Recent Experimental Developments in Heavy Quarkonium

Quark Confinement and the Hadron Spectrum XI
St. Petersburg, Russia

September 8, 2014
Matthew Shepherd Indiana University

Heavy Quarkonium

- Heavy Quarkonium Spectroscopy: present experimental focus is studying what might not be quarkonium (tetraquarks, molecules, hybrids, ...)
- study spectrum via $e^{+} e^{-}$collisions and B decay
- very little recent experimental work on conventional quarkonium and transitions
- Heavy Quarkonium Production: a laboratory for testing QCD calculations that is now moving into the LHC era
- total cross section in hadron collisions
- polarization measurements
- Active field: many players with diverse goals and experimental approaches
- my apologies in advance if your favorite result doesn't receive proper attention!

CLEO-c

M. R. Shepherd

Discovery of $X_{b}(3 P)$ Multiplet

- Production in Pp collisions
- Observed in radiative transitions to the $Y(I S)$ and $Y(2 S)$
- Unable to resolve individual $\mathrm{J}=0, \mathrm{I}, 2$ states
- Discovered by ATLAS and confirmed by D0

TT DEPARTMENT OF PHYSICS

(a)

(b)

Heavy Quarkonium

- Heavy Quarkonium Spectroscopy: present experimental focus is studying what might not be quarkonium (tetraquarks, molecules, hybrids, ...)
- study spectrum via $e^{+} e^{-}$collisions and B decay
- very little recent experimental work on conventional quarkonium and transitions
- Heavy Quarkonium Production: a laboratory for testing QCD calculations that is now moving into the LHC era
- total cross section in hadron collisions
- polarization measurements
- Active field: many players with diverse goals and experimental approaches
- my apologies in advance if your favorite result doesn't receive proper attention!

CLEO-c

M. R. Shepherd

Quark Model Prediction:

Charmonium from $\mathrm{e}^{+} \mathrm{e}^{-}$Collisions

- Populate vector mesons directly
- vector states are well studied
- Look for transitions to other states in the spectrum
- The attempt to study the unusual $Y(4260)$ led to discovery of charged Z structures

$Y(4260)$ and $Y(4360)$

- Discovery in ISR by BaBar and Belle
- No clear assignment in quark models
- Strongly suppressed open charm decay modes
- Nature? Motivates study at BESIII

CLEO Collaboration, PRD 80, 07200 I (2009)
$\frac{\mathcal{B}(Y(4260) \rightarrow D \bar{D})}{\mathcal{B}(Y(4260) \rightarrow \pi \pi J / \psi)}<4$
compare with ≈ 500 for $\psi(3770)$

Liu, Qin, and Yuan, PRD 78, 014032 (2008) using data from: BaBar Collaboration, PRL 98, 2 I 2001 (2007)
Belle Collaboration, PRL 99, I42002 (2007)

$Z(3900)^{ \pm} \rightarrow \pi^{ \pm} J / \Psi$

- Narrow ($\approx 50 \mathrm{MeV}$) and charged
- Not conventional charmonium
- Evidence of neutral partner
[T. Xiao et al., PLB 727, 366 (2013)]

$Z(4020)^{ \pm} \rightarrow \pi^{ \pm} h_{c}$

- No $Y(4260)$-like peaking structure in $\pi^{+} \pi^{-} h_{\mathrm{c}}$ cross section, which is comparable to peak $\sigma\left(\pi^{+} \pi^{-} J / \psi\right)$
- Very narrow charged $\pi^{ \pm} h_{c}$ structure
- Evidence for neutral partner (see W.M. Song's talk Parallel III:C3)

$$
\begin{gathered}
\text { Study: } \\
\mathrm{e}^{+} \mathrm{e}^{-\rightarrow \pi^{+} \pi^{-} h_{c}}
\end{gathered}
$$

Couplings to Open Charm?

