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1 Introduction

The optical {atmospheric) glory phenomenon is called in China and India the
Buddha’s light. We show: similar nuelear glory phenomenon takes place.
Observed at JINR and ITEP in 70-th: no explanation still.

Studies of " cumulative production™ began at JINR (Dubna) in 70th (lead-
ers A.Baldin, V.Stavinsky) and at ITEP (leader G.A.Leksin: "nuclear scaling™ ).

Later at FNAL (400 GeV, incident protons; S.Frankel et al), IHEP (40 GeV /¢
incident pions, kaons and antiprotons, Yu. Antipov et al.), at ExPhl (K.Egiyan
et al). A new wave of interest to this exciting topic appeared lately. New ex-
periment has been performed in ITEP (V.Kulikov et al) aimed to define the
weight of multiquark configurations in the carbon nucleus.

Main goal: new features of nuclear structure, fluctuons, few-nucleon or
multiquark clusters,

Background processes which mask the possible manifestations of non-
trivial details of nuclear structure, are subsequent multiple interactions with
nucleons inside the nucleus leading to the particles emission in the "kinemati-
cally forbidden™ region.

Till now - no reliable calculations of the MIP contributions to the cross
sections and other observables in the cumulative particles production reactions.
Moreover, such calculations are hardly possible because necessary information
about elementary interactions amplitudes is lacking, still.



2 Details of kinematics
At large enough incident energy, foy = Me, wy,
Wy — zhyp = 1y,

z = cos @ < 0 for particle produced backwards., The guantity (wye — 2k} may is
the cumulative number (more precize, the integer part of this ratio plus one).

For light particles (photon, also w-meson) iteration of the Compton for-
mitla gives for large enough incident energy wyg
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This expression works guite well beginning with N — 2.

In the case of the nucleon-nucleon scattering (scattering of particles with
equal masses) at large enough NV and large incident energy the 1,/N? expansion
can be made at & == e, and first terms of this expansion are
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The normal Fermi motion of nucleons inside the nacleus makes these

boundaries wider: > — 1
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the final angle 6 is large. @ ~ 7. The step Munction is taken for the distribution
in the Fermi momenta of nucleons inside of nuclei, with p%*" /i ~ 0.27. At

large &V normal Fermi motion makes the kinematical boundaries for NMIP wider
by about 40 .



1 Ko » Gev/c



n=4

i k_” 3 GEV/IFC-



Resonance excitations in intermediate states. The elastic rescatter-
ings are only the " top of the iceberg”. Production of resonances in intermediate
states which go over again into detected particles in subsequent interactions,
provide the dominant contribution to the production cross section. Simplest
examples of such processes may be NN — NN' — NN, NN — NA — NN,
aN —» pN — « N, ete. (M.Braun and V. Vechernin, 1977:; VI, 1977) Experi-
mentally: V. Komarov et al (JINR).

When the particles in intermediate states are slightly heavier, approx-
imate estimates can be made. Such resonances could be A{1232) isobar, or
NF(1470), N*(1520) ete. for nucleons, two-pion state or p(770), ete for inci-
dent pions, K* (880} for kaons. The relative increase of the final momentum %y

ke N = kK
with AM7? = M7 — 42, ky is the value of 3-momentum in the I-th intermedi-
ate state. The additional energy stored in the mass of intermediate particle is
transfered to the kinetic energy of the final (cumulative) particle.

The number of different processes for the N-fold MIP is ( Np + 1}‘""_1,
where N is the number of resonances making important contribution to the
process of interest. The greatest advantage has the process with resonance
production at the (N — 1)-th step of the whole process with subscequent its
deexcitation at the last step The spin structure of the amplitudes NNV —
NNJ at the energies up to several Gev should be known. Possible interference
hetwee amplitudes of different processes should be considered correctly. Such
information is absent and hardly will be available in nearest future.

Important: at arbitrary high incident energy the kinematics of all sub-
sequent processes is defined by the momentum and the angle of the outgoing
particle.






Similar to the case of electromagnetic interactions, the hadron formation
7
time Ifm:)h{:r{:mt{: ].{lﬂght.}
Fform ],."ll: ‘ii_»:}

if the incident energy is large enough, where w and k. are the energy and the
longitudinal momentum of the produced particle, the axis z - along the incident
particle moment um.

For the production of a particle on a target with the mass m; at high
enough incident energy the inequality takes place:

w — k. < my,

at the kinematical boundary the equality takes place. To produce a final particle
beyvond the kinematical boundary due to multiple interaction process, in the first
interaction act the particle should be produced near the kinematical boundary,
l.e.

wy — cost k) ~ mp.,

therefore, the formation time of the first produced particle
O™~ 1) (wy — cosBiky) ~ 1/m

is necessarily small, and the whole production picture is of quasiclassical char-
acter. The interesting phenomena observed in the high energy particles - nuclei
interaction reactions and widely discussed in the literature, connected with the
large formation time of the particles produced in forward direction, do not take
place in the cumulative production processes.



3 The small phase space method for the MIP probability
calculations

There is a preferable plane of the whole NIP leading to the production of ener-
zetic particle at large angle @, (not strictly backwards! ), the angles of subseguent
rescatterings are close to /N (optimal, or basic kinematics). The deviations of
real angles from the optimal values are small, they are defined mostly by the
difference &% — E, where BT (8) is the maximal possible momentum reach-
able for definite MIP, and & is the final momentium of the detected particle.
ERer(#) should be calculated taking into account normal Fermi motion of nu-

cloeons inside the nuclens, and also resonances excitation decxcitation in the
intermediate state. Some high power of the difference (5" — &) /R0 enters

the resulting probability.

