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§ Introduction

Dual superconductor picture for quark confinement
[Nambu (1974), ’t Hooft (1975), Mandelstam (1976), Polyakov (1975,1977) ...]

The key ingredients for the hypothesis of dual superconductor = QCD vacuum=

* Dual Meissner effect

In the dual superconductor, chromoelectric flux is squeezed into tubes.
[← In the ordinary superconductor, magnetic flux is squeezed into tubes]

← dual →
dual superconductor superconductor

* condensation of chromomagnetic monopoles
[← electric charges condense into Cooper pairs ]

We must answer the following questions:

* How to introduce magnetic monopoles in the Yang-Mills theory without scalar fields?
cf. ’t Hooft-Polyakov magnetic monopole
* How to define the duality in the non-Abelian gauge theory?
* How to preserve the original (non-Abelian) gauge symmetry?
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§ Non-Abelian Stokes theorem (1)
We consider how the Wilson loop is related to the magnetic monopole.

First, we consider the Abelian case. The Abelian Wilson loop is cast into the surface integral by the

Stokes theorem

WC[A] = exp

[
ie

∮
C

dx
µ
Aµ

]
=⇒ WC[A] = exp

[
ie

∫
Σ:∂Σ=C

dS
µν
(x(σ))Fµν(x(σ))

]
.

Introduce the vorticity tensor with the support only on the surface ΣC bounded by the loop C

Θ
µν
Σ (x) :=

∫
Σ:∂Σ=C

d
2
S

µν
(x(σ))δ

D
(x − x(σ)).

It is rewritten into the spacetime integral:

WC[A] = exp {ie(Θ, F )} , (Θ, F ) :=

∫
d
D
xΘ

µν
Σ (x)Fµν(x).

The Hodge decomposition yields the electric current j and the magnetic current k:

WC[A] = exp {ie(NΣ, j) + ie(ΞΣ, k)]} , NΣ := δ∆
−1

ΘΣ, ΞΣ := δ∆
−1∗

ΘΣ.

Here the electric current j is non-vanishing: j := δF ̸= 0, while the magnetic current k is vanishing

due to the Bianchi identity and there is no magnetic contribution to the Wilson loop,

k := δ
∗
F =

∗
dF =

∗
ddA = 0 =⇒ WC[A] = exp {ie(NΣ, j)]} ,
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Next, we consider the non-Abelian case. The non-Abelian Wilson loop operator is written as

WC[A ] := trR

{
P exp

[
−ig

YM

∮
C

A

]}
/trR(1). (1)

0. Define the path ordering P by dividing the path C into N infinitesimal segments:
0 1 2

n
n+1

N-1

...

...

C

WC[A ] = lim
N→∞,ϵ→0

trR

{
P

N−1∏
n=0

exp

[
−ig

YM

∫ xn+1

xn

A

]}
/trR(1). (2)

The troublesome path ordering in the non-Abelian Wilson loop operator can be removed in the Diakonov
and Petrov version of the non-Abelian Stokes theorem. [Diakonov and Petrov (1989)]

It can be obtained as the path-integral representation of the Wilson loop operator using the coherent

state of the Lie group G in an unified way. [Kondo (1998), Kondo and Taira (2000), Kondo (2008)]

1. Replace the trace of the operator O by the integral:

trR(O)/trR(1) =

∫
dµ(g(x0)) ⟨g(x0),Λ|O |g(x0),Λ⟩ . (3)

where dµ(g) is an invariant measure on G and the state is normalized ⟨g(xn),Λ|g(xn),Λ⟩ = 1.

2. Insert a complete set of states at each partition point:

1 =

∫
dµ(g(xn)) |g(xn),Λ⟩ ⟨g(xn),Λ| (n = 1, · · · , N − 1), (4)
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The state |g,Λ⟩ is constructed by operating a group element g ∈ G to a reference state |Λ⟩:

|g,Λ⟩ = g |Λ⟩ , g ∈ G. (5)

|Λ⟩: a reference state (highest–weight state of the rep.) making a rep. of the Wilson loop we consider.

3. Take the limit N → ∞ and ϵ → 0 appropriately such that Nϵ is fixed.

WC[A ] = lim
N→∞,ϵ→0

N−1∏
n=0

∫
dµ(g(xn))

N−1∏
n=0

⟨g(xn+1),Λ| exp
[
−ig

YM

∫ xn+1

xn

A

]
|g(xn),Λ⟩,

(6)

For taking the limit ϵ → 0 in the final step, it is sufficient to retain the O(ϵ) terms.

