge potential A⌧ .
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where the quasi-particle energy dispersion is "p ⌘p
p2 +M2
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+R/12. This is a simple expression but it
encompasses the essence of all complicated calculations
as done in Refs. [25, 26]. In flat space, usually, M

e↵

con-
trols the explicit breaking of center symmetry. As soon
as a non-zero R is turned on, thermally excited fermions
are suppressed by not only M

e↵

but also R. Therefore,
even in the chiral symmetric limit, if R is larger than
T , fermion excitations are almost absent, so that center
symmetry can be an approximate symmetry.

To quantify this speculation, let us plot the (dimen-
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As we see in Fig. 1, because of a small coe�cient 1/12, we
need to have hundreds times as large R as T 2 to realize
decoupling.

Once the decoupling happens, the gluonic sector
should behave as pure Yang-Mills theory. Thus, the
quark deconfinement transition should be of first order
rather than smooth crossover. One may think that the
deconfinement is also eased by large R, and indeed, we re-
mark that the infrared singularity is weakened in curved
spacetime [27].

Higher-order corrections: Higher-order corrections
from the heat kernel expansion can be easily taken into

account in our scheme. These terms involve combinations
of Riemann and Ricci curvature tensors and correct the
grand potential by �⌦
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It is a non-trivial finding that the correction terms take
a form of mass derivatives. Then, we notice that a
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or the self-energy has an imaginary part. Actually, one
can confirm a
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< 0 by plugging Eq. (6) into a
2

in Eq. (5).
The appearance of complex energy dispersion indicates
that the vacuum is not stable. In fact, the curvature in-
duced particle production, as observed in Ref. [22], sug-
gests an alteration of the vacuum persistence. Further in-
vestigations to deepen our understanding on the physical
interpretation of these complex corrections is necessary.
Finally, let us also point out that Eq. (15) is propor-

tional to the chiral susceptibility �. Since � is enhanced
at the chiral phase transition, there may be an interesting
interplay between the chiral dynamics and the curvature
e↵ect at critical point.

Discussions and summary: Our analysis indicates
that the predominant e↵ect on fermions in curved space
is the appearance of a chiral symmetric mass gap due to
the scalar curvature R, which we call the chiral gap ef-
fect. We have shown that the mass shift is systematically
formulated in a form of the resummed expansion with
respect to the Riemann and the Ricci curvature tensors.
The chiral gap e↵ect gives an intuitive explanation for
the nature of the chiral phase transition in curved space;
chiral symmetry tends to get restored with R > 0, while
the chiral condensate and the chiral transition tempera-
ture becomes larger with R < 0. Importantly, the chiral
gap e↵ect also suggests decoupling between the chiral dy-
namics and the quark deconfinement.
In principle, lattice QCD simulations can verify our

conjecture. So far, however, it is not easy to formulate
the problem numerically for a geometry that constantly
curves in space. The di�culty originates from the sin-
gularity associated with polar coordinates that are most
convenient to describe curved geometries. In this sense,
therefore, our analysis may be useful to guide future at-
tempts to simulate QCD in curved space or specifically
in the Schwarzchild metric.
In the future, it will be indispensable to study the glu-

onic sector more carefully in curved space, for which lat-
tice simulations are the most powerful tool, but not nec-
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FIG. 1. Coupling strength between dynamical quarks and
the gluonic sector quantified through the center symmetry
breaking � as a function of dimensionless curvature R/T 2.

gauge, �i’s correspond to the diagonal components of the
temporal gauge potential A⌧ .

As we already saw, the e↵ective mass is shifted by
R/12, and a straightforward summation over the Matsu-
bara frequencies yields ⌦T=0
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where the quasi-particle energy dispersion is "p ⌘p
p2 +M2
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+R/12. This is a simple expression but it
encompasses the essence of all complicated calculations
as done in Refs. [25, 26]. In flat space, usually, M

e↵

con-
trols the explicit breaking of center symmetry. As soon
as a non-zero R is turned on, thermally excited fermions
are suppressed by not only M

e↵

but also R. Therefore,
even in the chiral symmetric limit, if R is larger than
T , fermion excitations are almost absent, so that center
symmetry can be an approximate symmetry.

To quantify this speculation, let us plot the (dimen-
sionless) magnitude of the center symmetry breaking for
µ = 0; i.e., � ⌘ (�4/V )
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As we see in Fig. 1, because of a small coe�cient 1/12, we
need to have hundreds times as large R as T 2 to realize
decoupling.

Once the decoupling happens, the gluonic sector
should behave as pure Yang-Mills theory. Thus, the
quark deconfinement transition should be of first order
rather than smooth crossover. One may think that the
deconfinement is also eased by large R, and indeed, we re-
mark that the infrared singularity is weakened in curved
spacetime [27].

Higher-order corrections: Higher-order corrections
from the heat kernel expansion can be easily taken into

account in our scheme. These terms involve combinations
of Riemann and Ricci curvature tensors and correct the
grand potential by �⌦

loop

. We can utilize Eq. (5) to show
that it is related to the leading-order term as
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It is a non-trivial finding that the correction terms take
a form of mass derivatives. Then, we notice that a
mass shift can reproduce the above result as ⌦
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is negative in general, and then the mass
squared correction turns out to be purely imaginary:
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= i
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| , (16)

or the self-energy has an imaginary part. Actually, one
can confirm a

2

< 0 by plugging Eq. (6) into a
2

in Eq. (5).
The appearance of complex energy dispersion indicates
that the vacuum is not stable. In fact, the curvature in-
duced particle production, as observed in Ref. [22], sug-
gests an alteration of the vacuum persistence. Further in-
vestigations to deepen our understanding on the physical
interpretation of these complex corrections is necessary.
Finally, let us also point out that Eq. (15) is propor-

tional to the chiral susceptibility �. Since � is enhanced
at the chiral phase transition, there may be an interesting
interplay between the chiral dynamics and the curvature
e↵ect at critical point.

