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A few words on definition of the Light Front

Instead of usual Lorentz coordinates x0, x1, x2 and x3 the so called LF
coordinates are introduced:

x± = x0 ± x3
√

2
x⊥ = (x1, x2) = xk

where the x+ plays the role of time and the LF is defined by the equation
x+ = 0.
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Traditional Light Cone quantization and its difficulties

Usually the surface of quantization is x+ = 0. But this has the difficulty
that p− = 0 is a singular field mode.
There are several aproaches to deal with it:

|p−| ≥ δ > 0, i.e., discarding zero modes.
This approach has difficulties describing vacuum effects.
|x−| ≤ L with (anti)periodic boundary conditions, i.e., DLCQ.
Here zero modes are not dynamical and can be obtained from
Hamiltonian constraints. But these constraints appears to be too
difficult to deal with.
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Our approach to quantization: η-frame

To quantize the theory we use a surface that is near to the light front.
The corresponding coordinate system is:

y0 = x+ + η2

2 x−, y3 = x−, y⊥ = x⊥.

and the surface of quantization is now y0 = 0, it coincides with the LF in
the limit η → 0.

The momenta become now p+ → p0, p− → p3, and p0 now plays the
role of the Hamiltonian. The mass squared is

M2 = 2P0P3 + η2P0 − P2
⊥.

All the p3 modes are now independent dynamical variables.
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Our approach to quantization: Lagrangian

So now we are going from traditional Lagrangian density in the Lorentz
frame

L = −1
4FµνFµν + ψ(i /D −mq)ψ

to . . .

Zubov & Prokhvatilov (SPbSU) LF model for Q − Q̄ system QCHSXI 2014 5 / 19



Our approach to quantization: Lagrangian

. . . the Lagrangian density in the η - coordinate system:
L(y) = Tr

{
F 2

03(y) + 2F0k(y)F3k(y) + η2F 2
0k(y)− F 2

12(y)
}

+ i
√

2ψ†+(y)D0ψ+(y) + iη2
√

2
ψ†−(y)D0ψ−(y) + i

√
2ψ†−(y)D3ψ−(y)

+ iψ†−(y)(D⊥ −m)ψ+(y) + iψ†+(y)(D⊥ + m)ψ−(y)
where

Fµν(y) = ∂µAν(y)− ∂νAµ(y)− ig [Aµ(y),Aν(y)] ,
Dµ = ∂µ − igAµ(y), D⊥ =

∑
k=1,2

σkDk , σk are Pauli matrices,

Aµ(y) − vector gluon fields, related to η-coordinates yµ,

ψ =
(
ψ+
ψ−

)
− bispinor fermion (quark) field with mass m

and g − is a coupling constant.
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Limit η → 0 and our model

Limit η → 0 can be investigated in QED1+1 in the formulation where
p3 = πn

L , |y
3| ≤ L. The result is that we cannot obtain a correct

description of vacuum effects ( i.e. mass spectrum dependence on
condensate parameters) if η → 0 at fixed L. But the limit L→∞ at first
and then η → 0 gives correct result.
Even if L→∞, η → 0 (and Lη → const) we get non-zero vacuum
condensate with some choise of this const.
To apply such limit to QCD we introduce the following simplification: for
zero modes we consider the parameter η = η0 “frozen” when η → 0 at
fixed L, and then consider the η0 → 0, L→∞ limit at Lη → const. In
QED1+1 this procedure gives correct description of vacuum effects.
At the first step we can obtain some effective Hamiltonian H = H0 + H̃,
where by H0 we denote the pure zero mode contribution, representing zero
mode as dynamical variable still “living” in η0-frame.
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Discretization and ultraviolet regularization

We do the following discretization steps:
1 Use a lattice with respect to transverse coordinates x⊥ with a lattice

parameter a⊥ ≡ a
2 Aµ(y)→

(
A0,A3,M⊥ = (I + iga⊥Ã⊥)U⊥

)
,

U⊥ – are link variables, A0,A3,A⊥(y) and ψ(y) – are site variables,
D3U⊥(y) = ∂3U⊥(y)− igA3(y)U⊥(y) + igU⊥(y)A3(y − a⊥e⊥)
D3U⊥ = 0, |D3M⊥| ≤ Λ, U†⊥ = U−1

⊥ , Ã†⊥ = Ã⊥
3 Gauge A3 = 0. In this gauge U⊥ is the zero mode (wrt y3)
4 |y3| ≤ L plus periodic boundary conditions, and hence p3n = πn

L
5 Antiperiodic boundary conditions for fermions to avoid zero modes.
6 We will consider only states with p⊥ = 0, so the formula for the mass

will be:
M2 = 2P0P3 + η2P0.

