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Introduction

Loop functions and Wilson loops

Wilson line operators

P (r) = P exp
[
ig

∫ 1/T

0

dτ A0(τ, r)
]

S(r) = P exp
[
ig

∫ 1

0

ds r ·A(0, s r)
]

With these one can construct

Polyakov loop correlator

Pc(r) =
1

N2
c

〈
Tr
[
P (r)

]
Tr
[
P †(0)

]〉 Cyclic Wilson loop

Wc(r) =
1

Nc

〈
Tr
[
P (r)S(r)P †(0)S†(r)

]〉
static free energy of a QQ̄ pair given by −T log[Pc]

spectral decomposition Pc =
1

N2
c

∑
n

exp[−En/T ]

Pc contains both singlet and octet free energies

Wc investigated as a (gauge invariant) function to extract singlet free energy
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Introduction

Divergence of the cyclic Wilson loop (in DR) 1

rectangular Wilson loops in the vacuum have cusp divergences

imaginary time: τ = 0 and τ = β are identified (periodic)

cusps turn into intersections:

intersection divergences are renormalized with operator mixing

cyclic Wilson loop mixes with Polyakov loop correlator

Renormalization formula(
W

(R)
c

P
(R)
c

)
=

(
Z (1− Z)
0 1

)(
Wc

Pc

)
, ZMS = exp

[
−Ncαs

πε
+ . . .

]
1[M. Berwein, N. Brambilla, J. Ghiglieri and A. Vairo, 2013]
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Power Divergences

Power Divergences 2

can be neglected only in DR,
not in lattice or other regularizations

proportional to the length of the Wilson line

with general UV cutoff Λ:

P (R)
c = exp

[
−2K

Λ

T

]
Pc

K depends on regularization scheme and colour representation

naively expect renormalization by exp
[
−2K Λ

T − 2KΛr
]

for Wc,
but several divergent diagrams cancel

+ + = 0

2[G.P. Korchemsky and A.V. Radyushkin, 1987]
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Power Divergences

Alternate form of Wc − Pc

the intersection divergence is multiplicatively renormalizable for Wc − Pc

use the identity

S†(r)T aS(r) = Sab
A (r)T b = T bS† baA (r)

with SA(r) in the adjoint representation; (T c
A)ab = −ifabc

split up a Polyakov line into components:

P (r) =
1

Nc
Tr[P (r)] I +

1

TF
Tr[P (r)T a]T a ≡ P1(r) I + P a

8 (r)T a

with that one can rewrite

Pc(r) =
〈
P1(r)P †1 (0)

〉
, Wc(r)− Pc(r) =

TF
Nc

〈
P a

8 (r)Sab
A (r)P † b8 (0)

〉
from this one can show that also the power divergences are multiplicatively
renormalizable for Wc − Pc
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Power Divergences

Wilson line exponentiation

In components:

Wc(r)− Pc(r) =
T a
jiT

b
lk

NcTF

〈
Pij(r)Sab

A (r)P †kl(0)
〉

Split Feynman diagrams into colour and kinematic part:

W ab
ij,kl(Dn) = Cab

ij,kl(Dn)K(Dn)

There exists an exponentiation theorem for untraced Wilson lines3:

∑
n

Cab
ij,kl(Dn)K(Dn) = exp

[∑
n

C̃ab
ij,kl(Dn)K(Dn)

]

Exponentiation is defined via the multiplication of two diagrams

(V ⊗W )abij,kl = V aa′

ii′,kk′W a′b
i′j,k′l

3[E. Gardi, E. Laenen, G. Stavenga and C.D. White, 2010]
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Power Divergences

Replica trick

The exponentiated colour coefficients can be obtained through the replica trick:
Take a theory with N non-interacting copies (replicas) of QCD.

〈W 〉N = 〈W 〉 ⊗ 〈W 〉 ⊗ · · · ⊗ 〈W 〉 = 〈W1 ⊗W2 ⊗ · · · ⊗WN 〉
Then expand in N : 〈W 〉N = 1 +N log〈W 〉+O(N2)

So the exponentiated colour factor C̃ is given by the O(N) term of the replicated
colour factor CN (Note: there is replica path ordering)

N (N − 1), + N

N (N − 1), + N
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Power Divergences

Factorization of power divergences

Generalization of the argument about power divergences to untraced Wilson lines:

In any representation4:

f b1a1b2f b2a2b3 · · · f bnanb1 (T a1

R T a2

R · · ·T an

R )ij ∝ δij

all power divergent (sub)diagrams are proportional to the unit tensor

the colour coefficients of subdiagrams factorize

each factorized colour coefficient is at least O(N)

diagrams with subdiagrams have coefficients of O(N2) or higher

only power divergent diagrams without subdiagrams contribute to the
exponent

4[V.S. Dotsenko and S.N. Vergeles, 1980]
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Power Divergences

Final renormalized expressions

Result:

The power divergences exponentiate and factorize for each Wilson line just like for
closed loops.

