2-Color QCD at High Density

Tamer Boz
Department of Mathematical Physics, NUI Maynooth

Confinement XI, St. Petersburg, Russia

 September 9, 2014
2-Color QCD on the Lattice

2-Color QCD
at High
Density
Tamer Boz

$$
\langle\mathcal{O}\rangle=\frac{1}{Z} \int \mathcal{D} U \operatorname{det} M[U] \mathrm{e}^{-S_{G}[U]} \mathcal{O}(U)
$$

- There is sign poblem for real QCD for nonzero chemical potential (μ): Monte Carlo simulations can't be used
■ No sign problem for two colors and even number of flavors $\left(N_{f}\right)$
- Can be viewed as a laboratory to investigate real QCD at high density
■ Has confinement and chiral symmetry breaking, like real QCD

Tentative Phase Diagram for 2-Color QCD

2-Color QCD at High Density

Tamer Boz

[plot by Jon-Ivar Skullerud]

Diquark Condensation in 2-Color QCD ($N_{f}=2$)

2-Color QCD

Tamer Boz

- Quarks and antiquarks live in equivalent representations of the color group
- At $\mu=0$ exact symmetry between mesons and diquarks (baryons of the theory)
■ Pseudo-Goldstone multiplet ($\mu=0, N_{f}=2$): pion isotriplet + diquark + antidiquark
■ Diquark baryons condense for $\mu \gtrsim m_{\pi} / 2$ giving rise to a superfluid ground state
■ In real QCD this corresponds to a superconducting ground state
- Order parameter for superfluid phase transition: diquark condensate, $\langle q q\rangle$
- To calculate $\langle q q\rangle$ on the lattice: introduce diquark source, j

Diquark Condensation in 2-Color QCD

2-Color QCD at High Density

Tamer Boz

Diquark Condensates for $\mathrm{j}=0.02$ and $\mathrm{j}=0.03(\mathrm{j}=0.00$ extrapolated)
$\mathrm{V}=16^{3} \times 32, \beta=2.1, \mathrm{k}=0.1577\left(\mathrm{~m}_{\pi}=0.446(3)\right)$

Wilson Fermion Matrix, $j=0$

2-Color QCD at High Density

Tamer Boz

■ Wilson fermion matrix, M, for nonzero chemical potential, $\mu \neq 0$, and zero diquark source, $j=0$, in position space:

$$
\begin{aligned}
M(\mu)= & \delta_{x y}-\kappa \sum_{\nu}\left[\left(\mathbf{1}-\gamma_{\nu}\right) \mathrm{e}^{\mu \delta_{\nu 0}} U_{\nu}(x) \delta_{y, x+\hat{\nu}}\right. \\
& \left.+\left(\mathbf{1}+\gamma_{\nu}\right) \mathrm{e}^{-\mu \delta_{\nu 0}} U_{\nu}^{\dagger}(y) \delta_{y, x-\hat{\nu}}\right]
\end{aligned}
$$

- In momentum space (non-interacting case):

$$
\begin{aligned}
& \quad M(p)=\frac{i}{a} \sum_{j=1}^{3} \gamma_{j} \sin \left(a p_{j}\right)+\frac{i}{a} \gamma_{4} \sin (a \omega) \\
& +m_{0}+\frac{1}{a} \sum_{j=1}^{3}\left[\mathbf{1}-\cos \left(p_{j} a\right)\right]+\frac{1}{a}[\mathbf{1}-\cos (\omega a)] \\
& \text { (where } \left.\omega=p_{t}-\mathrm{i} \mu\right)
\end{aligned}
$$

Fermion Action for $N_{c}=2$ and $N_{f}=2$

2-Color QCD at High Density

Tamer Boz

- The action for two flavors is given by:

$$
\begin{aligned}
S=\bar{\psi}_{1} M(\mu) \psi_{1} & +\bar{\psi}_{2} M(\mu) \psi_{2}-J \bar{\psi}_{1}\left(C \gamma_{5}\right) \tau_{2} \bar{\psi}_{2}^{t r} \\
& +\bar{J} \psi_{2}^{t r}\left(C \gamma_{5}\right) \tau_{2} \psi_{1} .
\end{aligned}
$$

- Can be written in terms of \mathcal{M} :

$$
S=\bar{\psi} \mathcal{M} \Psi
$$

where $\Psi \equiv\binom{\psi_{1}}{C^{-1} \tau_{2} \bar{\psi}_{2}^{t r}}$ and \mathcal{M} is the Gorkov matrix.