⟨gn+1,Λ| exp
[
−ig

YM

∫ xn+1

xn

A

]
|gn,Λ⟩

=⟨Λ|g(xn+1)
†
exp

[
−ig

YM

∫ xn+1

xn

A

]
g(xn)|Λ⟩ = ⟨Λ| exp

[
−ig

YM

∫ xn+1

xn

A g

]
|Λ⟩

= ⟨Λ|
[
1 − ig

YM

∫ xn+1

xn

dτA g
(τ) + O(ϵ

2
)

]
|Λ⟩

= 1 − ig
YM

∫ xn+1

xn

⟨Λ|A g|Λ⟩ + O(ϵ
2
) (⟨Λ|Λ⟩ = 1)

= exp

[
−iϵg

YM

∫ xn+1

xn

⟨Λ|A g|Λ⟩
]
+ O(ϵ

2
), (7)
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Here A g(x) agrees with the gauge transformation of A (x) by the group element g:

A g
(x) := g(x)

†A (x)g(x) + ig
−1

YM
g(x)

†
dg(x). (8)

Defining the one-form Ag from the Lie algebra valued one-form A g by

A
g
:=⟨Λ|A g|Λ⟩, (9)

we arrive at a path-integral representation of the Wilson loop operator:

WC[A ] =

∫
[dµ(g)]C exp

(
−ig

YM

∮
C

A
g

)
, [dµ(g)]C := lim

N→∞,ϵ→0

N−1∏
n=0

dµ(g(xn)), (10)

The path-ordering has disappeared. (pre-NAST)

Therefore, we can apply the (usual) Stokes theorem to obtain a non-Abelian Stokes theorem (NAST):

WC[A ] =

∫
[dµ(g)]Σ exp

[
−ig

YM

∫
Σ:∂Σ=C

F
g

]
, F

g
= dA

g
. (11)

Here we replaced the integration measure on the loop C by the integration measure on the surface Σ:

[dµ(g)]Σ :=
∏

x∈Σ:∂Σ=C

dµ(g(x)), (12)

by inserting additional integral measures, 1 =
∫
dµ(g(x)) for x ∈ Σ − C. [Kondo (2008)]

The explicit expression for F g will be obtained later.
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§ Field decomposition a la Cho-Duan-Ge-Faddeev-
Niemi

For the highest-weight state |Λ⟩ = (λa) of a representation R of a group G, we define a matrix

ρ with the matrix element ρab by

ρ := |Λ⟩ ⟨Λ| , ρab := |Λ⟩a ⟨Λ|b = λaλ
∗
b. (1)

Since ⟨Λ|Λ⟩ = λaλ
∗
a = 1, the trace of ρ has a unity:

tr(ρ) = ρaa = 1, (2)

Moreover, the matrix element ⟨Λ|O |Λ⟩ of an arbitrary matrix O is written in the trace form:

⟨Λ|O |Λ⟩ = tr(ρO), (3)

since ⟨Λ|O |Λ⟩ = λ∗
bObaλa = ρabOba = tr(ρO).

By using the operator ρ := |Λ⟩ ⟨Λ|, the “Abelian” field Ag is written in the trace form of a matrix:

A
g
(x) :=⟨Λ|A g

(x)|Λ⟩

=tr{ρA g
(x)} = tr{g(x)ρg†

(x)A (x)} + ig
−1

YM
tr{ρg†

(x)dg(x)}. (4)
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By introducing the traceless field ñ(x) defined by [which we call color (direction) field]

ñ(x) := g(x)

[
ρ −

1

tr(1)

]
g
†
(x) = g(x)ρg

†
(x) −

1

tr(1)
, (5)

the “Abelian” field Ag is rewritten as

A
g
µ(x) =tr{ñ(x)Aµ(x)} + ig

−1

YM
tr{ρg†

(x)∂µg(x)}, (6)

We proceed to perform the decomposition of the Yang-Mills field Aµ(x) into two pieces:

Aµ(x) = Vµ(x) + Xµ(x). (7)

We simply require that Xµ(x) satisfies the condition:[defining equation]

(ii) Xµ(x) · n(x) = 2tr{Xµ(x)n(x)} = 0. (8)

Then Xµ(x) disappears from the Wilson loop operator, since Ag
µ(x) is written without Xµ(x):

A
g
µ(x) =tr{ñ(x)Vµ(x)} + ig

−1

YM
tr{ρg†

(x)∂µg(x)}. (9)

Consequently, the Wilson loop operator WC[A ] can be reproduced by the restricted field variable

Vµ(x) alone. This is the restricted field dominance in the Wilson loop operator. For arbitrary loop C

and any representation,

(a) WC[A ] = WC[V ], (10)

