Javier Fuentes-Martín

Instituto de Física Corpuscular, Universitat de València - CSIC

Javier Fuentes-Martín

Instituto de Física Corpuscular, Universitat de València - CSIC

Javier Fuentes-Martín

Instituto de Física Corpuscular, Universitat de València - CSIC

Javier Fuentes-Martín

Instituto de Física Corpuscular, Universitat de València - CSIC

 Necessary to explain the dominance of matter over antimatter in the universe.

э

E 6 4 E 6

< 4³ ► <

- Necessary to explain the dominance of matter over antimatter in the universe.
- Some new physics models introduce BNV interactions: Grand Unified Theories (SUSY, non-SUSY, extra dimensions), gauged baryon number...

- Necessary to explain the dominance of matter over antimatter in the universe.
- Some new physics models introduce BNV interactions: Grand Unified Theories (SUSY, non-SUSY, extra dimensions), gauged baryon number...
- So LHCb experiment has recently set a bound on the BNV process $\tau^+ \to p \mu^+ \mu^-$

[LHCb Collaboration, 2013]

- Necessary to explain the dominance of matter over antimatter in the universe.
- Some new physics models introduce BNV interactions: Grand Unified Theories (SUSY, non-SUSY, extra dimensions), gauged baryon number...
- LHCb experiment has recently set a bound on the BNV process $\tau^+ \rightarrow p \mu^+ \mu^-$

```
[LHCb Collaboration, 2013]
```

In the SM, BNV can happen through nonperturbative effects but with an extremely low probability (at zero temperature).

[G. 't Hooft, 1976]

- Necessary to explain the dominance of matter over antimatter in the universe.
- Some new physics models introduce BNV interactions: Grand Unified Theories (SUSY, non-SUSY, extra dimensions), gauged baryon number...
- LHCb experiment has recently set a bound on the BNV process $\tau^+ \rightarrow p \mu^+ \mu^-$

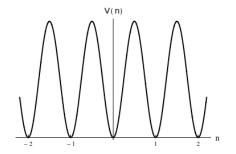
```
[LHCb Collaboration, 2013]
```

In the SM, BNV can happen through nonperturbative effects but with an extremely low probability (at zero temperature).

[G. 't Hooft, 1976]

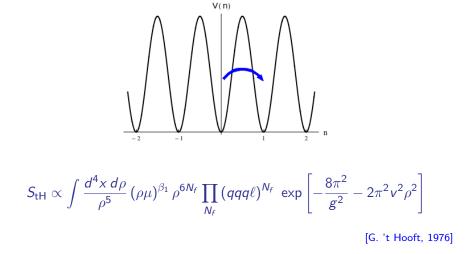
 \Rightarrow The measurement of BNV would have the track of new physics.

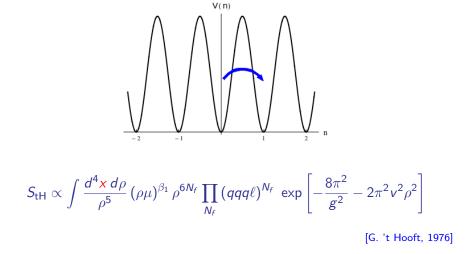
- Necessary to explain the dominance of matter over antimatter in the universe.
- Some new physics models introduce BNV interactions: Grand Unified Theories (SUSY, non-SUSY, extra dimensions), gauged baryon number...
- LHCb experiment has recently set a bound on the BNV process $\tau^+ \rightarrow p \mu^+ \mu^-$

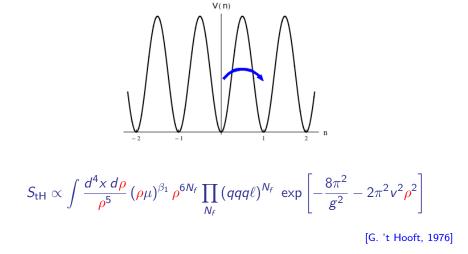

```
[LHCb Collaboration, 2013]
```

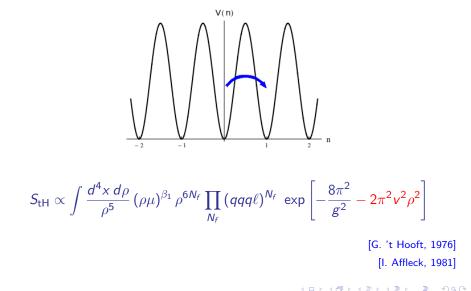
In the SM, BNV can happen through nonperturbative effects but with an extremely low probability (at zero temperature).

