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Phenomenological model |

@ Ongoing investigation of the low-energy properties of QCD within
a simple phenomenological model.

@ Based on the observation that lattice simulations unambiguously
indicate that the gluon propagator (in Landau gauge 0,A,, = 0) is
massive while ghost propagator is massless.
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Phenomenological model II

@ In the Faddeev-Popov gauge-fixing action, both ghosts and gluons
are massless. Several attempts to understand the dynamical
generation of the mass.

@ We propose to add a mass term in the action, as a
phenomenological parameter. (Curcci-Ferrari model.)
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Phenomenological model Il

@ Only slight modification of the Feynman rules...

@ ... but dramatic consequences for the low energy properties. In
particular, no divergence of the running coupling constant! (no
Landau pole). Opens the way to perturbative calculations in the
nonperturbative regime (?!?)

@ We performed one-loop calculations of several correlation
functions and compared with lattice data for:

@ ghost and gluon propagators withor without quarks (10%);

@ three-point correlation functions (lattice data are noisy; qualitative
agreement).

@ quark propagators (scalar part OK, vectorial part not so well);

@ Ghost and gluon propagators at finite temperature (ghost and
magnetic sector OK, electric sector?)



Phenomenological model IV
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gluon and ghost propagators (d=3, d=4) [Cucchieri et. al, (2008)]
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Phenomenological model V

With one phenomenological parameter, we reproduce several features
of the correlation functions of QCD.
We aim at:

@ justifying the presence of the mass term from first principles (our
studies suggest it originates from Gribov ambiguity);

@ exploring other features of QCD.



Yang-Mills theory at finite temperature

@ First step toward phase diagram of QCD (with chemical potential).

@ Phase transition between a confined (low T) and a deconfined
(high T). Associated with a breaking of the center symmetry
(non-periodic gauge transformations that preserve periodicity of
the fields).

@ Order parameter: Polyakov loop (Wilson loop wrapped around
time direction).

@ Critical temperature: roughly around 200 MeV.

@ Continuous phase transition for SU(2) (Ising universality class),
discontinuous for SU(3).



Extension to finite temperature

@ Work in the Landau-de Witt gauge: shift the gauge field A by a
background A: A=A+ a, impose
(Duau)? = 9,88 + gfa*°Abal = 0.
@ A'is like a gauge-fixing parameter.
@ Generating functional of the 1PI diagrams T'[A, a] depends on 2
fields.
@ Choose A to be constant (translation), temporal (rotations). Up to
global color rotation, Ay lies in the Cartan subalgebra.
o SU(2): A
o SU3): {A3 A8}
@ (a) depends on A. Choose A = Apin such that (a) = 0. Actually
Anmin is the minimum of F[A o]!
@ Gauge invariance after gauge fixing: NAY,UaU'] =T[A,a]. Ais a
probe for center symmetry.



|
Observables

There remains to compute:

@ the potential V = ;5 T[A, 0]

@ the Polyakov loop ¢ = Ltr(P exp(ig [’ Al + a3)ta)
(t®: generators)

In a systematic expansion in g (but with arbitrary A), the leading
contribution is:

® V(Ao) = 4 (Trlog AZf — Trlog A7) + O(g?)
o ¢ = exp(iSgAT™t,) + O(g?)



I
SU(2)

Introduce the dimensionless quantity r3 = Bgﬂg.
@ Symmetries (in particular center symmetry) impose that the
potential is 27-periodic, V (r3) = V(27 — r3).
@ (= cos(r3/2) + O(g?). r3 = 7 is the center-symmetric point.
@ V =TY9[(d — 1)Fgm(r3) — Fo(rs) + c.t.] + O(g?) with

Fa(r) = / log(1 + e 2Va*+M* _ pe—Va*+M? cogr)
q

@ At high T, recover the Weiss potential. r3 = 7 is a max.
@ Atlow T, —1 Weiss potential: r3 = 7 is a min.
@ In between: phase transition.



SU(2)
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I
SU(@3)

° /= %[e_i% + 2625 cosrs/2] + O(g?)
@ Center symmetry: 120° rotation around {47 /3,0}.
@ At this “point”, £ = 0, center symmetric point.
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@ First order transition.
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Polyakov loops
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(discontinuous).



Conclusions

@ Introducing a mass to the gluons in the bare action captures lot of
infrared properties of correlation functions.

@ Using Landau-de Witt gauge-fixing, the leading calculation
reproduces the phenomenology of finite temperature Yang-Mills
theory. Determination of critical temperature ~ 20%.

@ Need for a next to leading [O(g?)] calculation to check
convergence and improve precision (Polyakov and potential are
computed, 1-loop propagators under study).

@ Repeat the study with quarks, at finite (real? imaginary?)
chemical potential (to appear soon...).