This does not necessarily imply ⟨WC[A ]⟩YM = ⟨WC[V ]⟩YM, which holds only when the cross term

between V and X are neglected.
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We look for the gauge covariant decomposition,

A ′
µ(x) = V ′

µ(x) + X ′
µ(x). (11)

For the condition (ii) of (8) to be gauge covariant,the transformation of the color field n given by

g(x) → U(x)g(x) =⇒ n(x) → n
′
(x) = U(x)n(x)U

†
(x). (12)

requires that Xµ(x) transforms like an adjoint matter field:

Xµ(x) → X ′
µ(x) = U(x)Xµ(x)U

†
(x), (13)

This immediately means

Vµ(x) → V ′
µ(x) = U(x)Vµ(x)U

†
(x) + ig

−1

YM
U(x)∂µU

†
(x), (14)

since Aµ(x) → A ′
µ(x) = U(x)Aµ(x)U

†(x) + ig−1

YM
U(x)∂µU

†(x).

These transformation properties impose restrictions on the requirement to be imposed on the

restricted field Vµ(x). Such a candidate is [defining equation]

(I) Dµ[V ]n = 0 (Dµ[V ] := ∂µ − ig
YM

[Vµ, ·]), (15)

since the covariant derivative transforms in the adjoint way: Dµ[V (x)] → U(x)(Dµ[V ](x))U†(x).
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For G = SU(2), it is shown that the two conditions (8) and (15) [defining equations for the

decomposition] are compatible and determine the decomposition uniquely.

Aµ(x) = Vµ(x)+Xµ(x),

Vµ(x) =cµ(x)n(x) + ig
−1

YM
[n(x), ∂µn(x)], cµ(x) := Aµ(x) · n(x),

Xµ(x) = − ig
−1

YM
[n(x),Dµ[A ]n(x)]. (16)

This is the same as the Cho–Duan-Ge–Faddeev-Niemi (CDGFN) decomposition.
Cho(1980), Duan-Ge (1979), Faddeev-Niemi (1998)

The condition (I) means that the field strength F [V ]
µν (x) of the field Vµ(x) and n(x) commute:

[F [V ]
µν (x),n(x)] = 0. (17)

This follows from the identity:

[F [V ]
µν ,n] = ig

−1

YM
[D [V ]

µ ,D [V ]
ν ]n, (18)

which is derived using

F [V ]
µν = ig

−1

YM
[D [V ]

µ ,D [V ]
ν ], D [V ]

µ := ∂µ − ig
YM

[Vµ, ·]. (19)

For SU(2), (17) means that F [V ]
µν (x) is proportional to n(x):

F [V ]
µν (x) = fµν(x)n(x) =⇒ fµν(x) = n(x) · F [V ]

µν (x) = 2tr[n(x)F [V ]
µν (x)], (20)
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§ Field decomposition: new options for SU(N)
For G = SU(N) (N ≥ 3), (I) and (ii) are not sufficient to uniquely determine the decomposition.

The condition (ii) [eq.(8)] must be modified:

(II) X µ(x) does not have the H̃-commutative part, i.e., X µ(x)H̃ = 0:

(II) 0 = X µ
(x)H̃ := X µ

(x) −
2(N − 1)

N
[n(x), [n(x),X µ

(x)]]

⇐⇒ X µ
(x) =

2(N − 1)

N
[n(x), [n(x),X µ

(x)]]. (1)

This condition is also gauge covariant. Note that the condition (ii)[eq.(8)] follows from (II)[eq.(1)]. For

G = SU(2), i.e., N = 2, the condition (II)[eq.(1)] reduces to (ii)[eq.(8)].

By solving (I)[eq.(15)] and (II)[eq.(1)], Xµ(x) is determined as

Xµ(x) = −ig
−1

YM

2(N − 1)

N
[n(x),Dµ[A ]n(x)] ∈ Lie(G/H̃). (2)

Vµ(x) =Cµ(x) + Bµ(x) ∈ L ie(G),

Cµ(x) = Aµ(x) −
2(N − 1)

N
[n(x), [n(x),Aµ(x)]] ∈ L ie(H̃),

Bµ(x) = ig
−1

YM

2(N − 1)

N
[n(x), ∂µn(x)] ∈ L ie(G/H̃). (3)
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§ Non-Abelian Stokes theorem (2)
Finally, we can show that the field strength F g

µν := ∂µAν − ∂νAµ in NAST is cast into the form:

F
g
µν(x) =

√
2(N − 1)

N
tr{n(x)Fµν[V ](x)} + ig

−1

YM
tr{ρg†

(x)[∂µ, ∂ν]g(x)}. (1)

tr{n(x)Fµν[V ](x)} =∂µtr{n(x)Vν(x)} − ∂νtr{n(x)Vµ(x)}

+
2(N − 1)