Discussions and summary: Our analysis indicates
that the predominant e↵ect on fermions in curved space
is the appearance of a chiral symmetric mass gap due to
the scalar curvature R, which we call the chiral gap ef-
fect. We have shown that the mass shift is systematically
formulated in a form of the resummed expansion with
respect to the Riemann and the Ricci curvature tensors.
The chiral gap e↵ect gives an intuitive explanation for
the nature of the chiral phase transition in curved space;
chiral symmetry tends to get restored with R > 0, while
the chiral condensate and the chiral transition tempera-
ture becomes larger with R < 0. Importantly, the chiral
gap e↵ect also suggests decoupling between the chiral dy-
namics and the quark deconfinement.
In principle, lattice QCD simulations can verify our

conjecture. So far, however, it is not easy to formulate
the problem numerically for a geometry that constantly
curves in space. The di�culty originates from the sin-
gularity associated with polar coordinates that are most
convenient to describe curved geometries. In this sense,
therefore, our analysis may be useful to guide future at-
tempts to simulate QCD in curved space or specifically
in the Schwarzchild metric.
In the future, it will be indispensable to study the glu-

onic sector more carefully in curved space, for which lat-
tice simulations are the most powerful tool, but not nec-

Mass-gap suppresses  
  center-symmetry breaking 
!
If R is large, QCD approaches  
  more like a pure YM theory 
!
1st order? 
(Needs lattice simulation)
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Parker (1965) 
Hawking radiation (1974) 
Unruh (1976)

ds

2 = dt

2 � a

2(t)(dx2 + dy

2 + dz

2)

a(±1) ⇠ a< $ a>

Produced particle spectrum:

(time scale ~s)

nk ⇠ 1/(e4⇡sa
2
<k � 1)

4

WLPH

FIG. 1: Expanding lattice.

↵(0) = ↵0 = 1. In the three-dimensional space, peri-
odic boundary conditions are imposed. The lattice size
is LxLyLz ⇥ L⌧ = 103 ⇥ 20. We performed quenched
QCD simulation with � = 5.9 and  = 0.154. We only
consider small parameter region, aHI ⌧ 1, and do not
discuss the renormalization correction.

To demonstrate particle production in the Euclidean
expansion, we computed an imaginary particle number
of fermions at a fixed time slice

NI(⌧) =

Z
d3x

p
det g nI(x) (24)

nI(x) = �ij4(x) = �ih ̄(x)�4 (x)i. (25)

It is related to a real particle number by the analytic
continuation HI ! H. As shown in Figs. 2 and 3,
nonzero positive NI and nI are produced in the Eu-
clidean expansion. The data of NI is rescaled by mul-
tiplying a factor 1/(LxLyLz) = 10�3. The inequality
NI/(LxLyLz) � nI holds in this expanding space be-
cause of

p
det g = ↵3 � 1. From numerical fitting,

we obtained NI/(LxLyLz) = C1HI [(⌧/a) + C2] and
nI = C1HI [(⌧/a) +C2]↵�3 with C1 = 0.011± 0.002 and
C2 = 60 ± 10. The best-fit functions are shown in the
figures.

Conclusion. We have formulated lattice QCD in
curved spacetimes to study gravitational e↵ects on QCD
and hadrons. There is a large number of future directions
of this framework. On the theoretical side, we can also
formulate other kinds of lattice field theory in curved
spacetimes, e.g., scalar field theory, electroweak gauge
theory, and nonrelativistic field theory, and so on. In
scalar field theory, the action includes the renormaliz-
able term R�2, which couples to a scalar curvature R.
On the practical side, by applying this framework, we
can study nonperturbative phenomena of QCD in vari-
ous curved spacetimes, e.g., on black holes, in the anti-de
Sitter space, and so on.

The author is grateful to Kenji Fukushima and Yuya
Tanizaki for useful discussions. The numerical simula-
tions were performed by using the RIKEN Integrated
Cluster of Clusters (RICC) facility.
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FIG. 2: ⌧ -dependence of the total fermion number NI and
the fermion number density nI with aHI = 0.03.
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Not easy to do the simulation to  
see the QCD phase transitions 
!
Chiral properties control the mass  
that affects the production rate

(massless scalar)

Work in progress (w Morales)
Density

Total
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Difficulties in Lattice

How to avoid coordinate singularities? 
□ For a simple problem of homogeneous R or the BH 

problem, the choice of the polar coordinates is useful, 
but it has a singularity at the origin… 

How to formulate light fermions? 
□ Staggered fermion is the simplest way, but cannot be 

justified in curved space (due to spin connections). 
How to perform renormalization? 
□ Lattice spacing depends on the geometry just like the 

anisotropic lattice at finite T.  Negligible for weakly 
curved cases, but indispensable for phase transitions.
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Summary and Extensions

Chiral symmetric mass-gap is possible in curved 
space — Chiral Gap Effect. 

•   

Where gravity is strong, QCD approaches more 
like a pure YM theory (which is good?) 

•   

Applications to HIC, astrophysics, and condensed 
matter physics coming soon! 
□QCD-wall near the BH horizon (Flachi) 
□QCD origin of Dark Energy (Zhitnitsky) 

•   

Lattice QCD in gravity is a new direction to go.
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