The full expressions for the renormalized Pc and Wc then are:

P (R)
c (r) = exp

[
−2KF

Λ

T

]〈
P1(r)P †1 (0)

〉

W (R)
c (r)− P (R)

c (r) = exp

[
−2KF

Λ

T
−KAΛr

]
Z
TF
Nc

〈
P a

8 (r)Sab
A (r)P † b8 (0)

〉
Note:

the coefficient of the power divergence depends on the representation

in DR the ratio of Wc − Pc with same T and different r is divergence-free,
but not in other regularization schemes!
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Exponentiation and Spectral Decomposition

Exponentiation

The exponentiation of the diagrams can be put into the form of a matrix
exponential

Depending on the number and representation of the Wilson lines, there is a
certain number of basis tensors ti such that W = Witi

3⊗ 3⊗ 3 = 1⊕ 2 · 8⊕ 10 ⇒ 12 + 22 + 12 = 6 basis tensors

Multiplication of two bases: ti ⊗ tj = mijktk

Multiplication of tensors:

(aiti)⊗ (bjtj) = aibjmijktk ≡ aiM(b)iktk with M(b)ik = bjmijk

(aiti)⊗ (bjtj)⊗ (cktk) = (aiM(b)iltl)⊗ (cktk) = aiM(b)ilM(c)lntn

Now if e = eiti is the unit tensor (e⊗W = W ⊗ e = W ), then

exp
[
Witi

]
= ej exp

[
M(W )

]
jktk
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Exponentiation and Spectral Decomposition

Example: Polyakov loop correlator

Pc(r) =
δjiδlk
N2

c

〈
Pij(r)P †kl(0)

〉
use tensors t1 = δijδkl and t2 = δilδkj
t1 = e, so t1 ⊗ t1 = t1, t1 ⊗ t2 = t2 ⊗ t1 = t2, and t2 ⊗ t2 = t1

then M(W ) =

(
W1 W2

W2 W1

)
, and

1

N2
c

(t1)ii,kk = 1,
1

N2
c

(t2)ii,kk =
1

Nc

Pc(r) = (1, 0) exp

(
W1 W2

W2 W1

)(
1

1/Nc

)
= exp[W1]

(
cosh[W2] +

1

Nc
sinh[W2]

)

W1 = − 1

Nc
W2 +

2TF
Nc

(N2
c − 1) + 2T 2

F (N2
c − 1) +O(α3

s)

W2 = TF +NcT
2
F − 2NcT

2
F + 2iNcT

2
F +O(α3

s)
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Exponentiation and Spectral Decomposition

Spectral decomposition (preliminary)

Exponentiated formula can be written in a different way:

Pc(r) =
1

N2
c

eW1+NcW2

(
Nc + 1

2
e−(Nc−1)W2 − Nc − 1

2
e−(Nc+1)W2

)
+
N2

c − 1

N2
c

eW1

(
1

2
eW2 +

1

2
e−W2

)
In Coulomb gauge this reduces to

Pc(r) =
1

N2
c

exp

[
TF
Nc

(N2
c − 1)

]
+
N2

c − 1

N2
c

exp

[
−TF
Nc

]
+O(α3

s)

This corresponds nicely to the expected singlet and octet spectral decomposition:

Pc(r) =
1

N2
c

exp

[
−fs(r)

T

]
+
N2

c − 1

N2
c

exp

[
−fo(r)

T

]
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Conclusions

Conclusions

the intersection divergences of the cyclic Wilson loop Wc can be removed
through operator mixing with the Polyakov loop correlator Pc

the combination Wc − Pc is free of intersection divergences after
multiplication with a renormalization constant Z

Wc − Pc can be expressed as the thermal average of two fundamental
Polyakov lines and one adjoint string with a suitable contraction of indices

the exponentiation theorem for Wilson lines through the replica trick was
used to show that the power divergences of Wc − Pc factorize

this makes Wc − Pc a multiplicatively renormalizable quantity for any kind of
divergence

the exponentiation of Pc was shown explicitly, it shows the expected spectral
decomposition up to O(α2

s)

Thank you for your attention!
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