N
ig

−1

YM
tr{n(x)[∂µn(x), ∂νn(x)]}. (2)

where the normalized and traceless field n(x) defined by

n(x) =

√
N

2(N − 1)
g(x)

[
ρ −

1

tr(1)

]
g
†
(x), g(x) ∈ G. (3)

Thus the Wilson loop operator can be rewritten in terms of new variables:

WC[A ] =

∫
[dµ(g)]Σ exp

[
− ig

YM

1

2

√
2(N − 1)

N

∫
Σ:∂Σ=C

2tr{nF [V ]}
]
, (4)

Incidentally, the last part ig−1

YM
tr{ρg(x)†[∂µ, ∂ν]g(x)} in F g

µν(x) corresponds to the Dirac string.This
term is not gauge invariant and does not contribute to the Wilson loop operator in the end, after the

group integration dµ(g).
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In this way we obtain another expression of the NAST for the Wilson loop operator in the

fundamental representation for SU(N):

WC[A ] =

∫
[dµ(g)] exp

−ig
YM

1

2

√
2(N − 1)

N
[(NΣC

, j) + (ΞΣC
, k)]

 , (5)

where we have defined the (D − 3)-form k and one-form j by

k := δ
∗
f, j := δf, f := 2tr{nF [V ]}, (6)

and we have defined the (D − 3)-form ΞΣC
and one-form NΣC

by (ΞΣC
is the D-dim. solid angle)

ΞΣC
:=

∗
d∆

−1
ΘΣC

= δ∆
−1∗

ΘΣC
, NΣC

:= δ∆
−1

ΘΣC
, (7)

with the inner product for two forms defined by

(ΞΣC
, k) =

1

(D − 3)!

∫
d
D
xk

µ1···µD−3(x)Ξ
µ1···µD−3
ΣC

(x), (NΣC
, j) =

∫
d
D
xj

µ
(x)N

µ
ΣC

(x).

(8)

The Wilson loop operator can be expressed by the electric current j and the monopole current k.

The magnetic monopole described by the current k is a topological object of co-dimension 3:

• D = 3: 0-dimensional point defect → point-like magnetic monopole (cf. Wu-Yang type)

• D = 4: 1-dimensional line defect → magnetic monopole loop (closed loop)
14



⊙ SU(2) case: fµν := 2tr{nFµν[V ]}
The gauge-invariant magnetic-monopole current (D − 3)-form k is obtained

k = δ
∗
f, fµν =∂µ2tr{nAν} − ∂ν2tr{nAµ} + ig

−1

YM
2tr{n[∂µn, ∂νn]}. (9)

For the fundamental representation of SU(2), the highest-weight state |Λ⟩ yields

|Λ⟩ =

(
1

0

)
=⇒ ρ := |Λ⟩⟨Λ| =

(
1

0

)
(1, 0) =

(
1 0

0 0

)
=⇒ ρ −

1

2
1 =

σ3

2
, (10)

=⇒ n(x) =g(x)
σ3

2
g(x)

† ∈ SU(2)/U(1) ≃ S
2 ≃ P

1
(C). (11)

Magnetic charge obeys the quantization condition a la Dirac:

qm :=

∫
d
3
xk

0
= 4πg

−1

YM
ℓ, ℓ ∈ Z. (12)

This is suggested from a nontrivial Homotopy group of the map n : S2 → SU(2)/U(1)

π2(SU(2)/U(1)) = π1(U(1)) = Z. (13)

cf. the Abelian magnetic monopole due to ’t Hooft-Polyakov associated with the spontaneous breaking

G = SU(2) → H = U(1):

n
A ↔ ϕ̂

A
(x)/|ϕ̂(x)|. (14)
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⊙ SU(3) case: Then the gauge–invariant magnetic–monopole current (D − 3)-form k is given by

k = δ
∗
f, fµν := ∂µ2tr{nAν} − ∂ν2tr{nAµ} +

4

3
ig

−1

YM
2tr{n[∂µn, ∂νn]}. (15)

For the fundamental rep. of SU(3), the highest-weight state |Λ⟩ yields

|Λ⟩ =

1

0

0

 =⇒ ρ := |Λ⟩⟨Λ| =

1 0 0

0 0 0

0 0 0

 =⇒ ρ −
1

3
1 =

−1

3

−2 0 0

0 1 0

0 0 1

 , (16)

=⇒ n(x) = g(x)
−1

2
√
3

−2 0 0

0 1 0

0 0 1

 g(x)
† ∈ SU(3)/U(2) ≃ P

2
(C). (17)

The matrix diag.(−2, 1, 1) is degenerate. Using the Weyl symmetry (discrete global or color symmetry),

it is changed into λ8.