$Z(3900)^{ \pm} \rightarrow D D^{*}$
$Z(4020)^{ \pm} \nrightarrow D D^{*}$

$\frac{\Gamma\left(Z_{c}(3900) \rightarrow D \bar{D}^{*}\right)}{\Gamma\left(Z_{c}(3900) \rightarrow \pi J / \psi\right)}=6.2 \pm 2.9$
Angular analysis establishes $J^{p}=I^{+}$ (the same as S-wave DD*)
$Z(4020)^{ \pm} \rightarrow D^{*} D^{*} ? ?$

Deviation from phase space that can be fit with a resonance, if $Z(4020)$:

$$
\frac{\Gamma\left(Z_{c}(4020) \rightarrow D^{*} \bar{D}^{*}\right)}{\Gamma\left(Z_{c}(4020) \rightarrow \pi h_{c}\right)}=12 \pm 5
$$

What about $Y(4260)$?

- Production of $Z(3900)$ correlated with decays of $Y(4260)$, inconclusive for $Z(4020)$
- $\sigma\left(\pi^{+} \pi-h_{c}\right)$ significant: too broad for $Y(4260)$ only
- $\sigma\left(\omega X_{c o}\right)$ significant: too narrow for $Y(4260)$
- Evidence for $\mathrm{e}^{+} \mathrm{e}^{-\rightarrow \gamma} \gamma(3872)$ at 4260 MeV : may be a radiative transition of $Y(4260)$? [BESIII, PRL I I 2, 09200 I (20/4)]
- $X(3872)$ is I^{+}with radiative transitions consistent with mixture of $X_{c l}(2 P)$ and bound DD*
[LHCb, PRL I IO, 22200 I (20I3); LHCb, NP B886, 665 (2014)]

Parallels to Bottomonium

Bottomonium

Charmonium
Belle Collaboration, PRL I08, 032001 (2012)
Belle Collaboration, PRL I08, I2200I (2012)

- significant $\sigma(\pi \pi \curlyvee)$ and $\sigma\left(\pi \pi h_{b}\right)$ in $\mathrm{e}^{+} \mathrm{e}^{-}$ collisions at 10.865 GeV
- " $\curlyvee(5 S)$ " $\rightarrow \pi \pi \curlyvee(n S)$ partial width two orders of magnitude greater than other Υ states
- $\sigma\left(\pi \pi h_{b}\right) \approx \sigma(\pi \pi Y)$ at 10.865 GeV
- $Z(I 06 \mid 0)^{ \pm}$just above $B B^{*}$ threshold
- Z(I0650) ${ }^{ \pm}$just above $B^{*} B^{*}$ threshold
- peaking $\sigma(\pi \pi \mathrm{J} / \Psi)$ in $\mathrm{e}^{+} e^{-}$collisions: $\mathrm{Y}(4260)$; significant $\sigma\left(\pi \pi h_{c}\right)$
- $Y(4260)$ decay to $\pi \pi J / \Psi$ enhanced with respect to open charm when compared to other ψ states
- $\sigma\left(\pi \pi h_{c}\right) \approx \sigma(\pi \pi J / \Psi)$ at $4.2-4.4 \mathrm{GeV}$
- $\quad Z(3900)^{ \pm}$just above $D D^{*}$ threshold
- $\quad Z(4020)^{ \pm}$just above $D^{*} D^{*}$ threshold

Similar spectra of exotic "quarkonia" or similar heavy flavor meson dynamics?

Charmonium in B Decay

- Hadronic decays of the B meson $(M(B)=5.27 \mathrm{GeV})$ can be used to study the charmonium spectrum
- useful tool at hadron colliders
- Recent hot topics:
- charged states: $Z(4430)$ and $Z(4200)$ in $\pi^{ \pm} \Psi\left({ }^{(}\right)$
- narrow neutral state: $X(4140)$ in $\Phi \mathrm{J} / \Psi$

$Z(4430)^{ \pm} \rightarrow \Psi^{\prime} \pi^{ \pm}$

- Examine $\Psi^{\prime} \pi^{ \pm}$produced in $B \rightarrow \Psi^{\prime} K \pi^{ \pm}$
- need to understand $K \pi$ structure
- $Z(4430)$ reported initially by Belle [PRL 100, I4200I (2008)], but not confirmed by BaBar [PRD 79, II200I (2009)]
- Z(4430) recently confirmed with I0x more data at LHCb
- \quad established $J^{p}=I^{+}$
- not S-wave $D^{*}(2007) D_{\text {I }}(2420)$ or $D^{*}(2007) D_{2}^{*}(2460)$
- Broad structure: $\Gamma_{\text {tot }} \approx 200 \mathrm{MeV}$
- LHCb: second structure around 4200 at 6σ; resonant nature inclusive

