Exponentiation and Renormalization of Wilson Line Operators

Matthias Berwein

in collaboration with: N. Brambilla, J. Ghiglieri and A. Vairo based on: Phys.Part.Nucl. 45 (2014) 4, 656-663 and JHEP 1303 (2013) 069

Technische Universität München
12.09.2014

Loop functions and Wilson loops

Wilson line operators

$$
P(\mathbf{r})=\mathcal{P} \exp \left[i g \int_{0}^{1 / T} \mathrm{~d} \tau A_{0}(\tau, \mathbf{r})\right] \quad S(\mathbf{r})=\mathcal{P} \exp \left[i g \int_{0}^{1} \mathrm{~d} s \mathbf{r} \cdot \mathbf{A}(0, s \mathbf{r})\right]
$$

With these one can construct

Polyakov loop correlator
$P_{c}(r)=\frac{1}{N_{c}^{2}}\left\langle\operatorname{Tr}[P(\mathbf{r})] \operatorname{Tr}\left[P^{\dagger}(0)\right]\right\rangle$

Cyclic Wilson loop

$$
W_{c}(r)=\frac{1}{N_{c}}\left\langle\operatorname{Tr}\left[P(\mathbf{r}) S(\mathbf{r}) P^{\dagger}(0) S^{\dagger}(\mathbf{r})\right]\right\rangle
$$

- static free energy of a $Q \bar{Q}$ pair given by $-T \log \left[P_{c}\right]$
- spectral decomposition $P_{c}=\frac{1}{N_{c}^{2}} \sum_{n} \exp \left[-E_{n} / T\right]$
- P_{c} contains both singlet and octet free energies
- W_{c} investigated as a (gauge invariant) function to extract singlet free energy

Divergence of the cyclic Wilson loop (in DR) ${ }^{1}$

- rectangular Wilson loops in the vacuum have cusp divergences
- imaginary time: $\tau=0$ and $\tau=\beta$ are identified (periodic)
- cusps turn into intersections:

- intersection divergences are renormalized with operator mixing
- cyclic Wilson loop mixes with Polyakov loop correlator

Renormalization formula

$$
\binom{W_{c}^{(R)}}{P_{c}^{(R)}}=\left(\begin{array}{cc}
Z & (1-Z) \\
0 & 1
\end{array}\right)\binom{W_{c}}{P_{c}}, Z^{\mathrm{MS}}=\exp \left[-\frac{N_{c} \alpha_{s}}{\pi \varepsilon}+\ldots\right]
$$

[^0]
Power Divergences ${ }^{2}$

- can be neglected only in DR, not in lattice or other regularizations
- proportional to the length of the Wilson line
- with general UV cutoff Λ :

$$
P_{c}^{(R)}=\exp \left[-2 K \frac{\Lambda}{T}\right] P_{c}
$$

- K depends on regularization scheme and colour representation
- naively expect renormalization by $\exp \left[-2 K \frac{\Lambda}{T}-2 K \Lambda r\right]$ for W_{c}, but several divergent diagrams cancel

${ }^{2}$ [G.P. Korchemsky and A.V. Radyushkin, 1987]

Alternate form of $W_{c}-P_{c}$

- the intersection divergence is multiplicatively renormalizable for $W_{c}-P_{c}$
- use the identity

$$
S^{\dagger}(\mathbf{r}) T^{a} S(\mathbf{r})=S_{A}^{a b}(\mathbf{r}) T^{b}=T^{b} S_{A}^{\dagger b a}(\mathbf{r})
$$

with $S_{A}(\mathbf{r})$ in the adjoint representation; $\left(T_{A}^{c}\right)_{a b}=-i f^{a b c}$

- split up a Polyakov line into components:

$$
P(\mathbf{r})=\frac{1}{N_{c}} \operatorname{Tr}[P(\mathbf{r})] I+\frac{1}{T_{F}} \operatorname{Tr}\left[P(\mathbf{r}) T^{a}\right] T^{a} \equiv P_{1}(\mathbf{r}) I+P_{8}^{a}(\mathbf{r}) T^{a}
$$

- with that one can rewrite

$$
P_{c}(r)=\left\langle P_{1}(\mathbf{r}) P_{1}^{\dagger}(\mathbf{0})\right\rangle, \quad W_{c}(r)-P_{c}(r)=\frac{T_{F}}{N_{c}}\left\langle P_{8}^{a}(\mathbf{r}) S_{A}^{a b}(\mathbf{r}) P_{8}^{\dagger}(\mathbf{0})\right\rangle
$$

- from this one can show that also the power divergences are multiplicatively renormalizable for $W_{c}-P_{c}$

Wilson line exponentiation

In components:

$$
W_{c}(r)-P_{c}(r)=\frac{T_{j i}^{a} T_{l k}^{b}}{N_{c} T_{F}}\left\langle P_{i j}(\mathbf{r}) S_{A}^{a b}(\mathbf{r}) P_{k l}^{\dagger}(0)\right\rangle
$$