This is a non-Abelian magnetic monopole, which corresponds to SU(3) → U(2).

The magnetic charge obeys the quantization condition:

q
′
m :=

∫
d
3
xk

0
= 2π

√
3g

−1

YM
n

′
, n

′ ∈ Z. (18)

Homotopy class of the map n : S2 → SU(3)/U(2)

π2(SU(3)/[SU(2) × U(1)]) = π1(SU(2) × U(1)) = π1(U(1)) = Z. (19)
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For a reference state |Λ⟩ of a given representation of a Lie group G, the maximal stability subgroup
H̃ is a subgroup leaving |Λ⟩ invariant (up to a phase):

h ∈ H̃ ⇐⇒ h|Λ⟩ = |Λ⟩eiϕ(h), (20)

g = ξh ∈ G, ξ ∈ G/H̃, h ∈ H̃. (21)

|g,Λ⟩ := g|Λ⟩ = ξh|Λ⟩ = ξ|Λ⟩eiϕ(h) = |ξ,Λ⟩eiϕ(h). (22)

Every representation R of SU(3) specified by the Dynkin index [m,n] belongs to (I) or (II):

(I) [Maximal] m ̸= 0 and n ̸= 0 =⇒ H̃ = H = U(1) × U(1). maximal torus

e.g., adjoint rep.[1,1], {H1, H2} ∈ u(1) + u(1),

(II) [Minimal] m = 0 or n = 0 =⇒ H̃ = U(2).

when the weight vector Λ is orthogonal to some of the root vectors,

e.g., fundamental rep. [1,0], {H1, H2, Eβ, E−β} ∈ u(2), where Λ ⊥ β,−β.

H1

H2

- α(1)

- α(2)

Λν1ν2

ν3

- α(3)- α(2)




H1

H2Λ



H1

H2

− α(3)

α(2)

- α(1)

- α(2)
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§ Reformulating Yang-Mills theory using new variables

The change of variables from Aµ to new field variables Cµ, Xµ and n

A A
µ =⇒ (n

β
,C k

µ ,X
b
µ ), (1)

• Aµ ∈ Lie(G) → #[A A
µ ] = D · dimG = D(N2 − 1)

• Cµ ∈ Lie(H̃) = u(N − 1) → #[C k
µ ] = D · dimH̃ = D(N − 1)2

• Xµ ∈ Lie(G/H̃) → #[X b
µ ] = D · dim(G/H̃) = D(2N − 2)

• n ∈ Lie(G/H̃) → #[nβ] = dim(G/H̃) = 2(N − 1) .

The new theory written in terms of new variables (nβ,C k
µ ,X

b
µ ) has the 2(N − 1) extra degrees of

freedom. Therefore, we must give a procedure for eliminating the 2(N − 1) extra degrees of freedom to

obtain the new theory equipollent to the original one. For this purpose, we impose 2(N − 1) constraints

χ = 0, which we call the reduction condition:
• χ ∈ Lie(G/H̃) → #[χa] = dim(G/H̃) = 2(N − 1) = #[nβ].

18



H

Figure 1: The relationship between the original Yang-Mills (YM) theory and the reformulated Yang-Mills

(YM’) theory. A single color field n is introduced to enlarge the original Yang-Mills theory with a gauge

group G into the master Yang-Mills (M-YM) theory with the enlarged gauge symmetry G̃ = G×G/H̃.

The reduction conditions are imposed to reduce the master Yang-Mills theory to the reformulated

Yang-Mills theory with the equipollent gauge symmetry G′. In addition, we can impose any over-all

gauge fixing condition, e.g., Landau gauge to both the original YM theory and the reformulated YM’

theory.

• Enlarged gauge symmetry by introducing n and the reduction by imposing χ

G
n→ G × G/H̃

χ→ G. (2)
19



A reduction condition in the minimal option is to minimize the functional Fred[A ,n]∫
d
D
x
1

2
g
2Xµ · X µ

=
2(N − 1)2

N2

∫
d
D
x(n × Dµ[A ]n)

2
=

N − 1

N

∫
d
D
x(Dµ[A ]n)

2
,

with respect to the enlarged gauge transformation:

δAµ = Dµ[A ]ω (ω ∈ L ie(G)

δn = ig[n, θ] = ig[n, θ⊥] (θ⊥ ∈ L ie(G/H̃)) (3)

In fact, the enlarged gauge transformation of the functional Fred[A ,n] is

δFred[A ,n] = δ

∫
d
D
x
1

2
(Dµ[A ]n)

2
= g

∫
d
D
x(θ⊥ − ω⊥) · i[n, D

µ
[A ]Dµ[A ]n], (4)

where ω⊥ denotes the component of ω in the direction L (G/H̃).

