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The Sign Problem

Sketches of the QCD phase diagram (two of many):

Except near µ = 0, it is mostly conjecture.

Can the situation be improved via lattice Monte Carlo?
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The Sign Problem

In order to vary particle density, introduce a chemical potential µ.
When the quark fields are integrated out, each flavor contributes a factor

det(D/ + m + µγ0)

which is complex, unless either

µ = 0;

µ is purely imaginary;

there are two flavors with µ of opposite sign (isospin chemical potential).

If not, then exponentiating a complex determinant det(M) = exp Tr log(M), results in a
complex action.

Straightforward importance sampling is impossible!
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What to do?

There are several “direct” approaches to the sign problem in QCD, which are under
development:

Reweighting + cumulant expansion (WHOT collaboration)

Treat exp[iSI ] as an observable, rather than as part of the Boltzman weight.

Stochastic quantization (Aarts, Seiler, Sexty, Stamatescu...)

Complexify the field variables and apply the Langevin equation.

Lefschetz thimbles (Cristoforetti, Di Renzo, Mukherjee, Scorzato)

Shift functional integration contours into the complex plane.
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An “indirect” approach

First map the gauge-matter theory onto a much simpler theory − a Polyakov line
action (or “SU(3) spin”) model.

There is still a sign problem that must be faced. I will deal with that in two ways:

Methods
1 mean field theory (Splittorff and JG)
2 complex Langevin equation (Aarts and James)

We will find that these methods sometimes agree perfectly, and sometimes not. I will
discuss who is right − or who is wrong − in the latter case.
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Effective Polyakov Line Action

Start with lattice gauge theory and integrate out all d.o.f. subject to the constraint that
the Polyakov line holonomies are held fixed. In temporal gauge

eSP [Ux] =

∫
DU0(x,0)DUkDφ

{∏
x

δ[Ux − U0(x,0)]

}
eSL

At leading order in the strong coupling/hopping parameter expansion SP has the form
of an SU(3) spin model

Sspin = J
∑

x

3∑
k=1

(
Tr[Ux ]Tr[U†

x+k̂
] + c.c.

)
+h
∑

x

(
eµ/T Tr[Ux ] + e−µ/T Tr[Ux ]

)
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Avoid dynamical fermion simulations for now, work instead with an SU(3) gauge-Higgs
model with a fixed modulus Higgs

SL = β
3

∑
p ReTr[U(p)] + κ

3

∑
x
∑4
µ=1 Re

[
Ω†(x)Uµ(x)Ω(x + µ̂)

]
If we can derive SP at µ = 0, then (in principle) we also have SP at µ > 0 by the
following identity:

Sµ
P [Ux,U

†
x] = Sµ=0

P

[
eNtµUx,e−NtµU†x

]

which is true to all orders in the strong coupling/hopping parameter expansion.

In practice we will also make use of imaginary chemical potentials µ/T = iθ.
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How to compute SP at µ = 0?
strong-coupling expansions (Philipsen et al.)

inverse Monte Carlo (Heinzl et al.)

relative weights (this talk)

And how do we know that we have derived SP correctly?

One test: compare Polyakov line correlators

G(R) = 1
N2

c

〈
Tr[Ux]Tr[U†y]

〉
, R = |x− y|

computed for the effective action, and in the underlying lattice gauge theory.
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The Gold Standard - SU(2) via Relative Weights

In previous papers we worked out SP for
pure SU(2) gauge theory:

SP =
∑

x,y PxK (x− y)Py

where

Px = 1
2 TrUx

Here is the correlator comparison for

G(R) = 〈PxPy〉
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R

1e-06

0.0001

0.01

1

G
(R

)

lattice YM
effective theory

On-axis Polyakov line correlators, L=24

The underlying lattice gauge theory is at β = 2.2 on a 243 × 4 lattice.
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The Relative Weights Method

Let S′L be the lattice action in temporal gauge with U0(x, 0) fixed to U ′x. It is not so easy
to compute

exp
[
SP [U ′x]

]
=
∫

DUk Dφ eS′
L

directly. But the ratio (“relative weights”)

e∆SP =
exp[SP [U ′x]]

exp[SP [U ′′x ]]

is easily computed as an expectation value

exp[∆SP ] =

∫
DUk Dφ eS′

L∫
DUk Dφ eS′′

L

=

∫
DUk Dφ exp[S′L − S′′L ]eS′′

L∫
DUk Dφ eS′′

L

=
〈

exp[S′L − S′′L ]
〉′′

where 〈...〉′′ means the VEV in the Boltzman weight ∝ eS′′
L .
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Suppose Ux(λ) is some path through configuration space parametrized by λ, and
suppose U ′x and U ′′x differ by a small change in that parameter, i.e.