Split Feynman diagrams into colour and kinematic part:

$$
W_{i j, k l}^{a b}\left(D_{n}\right)=C_{i j, k l}^{a b}\left(D_{n}\right) K\left(D_{n}\right)
$$

There exists an exponentiation theorem for untraced Wilson lines ${ }^{3}$:

$$
\sum_{n} C_{i j, k l}^{a b}\left(D_{n}\right) K\left(D_{n}\right)=\exp \left[\sum_{n} \widetilde{C}_{i j, k l}^{a b}\left(D_{n}\right) K\left(D_{n}\right)\right]
$$

Exponentiation is defined via the multiplication of two diagrams

$$
(V \otimes W)_{i j, k l}^{a b}=V_{i i^{\prime}, k k^{\prime}}^{a a^{\prime}} W_{i^{\prime} j, k^{\prime} l}^{a^{\prime} b}
$$

${ }^{3}$ [E. Gardi, E. Laenen, G. Stavenga and C.D. White, 2010]

Replica trick

The exponentiated colour coefficients can be obtained through the replica trick: Take a theory with N non-interacting copies (replicas) of QCD.

$$
\langle W\rangle^{N}=\langle W\rangle \otimes\langle W\rangle \otimes \cdots \otimes\langle W\rangle=\left\langle W_{1} \otimes W_{2} \otimes \cdots \otimes W_{N}\right\rangle
$$

Then expand in N :
$\langle W\rangle^{N}=1+N \log \langle W\rangle+\mathcal{O}\left(N^{2}\right)$
So the exponentiated colour factor \widetilde{C} is given by the $\mathbf{O}(\mathbf{N})$ term of the replicated colour factor C_{N} (Note: there is replica path ordering)

$\rightarrow N(N-1)$

$$
+N
$$

$\rightarrow N(N-1)$

$$
+N
$$

Factorization of power divergences

Generalization of the argument about power divergences to untraced Wilson lines:

- In any representation ${ }^{4}$:

$$
f^{b_{1} a_{1} b_{2}} f^{b_{2} a_{2} b_{3}} \cdots f^{b_{n} a_{n} b_{1}}\left(T_{R}^{a_{1}} T_{R}^{a_{2}} \cdots T_{R}^{a_{n}}\right)_{i j} \propto \delta_{i j}
$$

- all power divergent (sub)diagrams are proportional to the unit tensor
- the colour coefficients of subdiagrams factorize
- each factorized colour coefficient is at least $\mathcal{O}(N)$
- diagrams with subdiagrams have coefficients of $\mathcal{O}\left(N^{2}\right)$ or higher
- only power divergent diagrams without subdiagrams contribute to the exponent

${ }^{4}$ [V.S. Dotsenko and S.N. Vergeles, 1980]

Final renormalized expressions

Result:

The power divergences exponentiate and factorize for each Wilson line just like for closed loops.

The full expressions for the renormalized P_{c} and W_{c} then are:

$$
P_{c}^{(R)}(r)=\exp \left[-2 K_{F} \frac{\Lambda}{T}\right]\left\langle P_{1}(\mathbf{r}) P_{1}^{\dagger}(\mathbf{0})\right\rangle
$$

$$
W_{c}^{(R)}(r)-P_{c}^{(R)}(r)=\exp \left[-2 K_{F} \frac{\Lambda}{T}-K_{A} \Lambda r\right] Z \frac{T_{F}}{N_{c}}\left\langle P_{8}^{a}(\mathbf{r}) S_{A}^{a b}(\mathbf{r}) P_{8}^{\dagger b}(\mathbf{0})\right\rangle
$$

Note:

- the coefficient of the power divergence depends on the representation
- in DR the ratio of $W_{c}-P_{c}$ with same T and different r is divergence-free, but not in other regularization schemes!

Exponentiation

The exponentiation of the diagrams can be put into the form of a matrix exponential

Depending on the number and representation of the Wilson lines, there is a certain number of basis tensors t_{i} such that $W=W_{i} t_{i}$

$$
3 \otimes 3 \otimes 3=1 \oplus 2 \cdot 8 \oplus 10 \quad \Rightarrow \quad 1^{2}+2^{2}+1^{2}=6 \text { basis tensors }
$$

Multiplication of two bases: $t_{i} \otimes t_{j}=m_{i j k} t_{k}$
Multiplication of tensors:

$$
\begin{aligned}
& \left(a_{i} t_{i}\right) \otimes\left(b_{j} t_{j}\right)=a_{i} b_{j} m_{i j k} t_{k} \equiv a_{i} M(b)_{i k} t_{k} \quad \text { with } M(b)_{i k}=b_{j} m_{i j k} \\
& \left(a_{i} t_{i}\right) \otimes\left(b_{j} t_{j}\right) \otimes\left(c_{k} t_{k}\right)=\left(a_{i} M(b)_{i l} t_{l}\right) \otimes\left(c_{k} t_{k}\right)=a_{i} M(b)_{i l} M(c)_{l n} t_{n}
\end{aligned}
$$