For ω⊥ = θ⊥ (diagonal part of G × G/H̃) δFred[A ,n] = 0 imposes no condition, while

for ω⊥ ̸= θ⊥ (off-diagonal part of G × G/H̃) it implies the constraint

χ[A ,n] := [n, D
µ
[A ]Dµ[A ]n] ≡ 0, (5)

The number of constraint is #[χ] = dim(G × G/H̃) − dim(G) = dim(G/H̃) as desired.

Finally, we have an equipollent Yang-Mills theory with the residual local gauge symmetry G′ :=

SU(N)local
ω′ with the gauge transformation parameter:

ω
′
(x) = (ω∥(x),ω⊥(x)) = (ω∥(x), θ⊥(x)), ω⊥(x) = θ⊥(x), (6)
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original YM =⇒ reformulated YM

field variables A A
µ ∈ L (G) =⇒ nβ,C k

ν ,X
b
ν

action SYM[A ] =⇒ S̃YM[n,C ,X ]

integration measure DA A
µ =⇒ DnβDC k

ν DX b
ν J̃δ(χ̃)∆red

FP[n, c,X ]

At the same time, the color field

n(x) ∈ L ie(G/H̃)

must be obtained by solving the reduction condition χ = 0 for a given A , e.g.,

χ[A ,n] := [n, D
µ
[A ]Dµ[A ]n] ∈ L ie(G/H̃). (7)

Here χ̃ = 0 is the reduction condition written in terms of the new variables:

χ̃ := χ̃[n,C ,X ] := D
µ
[V ]Xµ, (8)

and ∆red
FP is the Faddeev-Popov determinant associated with the reduction condition:

∆
red
FP := det

(
δχ

δθ

)
χ=0

= det

(
δχ

δnθ

)
χ=0

. (9)

which is obtained by the BRST method as ∆red
FP[n, c,X ] = det{−Dµ[V + X ]Dµ[V − X ]}.

The Jacobian J̃ is very simple, irrespective of the choice of the reduction condition:

J̃ = 1. (10)

[Kondo, Shinohara & Murakami, Prog.Theor.Phys. 120, 1–50 (2008). arXiv:0803.0176]
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The Wilson loop average in the original theory:

W (C) := ⟨WC[A ]⟩YM = Z
−1
YM

∫
DA e

−SYM[A ]
WC[A ]. (11)

is defined in the reformulated Yang-Mills theory:

⟨WC[A ]⟩YM′ =Z
−1

YM′

∫
[dµ(g)]

∫
Dn

βDC k
ν DX b

ν J̃δ(χ̃)∆
red
FPe

−S̃YM[n,C ,X ]

× exp

ig
YM

√
2(N − 1)

N
[(j,NΣ) + (k,ΞΣ)]

 ,

ZYM′ =

∫
Dn

βDC k
ν DX b

ν J̃δ(χ̃)∆
red
FPe

−SYM′[n,C ,X ]
. (12)

Remark: For SU(2), when we fix the color field n(x) = (0, 0, 1) or n(x) = σ3/2, the reduction

condition Dµ[V ]Xµ = 0 reduces to the conventional Maximally Abelian gauge.

For SU(3), this is not the case: This reduction does not reduce to the conventional Maximally Abelian

gauge for SU(3), even if the color field is fixed to be uniform. Therefore, the results to be obtained are

nontrivial.
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§ Conclusion and discussion

We have combined a non-Abelian Stokes theorem and reformulations of the Yang-
Mills theory.
1) In SU(2) Yang-Mills theory without adjoint scalar fields, we do not need to use
the Abelian projection [’t Hooft,1981] to define magnetic monopoles as gauge-fixing
defects. In fact, a gauge-invariant magnetic monopole can be defined as proposed
by [Cho, 1980] and [Duan & Ge, 1979] independently. For any representation of
G = SU(2), Abelian magnetic monopole described by n ∈ SU(2)/U(1) = P 1(C)

2) In SU(N) Yang-Mills theory without adjoint scalar fields, we have defined a
gauge-invariant magnetic monopole k inherent in the Wilson loop operator by using a
non-Abelian Stokes theorem for the Wilson loop operator.
The type of magnetic monopole depends on the representation of quarks defining the
Wilson loop, related to the target space of the color field n(x):

• For quarks in the fundamental representation, H̃ = U(2)

G = SU(3) a non-Abelian magnetic monopole n(x) ∈ SU(3)/U(2) = P 2(C)

