2-Color QCD at High Density

Tamer Boz

2-Color QCD at High Density

Tamer Boz

Department of Mathematical Physics, NUI Maynooth

Confinement XI, St. Petersburg, Russia September 9, 2014

2-Color QCD on the Lattice

2-Color QCD at High Density

Tamer Boz

$$\langle \mathcal{O} \rangle = \frac{1}{Z} \int \mathcal{D}U \det M \left[U \right] e^{-S_G \left[U \right]} \mathcal{O} \left(U \right)$$

- There is sign poblem for real QCD for nonzero chemical potential (µ): Monte Carlo simulations can't be used
- No sign problem for two colors and even number of flavors (N_f)
- Can be viewed as a laboratory to investigate real QCD at high density
- Has confinement and chiral symmetry breaking, like real QCD

Tentative Phase Diagram for 2-Color QCD

Diquark Condensation in 2-Color QCD ($N_f = 2$)

2-Color QCD at High Density

Tamer Boz

- Quarks and antiquarks live in equivalent representations of the color group
- At µ = 0 exact symmetry between mesons and diquarks (baryons of the theory)
- Pseudo-Goldstone multiplet (µ = 0, N_f = 2): pion isotriplet + diquark + antidiquark
- Diquark baryons condense for $\mu \gtrsim m_{\pi}/2$ giving rise to a superfluid ground state
- In real QCD this corresponds to a superconducting ground state
- Order parameter for superfluid phase transition: diquark condensate, (qq)
- To calculate $\langle qq \rangle$ on the lattice: introduce **diquark** source, *j*

Diquark Condensation in 2-Color QCD

Wilson Fermion Matrix, j = 0

2-Color QCD at High Density

Tamer Boz

■ Wilson fermion matrix, M, for nonzero chemical potential, $\mu \neq 0$, and zero diquark source, j = 0, in position space:

$$\begin{split} \mathcal{M}(\mu) &= \delta_{xy} - \kappa \sum_{\nu} \left[(\mathbf{1} - \gamma_{\nu}) \, \mathrm{e}^{\mu \delta_{\nu 0}} \, \mathcal{U}_{\nu} \left(x \right) \delta_{y, x + \hat{\nu}} \right. \\ &+ \left. (\mathbf{1} + \gamma_{\nu}^{\nu}) \, \mathrm{e}^{-\mu \delta_{\nu 0}} \, \mathcal{U}_{\nu}^{\dagger} \left(y \right) \delta_{y, x - \hat{\nu}} \right] \end{split}$$

In momentum space (non-interacting case):

$$M(p) = \frac{i}{a} \sum_{j=1}^{3} \gamma_j \sin(ap_j) + \frac{i}{a} \gamma_4 \sin(a\omega)$$
$$+ m_0 + \frac{1}{a} \sum_{j=1}^{3} [1 - \cos(p_j a)] + \frac{1}{a} [1 - \cos(\omega a)]$$

(where $\omega = p_t - i\mu$)

・ロト ・ ア・ ・ ヨト ・ ヨー・ うらの

Fermion Action for $N_c = 2$ and $N_f = 2$

2-Color QCD at High Density

Tamer Boz

The action for two flavors is given by:

$$S = \overline{\psi}_1 M(\mu) \psi_1 + \overline{\psi}_2 M(\mu) \psi_2 - J \overline{\psi}_1 (C\gamma_5) \tau_2 \overline{\psi}_2^{tr} + \overline{J} \psi_2^{tr} (C\gamma_5) \tau_2 \psi_1.$$

Can be written in terms of \mathcal{M} :

$$S = \overline{\Psi} \mathcal{M} \Psi$$

where
$$\Psi \equiv \begin{pmatrix} \psi_1 \\ C^{-1} \tau_2 \overline{\psi}_2^{tr} \end{pmatrix}$$
 and \mathcal{M} is the Gorkov matrix.

Gorkov Propagator

2-Color QCD at High Density

Tamer Boz

■ Wilson fermion matrix, *M*, for nonzero chemical potential, µ ≠ 0, and nonzero diquark source, j ≠ 0, in position space (Gorkov matrix):

$$\mathcal{M} = \begin{pmatrix} M(\mu) & -\frac{j}{2}C\gamma_5\tau_2 \\ \frac{j}{2}C\gamma_5\tau_2 & C\tau_2M(-\mu)C\tau_2 \end{pmatrix}$$

Inverse of this matrix is the Gorkov propagator:

$$G = \mathcal{M}^{-1} \equiv \left(egin{array}{cc} S & T \ \overline{T} & \overline{S} \end{array}
ight)$$

 Diagonal block components: Normal propagation, Off-diagonal block components: Anomalous propagation (turns a quark into an antiquark)

Form Factors

2-Color QCD at High Density

Tamer Boz

- Useful tools to study interacting quark propagators
- The fermion matrix can be written in terms of the form factors A, B, C and D:

$$S^{-1}(p) = i\mathbf{p}A(p) + B(p) + i\omega\gamma_4 C(p) + \mathbf{p}\gamma_4 D(p).$$

The *S* and *T* block-components of the Gorkov propagator can also be written in terms of some form factors: $S(p) = i\mathbf{p}'S_a(p) + S_b(p) + i\omega\gamma_4S_c(p) + \mathbf{p}'\gamma_4S_d(p),$ $T(p) = i\mathbf{p}'T_a(p) + T_b(p) + i\omega\gamma_4T_c(p) + \mathbf{p}'\gamma_4T_d(p).$

Form Factors vs Chemical Potential

Form Factors of the Interacting Normal Gorkov Propagator $V=12^3x24$, $\beta=1.9$, $\kappa=0.1680$, $\mu=0.90$, j=0.04, p,=1/2

Form Factor Sa (real part)

Form Factor Sb (real part)

Form Factor Sb (imaginary part)

Form Factor Sc (real part)

Form Factor Sc (imaginary part)

Form Factor Sd (real part)

Form Factor Sd (imaginary part)