U ′x = Ux(λ0+ 1
2 ∆λ) , U ′′x = Ux(λ0− 1

2 ∆λ)

Then the relative weights method gives us the derivative of the true effective action SP

along the path:

(
dSP

dλ

)
λ=λ0

≈ ∆S
∆λ

The question is: which derivatives will help us to determine SP itself?
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Fourier components of Px

Px ≡ 1
Nc

TrUx =
∑

k akeik·x

We first set a particular momentum mode ak to zero. Call the resulting configuration

P̃x . Then define (f ≈ 1)

P ′′x =
(
α− 1

2
∆α
)

eik·x + f P̃x

P ′x =
(
α +

1
2

∆α
)

eik·x + f P̃x

which uniquely determine (in SU(2) and SU(3)) the eigenvalues of the corresponding
holonomies U ′x,U ′′x .
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SP has a remnant local symmetry Ux → gxUxg†x , so the holonomies U ′x,U ′′x can be
taken to be diagonal. We then compute

1
L3

(
∂SP

∂aR
k

)
ak=α

by the relative weights simulation (aR
k is the real part of ak).

For a pure gauge theory, the part of SP bilinear in Px is constrained to have the form

SP =
∑
xy

PxP†yK (x− y)

Then, going over to Fourier modes

1
α

1
L3

(
∂SP

∂aR
k

)
ak=α

= 2K̃ (k)
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The red points are the Fourier transform of K (x− y), which gives us the effective
action SP
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Correlator comparisons at β = 5.6,5.7

SP =
∑

xy PxP†y K (x− y)

Simulate the effective theory in the usual way, and compare the Polyakov line
correlators in the effective theory with the correlators in the underlying pure gauge
theory
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SP for the SU(3) gauge-Higgs model

Including linear and bilinear center symmetry-breaking terms, it can be shown that at
finite chemical potential

SP =
∑

xy

PxP†y K (x− y) +
∑

xy

(PxPyQ(x− y, µ) + P†x P†y Q(x− y;−µ))

+
∑

x

{
(d1eµ/T − d2e−2µ/T )Px + (d1e−µ/T − d2e2µ/T )P†x

}

where

Q(x− y;µ) = Q(1)(x− y)e−µ/T + Q(2)(x− y)e2µ/T + Q(4)(x− y)e−4µ/T

The problem is to determine K (x− y), d1, d2,Q(x− y;µ).
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Use of the imaginary chemical potential µ/T = iθ

In terms of Fourier components

1
L3 SP =

∑
k

aka∗k K̃ (kL) + a0

(
d1eiθ − d2e−2iθ

)
+ a∗0

(
d1e−iθ − d2e2iθ

)
+
∑

k

(
aka−kQ̃(kL, θ) + a∗ka∗−kQ̃(kL, θ)

)
Then

1
L3

(
∂SP

∂aR
0

)
a0=α

= 2K̃ (0)α + 2d1 cos(θ)− (2d2 − 4Q̃(0)α) cos(2θ)

Fit to

1
L3

(
∂SP
∂aR

0

)
aR

0 =α
= A(α) + B(α) cos(θ)− C(α) cos(2θ)

Compare the data to the fit, and we find d1, d2, K̃ (0), Q̃(0).
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Gauge-Higgs theory at β = 5.6, κ = 3.9 on a 163× 6 lattice. Calculate (lhs) and fit (rhs)

1
L3

(
∂SP

∂aR
0

)
aR

0 =α

= A(α) + B(α) cos(θ)− C(α) cos(2θ)

at 15 values of θ and several α values:
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-0.05
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L
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 d
S

/d
a 0

0.063(1) + 0.126(2) cos(x) - 0.024(2) cos(2*x)

alpha = 0.0050
SU(3) Higgs, beta=5.6, kappa=3.9, 32 configs

0 1 2 3 4 5 6

θ

0
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L
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 d
S

/d
a 0

0.127(1) + 0.136(2) cos(x) - 0.020(2) cos(2*x)

alpha = 0.0100
SU(3) Higgs, beta=5.6, kappa=3.9, 32 configs

We can then extract coefficients of center symmetry-breaking terms (in this case
d1 = 0.0585, d2 = 0.0115), as well as K̃ (0) and Q̃(0).
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Gauge-Higgs Correlator Comparison
Effective action vs. lattice gauge theory

The underlying lattice gauge-Higgs theory is at β = 5.6, µ = 0 and κ = 3.6, 3.8, 3.9 on
a 163 × 6 lattice volume.
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There is still a sign problem...