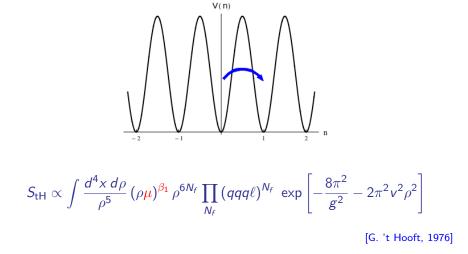
[G. 't Hooft, 1976]

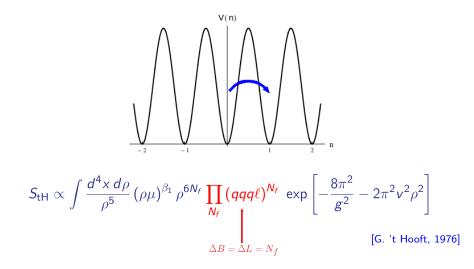

 \Rightarrow The measurement of BNV would have the track of new physics. \Rightarrow BNV might be important in new physics models, even if it is not present at the perturbative level.

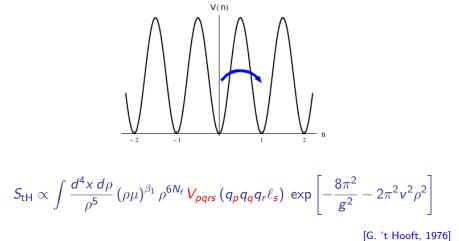

- 3

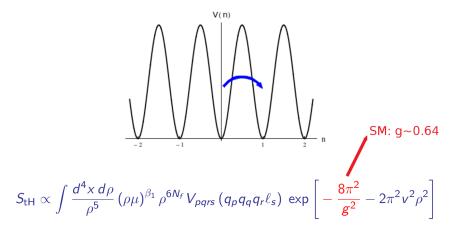



[G. 't Hooft, 1976]


э







[J. Fuentes-Martín, J. Portolés, P. Ruíz-Femenía, in preparation]

September 9, 2014 6 / 13

[G. 't Hooft, 1976]

[J. Fuentes-Martín, J. Portolés, P. Ruíz-Femenía, in preparation]

$$\mathcal{G} \equiv SU(2)_I \otimes SU(2)_h \otimes U(1)_Y$$

 $\begin{array}{l} q_{Lj}: \ (2,1) \ (1/3) \\ u_{Ri}: \ (1,1) \ (4/3) \\ l_{Lj}: \ (2,1) \ (-1) \\ e_{Ri}: \ (1,1) \ (-2) \\ \phi_{2}: \ (1,2) \ (1) \end{array}$

 $\begin{array}{l} q_{L3}: \ (1,2) \ (1/3) \\ d_{Ri}: \ (1,1) \ (-2/3) \\ l_{L3}: \ (1,2) \ (-1) \\ \phi_1: \ (2,1) \ (1) \\ b: \ (2,2) \end{array}$

[X. Li and E. Ma, 1981] [E. Ma, X. Li, and S. F. Tuan, 1988]

(4) (日本)

$$\mathcal{G} \equiv SU(2)_I \otimes SU(2)_h \otimes U(1)_Y$$

Javier Fuentes-Martín (IFIC)

September 9, 2014 9 / 13

æ

イロト イヨト イヨト イヨト

$$\mathcal{G} \equiv SU(2)_{I} \otimes SU(2)_{h} \otimes U(1)_{Y}$$

$$b_{ij} \rightarrow \langle b_{ij} \rangle = u/\sqrt{2} \, \delta_{ij}$$

$$u \sim \text{TeV}$$

$$SU(2)_{L} \otimes U(1)_{Y}$$

Symmetry breaking pattern: $SU(2)_I \otimes SU(2)_h \longrightarrow SU(2)_L$

イロト 不得 トイヨト イヨト 二日

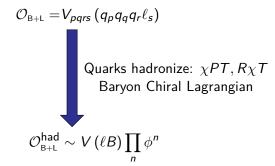
$$g = rac{g_h g_l}{\sqrt{g_h^2 + g_l^2}} \Rightarrow g_h, g_l > g$$