Now if $e=e_{i} t_{i}$ is the unit tensor $(e \otimes W=W \otimes e=W)$, then

$$
\exp \left[W_{i} t_{i}\right]=e_{j} \exp [M(W)]_{j k} t_{k}
$$

Example: Polyakov loop correlator

$$
P_{c}(r)=\frac{\delta_{j i} \delta_{l k}}{N_{c}^{2}}\left\langle P_{i j}(\mathbf{r}) P_{k l}^{\dagger}(0)\right\rangle
$$

- use tensors $t_{1}=\delta_{i j} \delta_{k l}$ and $t_{2}=\delta_{i l} \delta_{k j}$
- $t_{1}=e$, so $t_{1} \otimes t_{1}=t_{1}, t_{1} \otimes t_{2}=t_{2} \otimes t_{1}=t_{2}$, and $t_{2} \otimes t_{2}=t_{1}$
- then $M(W)=\left(\begin{array}{ll}W_{1} & W_{2} \\ W_{2} & W_{1}\end{array}\right)$, and $\frac{1}{N_{c}^{2}}\left(t_{1}\right)_{i i, k k}=1, \frac{1}{N_{c}^{2}}\left(t_{2}\right)_{i i, k k}=\frac{1}{N_{c}}$

$$
\begin{aligned}
P_{c}(r) & =(1,0) \exp \left(\begin{array}{ll}
W_{1} & W_{2} \\
W_{2} & W_{1}
\end{array}\right)\binom{1}{1 / N_{c}} \\
& =\exp \left[W_{1}\right]\left(\cosh \left[W_{2}\right]+\frac{1}{N_{c}} \sinh \left[W_{2}\right]\right)
\end{aligned}
$$

Spectral decomposition (preliminary)

Exponentiated formula can be written in a different way:

$$
\begin{aligned}
P_{c}(r)= & \frac{1}{N_{c}^{2}} e^{W_{1}+N_{c} W_{2}}\left(\frac{N_{c}+1}{2} e^{-\left(N_{c}-1\right) W_{2}}-\frac{N_{c}-1}{2} e^{-\left(N_{c}+1\right) W_{2}}\right) \\
& +\frac{N_{c}^{2}-1}{N_{c}^{2}} e^{W_{1}}\left(\frac{1}{2} e^{W_{2}}+\frac{1}{2} e^{-W_{2}}\right)
\end{aligned}
$$

In Coulomb gauge this reduces to

This corresponds nicely to the expected singlet and octet spectral decomposition:

$$
P_{c}(r)=\frac{1}{N_{c}^{2}} \exp \left[-\frac{f_{s}(r)}{T}\right]+\frac{N_{c}^{2}-1}{N_{c}^{2}} \exp \left[-\frac{f_{o}(r)}{T}\right]
$$

Conclusions

- the intersection divergences of the cyclic Wilson loop W_{c} can be removed through operator mixing with the Polyakov loop correlator P_{c}
- the combination $W_{c}-P_{c}$ is free of intersection divergences after multiplication with a renormalization constant Z
- $W_{c}-P_{c}$ can be expressed as the thermal average of two fundamental Polyakov lines and one adjoint string with a suitable contraction of indices
- the exponentiation theorem for Wilson lines through the replica trick was used to show that the power divergences of $W_{c}-P_{c}$ factorize
- this makes $W_{c}-P_{c}$ a multiplicatively renormalizable quantity for any kind of divergence
- the exponentiation of P_{c} was shown explicitly, it shows the expected spectral decomposition up to $\mathcal{O}\left(\alpha_{s}^{2}\right)$

Thank you for your attention!

References I

國 Y．Burnier，M．Laine and M．Vepsäläinen，
Dimensionally regularized Polyakov loop correlators in hot QCD JHEP 01， 2010
围 V．S．Dotsenko and S．N．Vergeles
Renormalizability of Phase Factors in the Nonabelian Gauge Theory Nucl．Phys．B169， 1980
R．A．Brandt，and F．Neri and M．Sato
Renormalization of Loop Functions for All Loops
Phys．Rev．D24， 1981
國 G．P．Korchemsky and A．V．Radyushkin
Renormalization of the Wilson Loops Beyond the Leading Order Nucl．Phys．B283， 1987
囯 M．Berwein，N．Brambilla，J．Ghiglieri and A．Vairo，
Renormalization of the cyclic Wilson loop
JHEP 1303 （2013） 069

References II

M. Berwein, N. Brambilla and A. Vairo, Renormalization of Loop Functions in QCD Phys. Part. Nucl. 45 (2014) 4
E. Gardi, E. Laenen, G. Stavenga and C.D. White, Webs in multiparton scattering using the replica trick JHEP 1011, 155 (2010)

[^0]: ${ }^{1}$ [M. Berwein, N. Brambilla, J. Ghiglieri and A. Vairo, 2013]