In such a formulation U⊥ are the “frozen” zero modes.
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Our Hamiltonian

H =
∑
x⊥

{∫ L

−L

dx−
[

g2

8L2η2
0

(
π

a
k −

i
2

∑
n>0

f abc a†bnk ac
nk

)2
+

a2

2

(
F a

+−

)2
+ a2tr

(
G12
†G12
)

−
i
8

(
χ
†(x − aek′ )σk′U

−1
k′

(
I − igaAk′

)
− χ†(x + aek′ )

(
I + igaAk′ (x + aek′ )

)
Uk′ (x + aek′ )σk′ + 2maχ†

)
·

· ∂−1
−

((
I + igaAk

)
Ukσkχ(x − aek )− σk U−1

k (x + aek )
(

I − igaAk (x + aek )
)
χ(x + aek ) + 2maχ

)
+ . . . (terms from normal ordering)

]}
= H0 + H̃

where . . .
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Our Hamiltonian

χ = 21/4ψ+, ξ = 2−1/4ηψ−

F a
+− = tr

(
λaF+−

)
F+− =

1
a

(
Ak −

(
U−1

k AkUk

)
(x + aek )

)
−

ig
2
∂−1
−

([
∂−Ak ,Ak

]
+
[
∂−
(

U−1
k AkUk

)
,U−1

k AkUk

]
(x + aek )− χ†λaχ

λa

2

)
G12(x) = −

1
ga2

((
I + igaA1

)
U1

(
I + igaA2(−a1)

)
U2(−a1)−

(
1↔ 2

))
Ak (x) =

1
a
√

2L

∑
n>0

(
aa

nk (x⊥)e−ipnx−

√
2pn

+ h.c.
)

χi
r (x) =

1
a
√

2L

∑
n>0

(
bi

nr (x⊥)e−ipnx− + d i+
nr (x⊥)eipnx−

)
πk − canonically conjugated variables to Uk ,

[
πa
⊥,U⊥

]
= −

λa

2
U⊥
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Our Hamiltonian: purely zero modes

H0 =
(πa
⊥)2

4Lη2
0

+
2L

g2a2 trU†12U12,

U12 = U1U2(x − ae1)− U2U1(x − ae2)
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Definition of mass

Now we have a problem due to the broken Lorentz symmetry: How to
define invariant mass?
We suggest the following procedure:

First we define P0 = H0 − Evac

For zero modes we use the expression for M2 in the η system of
coordinates. So M2

0 = η2
0P2

0
For non-zero modes we use the standard light cone mass expression:
M̃2 = 2P̃0P3

We define the “invariant” mass in our model in the following way:

M2 ≡ M2
0 + M̃2

This expression appears to be boost-invariant.
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Quark-Antiquark model: Definition
The features of the model:

2 + 1-dimensional
q and q̄ interact only with zero modes of the gluon field
An arbitrary state is described as∣∣f l

m
〉

=
∑
m,l

∑
x⊥

b†m(x⊥)U†(x⊥ + a⊥e⊥) . . .U†(x⊥ + la⊥e⊥)d†m(x⊥ + la⊥e⊥)ϕvac(U) |0〉

where ϕvac is the eigenfunction of H0 corresponding to Evac. In our (2 + 1) dimensional case
Evac = 0 and ϕvac = I.
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Quark-Antiquark model: Hamiltonian
The simplified Hamiltonian:

H =
∑
x⊥

{∫ L

−L
dx−
[

g2

8L2η2
0
π2

k +
g2a

2
∂−1
−

(
χ†
λa

2
χ

)
∂−1
−

(
χ†
λa

2
χ

)
+ −

i
8a
[
χ†(x⊥ − 1)σ1U†(x⊥)− χ†(x⊥ + a⊥)U(x⊥ + a⊥)σ1 + 2maχ†(x⊥)

]
·

· ∂−1
−

[
U(x⊥)σ1χ(x⊥ − a⊥)− σ1U†(x⊥ + a⊥)χ(x⊥ + a⊥) + 2maχ(x⊥)

]
+ . . . (terms from normal ordering)

]}
≡ H0 + H̃

All these operators are understood to be in the normal-ordered form.
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Spectrum computation

Now we can find matrix element of every term in the mass formula.
Solving this matrix equation we obtain the approximate spectrum of
Q − Q system.

The basis set is limited by the length of state and by the total momentum
p3 = πn

L .

The limit L→∞ is achieved by increasing n such that p3 is fixed. When
we arrive at stable spectrum we assume that the Lorentz symmetry is
restored.
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Spectrum features

There are quite a few subtle moments in spectrum computation. For
example a question about renormalization of coupling constants.
Unfortunately we cannot discuss them yet.
There are several phenomenological parameters in the model.
The main feature we want to emphasize is the form of Q − Q
potential we get: it is quadratic with respect to the transverse
direction and it has a “’t Hooft” form in the longitudinal direction.
The spectrum “stabilizes” when the longitudinal resolution increases.
Due to the special form of potential the spectrum shows clear
“Regge” trajectory.
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Conclusions

We propose a new semi-phenomenological approach to the QCD
spectrum computation on the Light Front.
The spectrum obtained show (qualitatively) desired features.
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Typical spectrum and wave functions
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Typical spectrum and wave functions

Several first 2D wavefunctions squared of Hamiltonian
(
|ϕ(x⊥, x−)|2

)
.
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