Comparison of complex Langevin

and mean field methods

applied to effective actions at µ > 0
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Gauge-Higgs Models I

Gauge-Higgs at κ = 3.8, 3.9

SP =
1
9

∑
xy

Tr[Ux]Tr[U†y ]K (x− y)

+
1
3

∑
x

{
(d1eµ/T − d2e−2µ/T )Tr[Ux] + (d1e−µ/T − d2e2µ/T )Tr[U†x ]

}

The d2 dependent terms must originate from “double-winding ”terms

d2e2µ/T Tr[U2
x ] + d2e−2µ/T Tr[U†2x ]

via the SU(3) identities

Tr[U2
x ] = Tr[Ux]2 − 2Tr[U†x ] , Tr[U†2x ] = Tr[U†x ]2 − 2Tr[Ux] ,
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Gauge-Higgs Models II

With that motivation, we also consider

A model with a double-winding term

SP =
1
9

∑
xy

Tr[Ux]Tr[U†y ]K (x− y)

+
1
3

∑
x

{
d1eµ/T Tr[Ux] + d1e−µ/T Tr[U†x ]

}
+

1
6

∑
x

{
d2e2µ/T Tr[U2

x ] + d2e−2µ/T Tr[U†2x ]
}
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Heavy Quark model

Hopping parameter very small, chemical potential µ very large. In temporal gauge, the
lattice action is simply

eSL =
∏

x

det
[
1 + heµ/T U0(x, 0)

]p
det
[
1 + he−µ/T U†(x, 0)

]p
eSplaq

p = 1 for staggered fermions, p = 2Nf for Wilson fermions. If we know the Polyakov
line action for the pure gauge theory Spg

P , then

eSP =
∏

x

det
[
1 + heµ/T Ux

]p
det
[
1 + he−µ/T U†x

]p
eSpg

P

Jeff Greensite (SFSU) Polyakov Line Actions Lattice 2014 23 / 43



Complex Langevin for the effective actions

We follow the approach of Aarts and James (2012).

Effective Polyakov line models depend only on the eigenvalues exp[iθa(x)] of Ux. In
particular

Tr[Ux] = eiθ1(x) + eiθ2(x) + e−i(θ1(x)+θ2(x))

Treat θ1,2(x) as the dynamical variables. Then the Haar integration measure must be
incorporated into the action

SP −→ S′P = SP +
∑

x

log

[
sin2

(
θ1(x)− θ2(x)

2

)

× sin2
(

2θ1(x) + θ2(x)

2

)
sin2

(
θ1(x) + 2θ2(x)

2

)]

The prescription is then to complexify the angles θ1,2(x), and solve the complex
Langevin equation.
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The Møllgård-Splittorff Warning (2013)

Beware! Logarithms have branch cuts along the negative real axis. Complex
Langevin can go wrong if

1 there is a logarithmic term in the action (e.g. the log of a measure or a fermion
determinant), and

2 Langevin evolution frequently crosses the branch cut.

To check this, we keep track of the argument of the logarithm

Arg = sin2
(
θ1(x′)− θ2(x′)

2

)
sin2

(
2θ1(x′) + θ2(x′)

2

)
sin2

(
θ1(x′) + 2θ2(x′)

2

)

at an arbitrarily chosen lattice site x′.
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Mean Field Theory for the effective actions

The mean field treatment of SU(3) spin models at finite µ is a minor variation of
standard mean field theory at zero chemical potential.

Two “magnetizations” are introduced; one for TrU and one for TrU†. These are
determined, as usual, by minimizing the free energy.

For details, see Splittorff and JG (2012).
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Results I - Gauge-Higgs at κ = 3.8

Here are the results for the Polyakov lines and the number density, derived from
complex Langevin and mean field (β = 5.6, 163 × 6 lattice as before):
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It is hard to even detect a difference between the two methods.
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Here is a plot of the argument of the logarithm in the complex plane, at a fixed lattice
site, at each Langevin time step for µ = 5:
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There seems to be no branch-cut crossing problem.
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Results II - The Heavy Quark Model

(p = 1, β = 5.6, h = 10−4, 163 × 6)

Again, near-perfect agreement:
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and no branch-cut crossing problem
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Results III - Gauge-Higgs with double winding term

Here we see a phase transition
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Great agreement. However, complex Langevin has at least two solutions above the
transition, depending on initialization, and only one agrees with mean field.
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Results IV - Gauge-Higgs κ = 3.9, no double winding term
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Here there is a very strong disagreement between mean field and complex Langevin at
µ ≥ 2.75.