$B \rightarrow$ NT N/ U

- Belle reports evidence for $Z(4430) \rightarrow \pi^{ \pm} / / \Psi$
- about I0x smaller than

$$
Z(4430) \rightarrow \pi^{ \pm} \Psi^{\prime}
$$

- Belle: $Z(4200)^{ \pm} \rightarrow \pi^{ \pm} / \psi$ at 6.2σ
- broad: $\Gamma_{\text {tot }} \approx 400 \mathrm{MeV}$
- $\rho^{p}=1^{+}$favored
- compatible with "structure" in LHCb analysis of $\Pi^{ \pm} \Psi '$
- No evidence for the $Z(3900)$ that is correlated with $Y(4260)$ decay
- production mechanism dependence?
- $Z(3900)$ is fundamentally different from $Z(4200)$ and $Z(4430)$?

Charged Z Recap

- $Z(3900)$ and $Z(4020)$
- correlated with $Y(4260)$ and/or $Y(4360)$
- narrow: tens of MeV
- near DD* and D*D* thresholds
- similarities in the bottomonium system
- not produced in hadronic B decay
- $Z(4200)$ and $Z(4430)$
- produced in B decay
- broad: hundreds of MeV
- no apparent correlation with open charm thresholds?
- Other charged states in B decay: $Z(4050)$ and $Z(4250)$ ("older news" and not pictured)
- reported in $X_{c l} \Pi$ by Belle [PRD 78, 072004 (2008)]
- not confirmed by BaBar
[PRD 85, 052003 (20I2)]

$X(4140) \rightarrow \Phi J / \psi$

CMS Collaboration, PLB 734, 26 (2014)
[PRD 85, 091I03 (2012)]

- BarBar: statistically limited - inconclusive [arXiv:I 407.7244]
- Recently confirmed by CMS and D0 (seems consistent w/both CDF and LHCb)
- Significance of second peak uncertain due to potential kinematic reflections
- Observed in $B^{+} \rightarrow K^{+} \Phi J / \Psi$
- Neutral state with $C=+$
- Narrow: $\Gamma_{\text {tot }} \approx 30 \mathrm{MeV}$
- No apparent charmonium candidate?
- State first discovered by CDF [PRL IO2, 242002 (2009)]
- Not confirmed by LHCb

Quarkonium Production

- Production of heavy quarkonium is a hard process: at leading order, rates and polarization not affected by soft QCD
- Rates and polarization fractions calculable in effective field theory (e.g. NRQCD) need phenomenological input:
- universal matrix elements
- fragmentation functions
- Use experiment to validate self-consistent theoretical formulation
- Experimental applicability
- quarkonium production in hadron collisions and deep inelastic scattering
- $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow J / \Psi X$ (cc or non-cc)
- $\gamma \gamma \rightarrow J / \Psi X$

LHC-era experimental goals

- push measurement to higher PT
- measure bb and cc species at high precision
- reduce experimental systematic errors: frame invariant analyses

Charmonium Cross Sections

Bottomonium Cross Sections

Џ

DEPARTMENT OF PHYSICS
INDIANA UNIVERSIT
Bloomington

Quarkonium Polarization

Summary

- Many diverse experimental studies of heavy quarkonia
- central theme: understanding QCD
- Interesting structures in the $c c$ and $b b$ systems that appear to not be conventional quarkonium
- common exotic spectra or common heavy meson dynamics?
- no apparent connection between $\mathrm{e}^{+} \mathrm{e}^{-}$production and B decay
- The LHC has ushered in a new era of experiments in quarkonium production
- no evidence of significant vector quarkonium polarization at high PT
- There are many details to be discussed in the "Parallel III" sessions this week!