• For quarks in the adjoint representation, H̃ = H = U(1)× U(1)

G = SU(3) two Abelian magnetic monopoles n(x) ∈ SU(3)/[U(1)× U(1)] = F2
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3) We have constructed a new reformulation of Yang-Mills theory using new field
variables, which gives an optimal description of the magnetic monopole defined through
the Wilson loop operator. The idea of using new variables is originally due to Cho, and
Faddeev & Niemi, where N − 1 color fields n(j) (j = 1, ..., N − 1) are introduced.
However, our reformulation in the minimal option is new for SU(N), N ≥ 3: we
introduce only a single color field n for any N , which is enough for reformulating the
quantum Yang-Mills theory to describe confinement of the fundamental quark. The
reformulation allows options discriminated by the maximal stability group H̃.

For G = SU(3), two options are possible:

• The maximal option with H̃ = H = U(1) × U(1), the new theory reduces to a
manifestly gauge-independent reformulation of the conventional Abelian projection in
the maximal Abelian gauge. [Cho,1980] and [Faddeev & Niemi,1999]
• The minimal option with H̃ = U(2) gives an optimized description of quark
confinement through the Wilson loop in the fundamental representation. [Kondo,
Shinohara and Murakami, 2008]

4) By constructing a lattice version of the reformulation of the SU(N) Yang-Mills
theory and performing numerical simulations on a lattice, [Talk by Akihiro Shibata]
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4a) For SU(3), we have confirmed the infrared dominance of the restricted variables
V and the non-Abelian magnetic monopole dominance for quark confinement (in the
string tension),
cf. [infrared Abelian dominance and Abelian magnetic monopole dominance in MA
gauge]

4b) We have shown the numreical evidences of the dual Meissner effect caused by
non-Abelian magnetic monopoles in SU(3) Yang-Mills theory: simultaneous formation
of the tube-shaped flux of the chromo-electric field originating from the restricted field
(including the non-Abelian magnetic monopoles) and the associated magnetic current
induced around the flux tube.

To confirm the non-Abelian dual superconductivity picture in SU(3) Yang-Mills
theory, we plan to do further checks, e.g., determination of the type of dual
superconductor, measurement of the penetrating depth, induced magnetic current
around color flux due to magnetic monopole condensations, and so on.
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Applications of the reformulation to other topics:

• relationship between magnetic monopoles and instantons or merons. SU(2) case

Kondo, Fukui, Shibata & Shinohara, Phys.Rev.D78, 065033 (2008). arXiv:0806.3913[hep-th], dimeron

Fukui, Kondo, Shibata & Shinohara, Phys.Rev.D82, 045015 (2010). arXiv:1005.3157[hep-th], 2-instanton

• Extension to finite temperature case: SU(2) case

K.-I. Kondo, Phys.Rev.D82, 065024 (2010). arXiv:1005.0314 [hep-th],

• Green functions for quark and gluon confinement: SU(2) case

K.-I. Kondo, Phys.Rev.D84, 061702 (2011). arXiv:1103.3829 [hep-th],

• relationship between magnetic monopoles and vortex.

We can define a gauge-invariant vortex which ends on the non-Abelian magnetic monopole.

K.-I. Kondo, J. Phys. G: Nucl. Part. Phys. 35, 085001 (2008). arXiv:0802.3829 [hep-th],

• Skyrme-Fadeev-Niemi model as an low-energy effective theory,

L.A. Ferreira, P. Klimas & W.J. Zakrzewski, arXiv:1111.2338 [hep-th] , JHEP 1112, 098 (2011).

K.-I. Kondo, A. Ono, A. Shibata, T. Shinohara and T. Murakami, J. Phys. A: Math. Gen. 39,
13767–13782 (2006). [hep-th/0604006],

Questions:

• dual gauge symmetry, spontaneous symmetry breaking, dual Meissner effect,

• Large N analysis

• Casimir scaling
26



Thank you very much
for your attention!
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For a given n ∈ Lie(G/H̃), any su(N) Lie algebra valued function F (x) is decomposed into

the H̃-commutative (or parallel) part FH̃ and the remaining (or orthogonal) part FG/H̃ as

F = FH̃ + FG/H̃ ∈ su(N), [n,FH̃] = 0, n · FG/H̃ := 2tr(nFG/H̃) = 0 (1)

where

FG/H̃ =
2(N − 1)

N
[n, [n,F ]] ∈ su(N) − u(N − 1), (2)

while

FH̃ = F − FG/H̃ = F −
2(N − 1)

N
[n, [n,F ]] ∈ u(N − 1). (3)

FH̃ is written as

FH̃ = n(n · F ) + F̄ ∈ u(N − 1), (4)

Here F̄ is defined by a subset of generators uk ∈ su(N − 1) such that
[
n,uk

]
= 0 (k =

1, ..., (N − 1)2 − 1) and [n, F̄ ] = 0. In particular, we can choose

n(x) := g(x)Hrg
†
(x) ∈ G/H̃ = SU(3)/U(2), Hr =

1√
2N(N − 1)

diag(1, · · · , 1,−N+1),

(5)For SU(3), u1, u2, u3 → λ1, λ2, λ3, and Hr → λ8.