But where the results differ, complex Langevin evolution has a branch-cut problem.
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Why is mean field so good?

Perhaps because many spins − not just nearest neighbors − are coupled to a given
spin, through the non-local kernel K (x− y).

The basic idea behind mean field theory, i.e. that each spin is effectively coupled to the
average spin on the lattice, may be a very good approximation to the true situation
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Improve complex Langevin for the effective theories?

One possibility is to complexify Ux, as in the the Langevin approach to lattice gauge
theory, rather than the angles θ1,2(x).

Then there is no logarithm of the measure in the action, and no Møllgård-Splittorff
problem.

It is still necessary to monitor UxU†x , to check that it doesn’t wander too far from the unit
matrix.
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CONCLUSIONS

We have developed a method for determining the effective Polyakov line action.

At µ = 0 there is excellent agreement for the Polyakov line correlators computed in
the effective theory and underlying lattice gauge theory.

At µ > 0 we can solve the effective theory by either mean field or complex
Langevin methods.

Where the two methods agree, they agree almost perfectly. Where they disagree,
complex Langevin has a Møllgård-Splittorff branch cut crossing problem.
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Next Steps

Go on to dynamical fermions. First heavy, then light.

Prescription:

Find the effective action via relative weights, solve by mean field.

Given SP , there may be no need to resort to any further numerical simulation
at finite µ.
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EXTRA SLIDES
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Mean Field Theory for the effective actions

We follow the approach of Splittorff and JG (2012).
The idea is to localize the part of the action S0

P containing products of terms at different
sites:

S0
P =

1
9

∑
xy

Tr[Ux]Tr[U†y ]K (x− y)

=
1
9

∑
(xy)

Tr[Ux]Tr[U†y ]K (x− y) + a0

∑
x

Tr[Ux]Tr[U†x ]

where we have introduced the notation for the double sum, excluding x = y,∑
(xy)

≡
∑

x

∑
y6=x

and a0 ≡
1
9

K (0)

Next, introduce parameters u, v

TrUx = (TrUx − u) + u , TrU†x = (TrU†x − v) + v
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Then

S0
P = J0

∑
x

(vTrUx + uTrU†x )− uvJ0V + a0

∑
x

Tr[Ux]Tr[U†x ] + E0

where V = L3 is the lattice volume, and we have defined

E0 =
∑
(xy)

(TrUx − u)(TrU†y − v)
1
9

K (x− y) ,

J0 =
1
9

∑
x6=0

K (x)

If we drop E0, the action is local and and the group integrations can be carried out
analytically.

The trick is to choose u and v such that E0 can be treated as a perturbation, to be
ignored as a first approximation. In particular, 〈E0〉 = 0 when

u = 〈TrUx〉 , v = 〈TrU†x 〉

This is equivalent to stationarity of the mean field free energy, with respect to variations
in u, v , and is solved numerically.
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How bad is the sign problem here?

We estimate 〈eiSI 〉pq in the “phase quenched” measure e−SR , using the crude
approximation

〈eiSi 〉pq ∼ exp
[
− 1

2
〈S2

i 〉pq

]
The rhs is the lowest-order term in the cumulant expansion.
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How bad is the sign problem in this model?

Once again, estimate 〈eiSI 〉pq in the “phase quenched” measure e−SR ,

〈eiSi 〉pq ∼ exp
[
− 1

2
〈S2

i 〉pq

]
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Q̃(kL, µ) seems calculable, but the magnitude is small and the errorbars are large:

0 1 2 3 4 5 6

θ

9

10

11

12

13

L
-3

 (
d
S

/d
a k

)/
α

11.1 + 1.25 * cos(x)

11.1 + 1.25 * cos(x) - 0.24 *cos(2*x)

SU(3) beta=5.6 kappa=3.9 alpha=0.01 sigma=0.01 f =0.8 gamma=4 mom=(100)

(a) ak derivative at smallest kL 6= 0, vs. θ
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(b) K̃ (kL) and (estimate of) Q̃1(kL) vs. kL

For now we will ignore the Q(x− y;µ) term in the action.
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