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1. Introduction 

Honeycomb lattice materials 

 One-atom-thick 2D material layered as honeycomb lattice is 

attractive in condensed matter physics.  

e.g. Graphene, MoS2, WS2, WSe2, ZnO (2D), etc 

 Those have unique band structure, dispersion relation, large e 

mobility, quantum Hall effect.  

 Graphene has been one of the most fascinating material since its 

discovery in 2004 by Novoselov, Geim et al. 

 Energy spectrum is similar to massless Dirac particle (quasi-particle) 

Main motivation:   

Theoretical approach for 

understanding appearance of band 

gap in Monolayer or multilayer of 

Graphene.   
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1. Introduction 

Band structure of Graphene 
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Note: Monolayer MoS2 

Application: bilayer Graphene is rather useful for semiconductor material.  

T. Eknapakul et al., Nano. Lett. 14, 1412(2014) 

• Parabolic dispersion 

• Energy gap (~1.8 eV) in 

Dirac point 

• More useful for 

semiconductor 

e.g. Geim, Novoselov, Nature Material 6, 183(2007) 
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 Gapless mode 

    Monolayer Graphene : massless Dirac mode. 

    Bilayer Graphene : gapless mode with quadratic dispersion. 

1. Introduction 

Symmetry 

How do we figure out the appearance of gapless mode in Graphene 

starting from tight-binding model ? 

Stability of massless quasi-particle even if there is radiative 

correction order of cut-off scale (inverse of lattice spacing) 

•  So far there has been a discussion of Z2 symmetry in free-field near 

low-energy limit.  

•  Is it also realized when extending into whole energy region ? 

•  The exact formula of (hidden) symmetry of Honeycomb lattice 

Hamiltonian is needed.  

e.g. Hatsugai-Aoki-Fukui 2006 
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1. Introduction 

Symmetry 

Original Hamiltonian in tight-binding model 

Small deformation 

in free theory 

Radiative  

Correction 

Small Z2-preserving 

and no Z2- violating 

change 

Z2 symmetry 
“flavor-chiral” symmetry? 

No large mass shift of 

cutoff order 

Complementary  
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2. Tight-binding model 

Hamiltonian of Graphene 

・A site 

・ B site 

Nearest-neighbor bond 

Fundamental lattice vector for A, B site 
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 Leading order 

 

 

 

 

 Low-energy limit  

2. Tight-binding model 

Energy spectrum  

Dirac point (E=0):  

Massless Dirac fermion with 

velocity vF emerges.  

Being velocity of 1/300 times speed-of-light, it 

turns out to be large fine structure constant.  

Study in strong QED system 

G. W. Semenoff, (1984) 

e.g. Drut, Lahde (2009-2010), 

ES, Onogi, (2012), … 
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3. Position space formulation 

Hamiltonian in position space 

 Purpose  

 To find the manifest symmetry prohibiting mass term in 

Hamiltonian. 

 Analogy to staggered fermion formulation 

 Flavor-chiral rotation in position space formulation in 4D Lagrangian 

 

 Exact symmetry on the lattice 

 In 2+1D system,  

Kluberg-Stern et al. (1983) 

Flavor degree → A,B site index 

Spinor degree → internal degree of A and B site 
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 New assignment of Honeycomb lattice index 
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3. Position space formulation 

Labeling site on Honeycomb lattice 

• The center of hexagonal 

unit cell is fundamental 

lattice site.  

• Inside of hexagonal cell 

has A,B index and three 

internal degree. 

•  ei=0,1,2 is the new 

fundamental lattice vector. 
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 Quasi-particle field cAr(x) 

  A, B : two DOFs 

 r: internal A,B lattice with three DOFs 

 2x3 = 6 DOFs tensor structure  

 Structure of Dirac operator  

 

 

3. Position space formulation 

Degree of freedom 

6x6 2x2 3x3 

Involving the 6x6 matrix, whose structure is similar to the 

staggered-Dirac operator. 
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 Hamiltonian 

3. Position space formulation 

Position space formulation 

1st : mass term 

2nd : kinetic term in honeycomb lattice 

3rd : order a mass term involving second differential (e.g Wilson term) 

It turns out to be manifest locality as well as staggered fermion. 
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 Diagonalization of mass term 

3. Position space formulation 

Physical and unphysical mode 

One massive mode 

Change of basis 

Two zero modes 

Integrating out the massive mode, the zero modes remain as physical modes, 

and then 4 DOFs are physical degree of freedom.  

If we take the continuum limit, Hamiltonian is consistent with formula of QED 

Dirac fermion in 2+1 dimension including Fermi velocity vF 

y  is 4 component fermion field 
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 Global transformation with 4x4 matrix 

4. Hidden symmetry 

Global symmetry of Heff 

Candidate of  “Flavor-Chiral” symmetry 

4 possibilities for [ H, G ]=0 

Parity conserving mass term                    is prohibited by the last 

two symmetries  

•  Discrete symmetry on Graphene 

Parity transformation: 

However, those symmetry could be violated by lattice artifact 
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 We look for the exact flavor-chiral symmetry on Hamiltonian. 

 “Top-down” approach  

 Seeking the symmetry of c field in whole energy spectrum 

 

    which also prohibits the mass term, [H,G5]=0. 

 Low energy: at NNLO 

     

 Low energy expansion: at N3LO 

 

 Ansatz for G5(k) 

4. Hidden symmetry 

Flavor-chiral symmetry on honeycomb 

series are failed, but  series are survived in Heff. 

series (A,B is arbitrary 3x3 matrix) only appear. 
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 Explicit formula of X,Y,Z coefficients 
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Continuum limit  (mass diagonal basis) 

4. Hidden symmetry 

Flavor-chiral symmetry on honeycomb 

Coincide with global   

“flavor-chiral sym.” in Heff 
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 This formulation easily extends toward multi-hopping 

interaction. Since multi-hopping interaction is written as 

polynomial of H, Hnon-local = P(H), our argument does not 

change (in contrast,  Z2 symmetry is not applied in more than 

2 hopping case, {H2, 3} ≠ 0). 

 In bilayer case (AB-staking), if we define  

 

4. Hidden symmetry 

Remarks 

and in          ,  Hamiltonian is also invariant 

under flavor-chiral symmetry.  

Upper layer 

Lower layer 
sites sit on top of  
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 We show formula of flavor-chiral symmetry on 

honeycomb lattice. 

 Flavor-chiral symmetry is exact even in finite lattice 

spacing. It may be more realistic formula for Graphene.  

 It is also extendable to bilayer case.  

 What’s the next ? 

 Naively gauge interaction is able to introduce into link variable.  

 The check of consistency is necessary with perturbation.  

 Our goal: Non-perturbative calculation for phase transition, 

boundary effect (carbon nanotube) and anomalous Hall effect 

in Monte-Carlo simulation. 

5. Summary 

Summary and future work 
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Backup  
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Symmetry in terms of conventional 

labeling 
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 AB staking 

2. Tight-binding model 

Bilayer energy spectrum 

Upper layer 

Lower layer 

Inter-layer hopping Hamiltonian 

sites sit on top of  

Energy 

k 

Near Dirac point 

Energy eigenvalue in AB staking 

In the same Dirac point, 

parabolic dispersion emerges.  
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