The stability group U(2) = SU(2)1,2,3 × U(1)8
magnetic charge π1(U(2)) = π1(SU(2)1,2,3 × U(1)8) = π1(U(1)8) = Z
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G = SU(2), H̃ = U(1) = H,

G = SU(3), H̃ = U(1) × U(1), U(2),

G = SU(4), H̃ = U(1) × U(1) × U(1), U(1) × U(2), SU(2) × U(2), U(3),

G = SU(N), H̃ ⊂ H = U(1)
N−1

, ...., U(N − 1), (6)

The target space of the color field is specified by the maximal stability group H̃:

n(x) = g(x)diag.(λ1, λ2, λ3)g(x)
† ∈ G/H̃, (7)

The gauge-invariant magnetic monopoles inherent in the SU(3) Wilson loop operator for the
fundamental rep. are non-Abelian U(2) magnetic monopole in the sense of Goddard–Nuyts–Olive–

Weinberg.

c.f. Abelian projection method=the partial gauge fixing from an original gauge group G to the maximal

torus subgroup H:

G = SU(3) → H = U(1) × U(1) (8)

π2(SU(3)/[U(1) × U(1)]) = π1(U(1) × U(1)) = Z2
. (9)

=⇒ two kinds of Abelian U(1) magnetic monopoles for any rep.

No such difference for SU(2). For any rep. of SU(2), magnetic monopole is U(1), since H̃ = H =

U(1).
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For SU(2), if we choose a special gauge, unitary-like gauge, in which the color field is uniform:

n(x) = (n1(x), n2(x), n3(x)) = n0, n0 := (0, 0, 1), (10)

then the Wilson loop operator reduces to the “Abelian-projected” form:

WC[A ] = exp

[
ig

YM

∫
Σ:∂Σ=C

F

]
= exp

[
ig

YM

∫
Σ:∂Σ=C

1

2
f

]
, fµν = ∂µA 3

ν − ∂νA
3
µ (11)

For the gauge group SU(2), in particular, arbitrary representation is characterized by a single index

J = 1
2, 1,

3
2, 2,

5
2, · · · . The SU(2) Wilson loop operator in the representation J obeys

WC[A ] =

∫
[dµ(g)]Σ exp

{
−ig

YM
J

∫
Σ:∂Σ=C

dS
µν
f
g
µν

}
,

f
g
µν(x) =∂µ[n

A
(x)A A

ν (x)] − ∂ν[n
A
(x)A A

µ (x)]

− g
−1

YM
ϵ
ABC

n
A
(x)∂µn

B
(x)∂νn

C
(x),

n
A
(x)σ

A
=g(x)σ

3
g
†
(x), g(x) ∈ SU(2) (A,B,C ∈ {1, 2, 3}), (12)

and [dµ(g)]Σ is the product measure of an invariant measure on SU(2)/U(1) over Σ:

[dµ(g)]Σ :=
∏
x∈Σ

dµ(n(x)), dµ(n(x)) =
2J + 1

4π
δ(n

A
(x)n

A
(x) − 1)d

3
n(x). (13)

This is the Diakonov-Petrov version of the SU(2) non-Abelian Stokes theorem.
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We consider quark confinement based on the Wilson criterion.

Wilson loop operator WC[A ] for the non-Abelian Yang-Mills field Aµ(x)

WC[A ] :=tr

{
P exp

[
ig

∮
C

dx
µAµ(x)

]}
/tr(1), Aµ(x) = A A

µ (x)TA. (14)

Wilson loop average W (C) in the Yang-Mills theory

W (C) = ⟨WC[A ]⟩YM = Z
−1
YM

∫
[dA ]e

−SYM[A ]
WC[A ]. (15)

static quark-antiquark potential

VQQ̄(R) = lim
T→∞

−1

T
lnW (C). (16)

W (C) ≃ exp[−TVQQ̄(R)], (T ≫ R ≫ 1). (17)

The static quark-antiquark potential VQQ̄(R) obtained in this way is obviously gauge invariant, since

the Wilson loop operator is gauge invariant by construction.
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