Gorkov Propagator

2-Color QCD at High Density

Tamer Boz

■ Wilson fermion matrix, \mathcal{M}, for nonzero chemical potential, $\mu \neq 0$, and nonzero diquark source, $j \neq 0$, in position space (Gorkov matrix):

$$
\mathcal{M}=\left(\begin{array}{cc}
M(\mu) & -\frac{j}{2} C \gamma_{5} \tau_{2} \\
\frac{j}{2} C \gamma_{5} \tau_{2} & C \tau_{2} M(-\mu) C \tau_{2}
\end{array}\right)
$$

■ Inverse of this matrix is the Gorkov propagator:

$$
G=\mathcal{M}^{-1} \equiv\left(\begin{array}{cc}
S & T \\
\bar{T} & \bar{S}
\end{array}\right)
$$

■ Diagonal block components: Normal propagation, Off-diagonal block components: Anomalous propagation (turns a quark into an antiquark)

Form Factors

2-Color QCD
at High
Density
Tamer Boz

■ Useful tools to study interacting quark propagators

- The fermion matrix can be written in terms of the form factors A, B, C and D :

$$
S^{-1}(p)=\mathrm{ip} A(p)+B(p)+\mathrm{i} \omega \gamma_{4} C(p)+\mathbf{p} \gamma_{4} D(p) .
$$

- The S and T block-components of the Gorkov propagator can also be written in terms of some form factors:

$$
\begin{aligned}
S(p) & =\mathrm{i} \mathbf{p} S_{a}(p)+S_{b}(p)+\mathrm{i} \omega \gamma_{4} S_{c}(p)+\mathbf{p} \gamma_{4} S_{d}(p) \\
T(p) & =\mathrm{i} \mathbf{p} T_{a}(p)+T_{b}(p)+\mathrm{i} \omega \gamma_{4} T_{c}(p)+\mathbf{p} \gamma_{4} T_{d}(p) .
\end{aligned}
$$

Form Factors vs Chemical Potential

2-Color QCD at High Density

Tamer Boz

Form Factors of the Interacting Normal Gorkov Propagator
$V=12^{3} \times 24, \beta=1.9, \kappa=0.1680, \mu=0.90, j=0.04, p_{t}=1 / 2$

Form Factor Sa (real part)

2-Color QCD at High Density

Tamer Boz

Comparison of the Form Factor Sa_re for Different μ Values $\mathrm{V}=12^{3} \times 24, \beta=1.9, \mathrm{k}=0.1680, \mathrm{j}=0.04, \mathrm{p}_{\mathrm{t}}=1 / 2$,

Form Factor Sb (real part)

2-Color QCD at High Density

Tamer Boz

Comparison of the Form Factor Sb_re for Different μ Values
$\mathrm{V}=12^{3} \times 24, \beta=1.9, \kappa=0.1680, \mathrm{j}=0.04, p_{t}=1 / 2$

Form Factor Sb (imaginary part)

2-Color QCD at High Density

Tamer Boz

Comparison of the Form Factor Sb _im for Different μ Values
$\mathrm{V}=12^{3} \times 24, \mu=1.9, \kappa=0.1680, \mathrm{j}=0.04, \mathrm{p}_{\mathrm{t}}=1 / 2$

Form Factor Sc (real part)

2-Color QCD at High Density

Tamer Boz

Comparison of the Form Factor Sc_re for Different μ Values $\mathrm{V}=12^{3} \times 24, \beta=1.9, \mathrm{k}=0.1680, \mathrm{j}=0.04, \mathrm{p}_{\mathrm{t}}=1 / 2$

Form Factor Sc (imaginary part)

2-Color QCD at High Density

Tamer Boz

Comparison of the Form Factor Sc_im for Different μ Values
$\mathrm{V}=12^{3} \times 24, \beta=1.9, \mathrm{k}=0.1680, \mathrm{j}=0.04, \mathrm{p}_{\mathrm{t}}=1 / 2$

Form Factor Sd (real part)

2-Color QCD at High Density

Tamer Boz

Comparison of the Form Factor Sd_re for Different μ Values
$\mathrm{V}=12^{3} \times 24, \beta=1.9, \kappa=0.1680, \mathrm{j}=0.04, p_{t}=1 / 2$

Form Factor Sd (imaginary part)

2-Color QCD at High Density

Tamer Boz

Comparison of the Form Factor Sd_im for Different μ Values
$\mathrm{V}=12^{3} \times 24, \beta=1.9, \mathrm{k}=0.1680, \mathrm{j}=0.04, \mathrm{p}_{\mathrm{t}}=1 / 2$

Summary

2-Color QCD at High Density

■ 2-color QCD: a laboratory to investigate real QCD at high density

- diquark condensate: order parameter for superfluid phase transition
■ Gorkov propagator: normal and anomalous propagation of quarks
- form factors: useful tools to study the propagator