We assume g_h is large (but still perturbative) such that $SU(2)_h$ instantons dominate

$$\mathcal{O}_{\mathsf{B}+\mathsf{L}} = V_{pqrs} \left(q_p q_q q_r \ell_s \right)$$

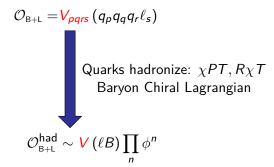
イロト イポト イヨト イヨト 二日

$$g = rac{g_h g_l}{\sqrt{g_h^2 + g_l^2}} \Rightarrow g_h, g_l > g$$


We assume g_h is large (but still perturbative) such that $SU(2)_h$ instantons dominate

$$\mathcal{O}_{\mathrm{B+L}} = V_{pqrs} \left(q_p q_q q_r \ell_s \right)$$

イロト イポト イヨト イヨト 二日


$$g=rac{g_hg_l}{\sqrt{g_h^2+g_l^2}} \Rightarrow g_h,g_l>g_l$$

We assume g_h is large (but still perturbative) such that $SU(2)_h$ instantons dominate

$$g=rac{g_hg_l}{\sqrt{g_h^2+g_l^2}} \Rightarrow g_h,g_l>g_l$$

We assume g_h is large (but still perturbative) such that $SU(2)_h$ instantons dominate

BNV decays

$\mathcal{B}\left(au^+ ightarrow \mathbf{p} \mu^+ \mu^ight) < 3.3 imes 10^{-7}$

[LHCb Collaboration, 2013]

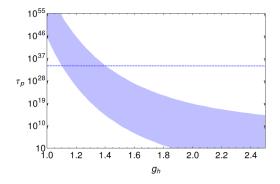
Javier Fuentes-Martín (IFIC)

ConfXI. QCD and New Physics

September 9, 2014 11 / 13

BNV decays

 $\mathcal{B}\left(au^+
ightarrow \mathbf{p} \mu^+ \mu^ight) < 3.3 imes 10^{-7}$


[LHCb Collaboration, 2013]

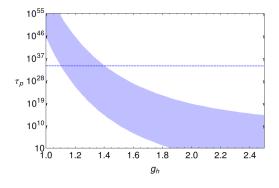
but...

 $au\left(m{p}
ightarrow m{e}^+ \pi^0
ight) < 8.2 imes 10^{33}$ yrs

[K.A. Olive et al., 2014]

Proton decay: $p \rightarrow e\pi^0$

[J. Fuentes-Martín, J. Portolés, P. Ruíz-Femenía, in preparation]


< □ > < □ > < □ > < □ > < □ >

Javier Fuentes-Martín (IFIC)

ConfXI. QCD and New Physics

September 9, 2014 12 / 13

Proton decay: $p \rightarrow e\pi^0$

 $g_h < 1.1 - 1.4$

[J. Fuentes-Martín, J. Portolés, P. Ruíz-Femenía, in preparation]

A D N A B N A B N A B N

 Instantonic effects gives rise to B and L violating processes conserving B-L.

- Instantonic effects gives rise to B and L violating processes conserving B-L.
- If flavor violation is present in the gauge currents, the flavor violating structure is inherited in BNV instantonic operators.

- Instantonic effects gives rise to B and L violating processes conserving B-L.
- If flavor violation is present in the gauge currents, the flavor violating structure is inherited in BNV instantonic operators.
- Solution These effects are negligible in the SM...

- Instantonic effects gives rise to B and L violating processes conserving B-L.
- If flavor violation is present in the gauge currents, the flavor violating structure is inherited in BNV instantonic operators.
- These effects are negligible in the SM... but we saw that they are important in other new physics models and its analysis can provide some constraints to the models.

- Instantonic effects gives rise to B and L violating processes conserving B-L.
- If flavor violation is present in the gauge currents, the flavor violating structure is inherited in BNV instantonic operators.
- These effects are negligible in the SM... but we saw that they are important in other new physics models and its analysis can provide some constraints to the models.

Thank you for your attention!