Within the gquasiclassical treatment adequate for our case, the probability
product approximation is valid. In terms of differential cross sections of binary
reactions doy /diy (s, &)

Y (DY 2eSdr dSy

ﬂ_i{‘-’ﬂ w U

ﬁ (fjﬂ—![:g‘;f, :'.1}) (s — m? — p?)? — Am i

I (Fo, K) = n RAGN(Ra, 0) [ J1(Po,

- fff-i -’-'J:TT?’TI-{TEFH '!'I.Iii.]_l
N1 K2 d) 1
" r _.!
> 11 ! —d(m + w1 — W — wh ).
i—n k(4 w1 — zpearki—a) wy

Cin(F4, 7)) is the geometrical factor which enters the probability of the N-fold
multiple interaction with definite trajectory of the interacting particles (reso-
nances) inside the nucleus. This trajectory is defined mostly by the final values
of k& (k, #), according to the kinematical relations. Inclusive cross section of
the I_‘{L‘it':ﬁt_t{}rﬂd particle production in the first interaction is :,uuji."';r:rlfd"‘ﬁsrl =
Filpa, k), d¥ky = (B Y aide,, wy W, = = cos .




To estimate the value of the cross section one can extract the product of
the cross sections out of the integral near the optimal kinematics and multiply
by the small phase space avilable for the whole MIP under consideration. For
the case of the light particle rescattering, m-meson for example, puf/m? < 1, we
have

1 m
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When the final angle # is considerably different from s, there is a preferable
plane near which the whole multiple interaction process takes place.

At the angle # — 7, strictly backwards, there is azimuthal symmtry,
and the processes from the whole interval of azimuthal angle 0 = ¢ = 27
provide contribution to the final output (azimuthal focusing). A necessary
step is to introduce azimuthal deviations from this optimal kinematics, o,
k=1, ....N — 1: wn = 0 by deflinition of the plane of the process, (ﬁ],E}.
Polar deviations from the basic values, 8/N, are denoted as 1y, >0 ¥ = 0.
The direction of the momentum k; after I-th interaction, ;, is defined by the
azimuthal angle ; and the polar angle & — (I8/N) + 01 + ... + 1, O = 8.

Up to quadratic terms in o, ¥4

zp = (figiie_1) == cos(B/N) (1 — 93/2) — sin(8/N )+
+sin(k@/N)sin[(k — 1)8/N|(pr — wr_1)"/2.

In the case of the rescattering of light particles the sum enters the phase space
of the process

Z (1 — costy) = N|[1 — cos(6/N}| + cos(8/N) Z [ wr sin” (kO/N )+
1 cos(8 /N ) a
+oata Ay SR8/ N)sin((k — 1)0/N )] — 5 Z 92
wy = wop = 0 by definition of the plane of the NIP, and I.he mentioned

relation 3¢ | ¥, = 0.



The integral over angular variables has the following form:
|
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=5 = cos(8/N), the Jacobian

Tn(2) = /Det||lan]||,

Matrix | |a|| defines the guadratic form in azimuthal deviations Qi z, o)
which enters the argument of the S~function, is most important:
o PYR VI
YR —1

Oz, wr) = aupryr = 2w
=1 =

Ell

E.=..
Q@3 (z. k) = wi + 3 — w1 /2 Qa(z, wr) = 7 + w3 + 3 — (WY1 + waea) /=,

The whole phase space is defined by the gquantity
o= T O N(L—2%) — (1 — @)
ke o Po
which depends on the effective distance of the final momentum (energy ) from
the kinematical boundary for the NVN-fold process.
The phase space of the process depends strongly on ASF" after integration

over angiular variables
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The normal Fermi motion of target nucleons inside of the nucleus increases
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he g se space considerably
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N = AN |pe=0 + Py Tif 2,

Vectors 7 - according to the optimal kinematics for the whole process, Fermi
momenta distribution - in the form of the step function.



4 Nuclear Glory Phenomenon (Buddha’s light of cumu-

lative particles)

Quadratic form satisfy the recurrent relation

v (2, e, 1) = Qn iz, wr, wr) + Eq — N ON_i/ 2
which allows to write
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The recurrent relation for the Jacobians squared follows then
q
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values of NV and used for calculations of J3 at any

can be continued to lower
N starting from J¥(z) = 1 and J3§(= } =1 —1/(427%).
%)} has been obtained (VIK, 1977, 1936):

The following formula for J3
e ( 1 ) Moy (N —m— k)
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The condition Jy(7/N) — 0 leads to the equation for =7, which solution
(one of all possible roots) provides the value of cos(w/N) in terms of radicals.
The following expressions for these jacobians take place
1 1
2 1. 2oy . 2N
t}g(.-;,’:} ].= fj:;l::m:l' 1 - 4‘/2= ur_,l [:r_r:]' 1 - 2‘/2,

Jo(w/3) = I3(z = 1/2) =0, Jy(w/4) = [,(z = 1/+2) = 0. Let us give here less

trivial examples. For W — 5

o 3 1 T F 3 1
-c;.;—r_. — 1 — 5 qj—r_. o — E — =
5 432 _|_ 16,.3!1 [: .:-:}_f 233 ::-:-
and one obtains cos?(w/5) = (3 + +/5)/8, Js(7/5) = 0.
At W =6
-:}—ﬁ =1 — =2 —+ 716.2'“1 = -:};J‘- (1 - 423) ] [:“}—ﬁ}: = =3 _ -’-'.l:ﬁ‘:'r:'l
For W = 7T
2 D 3 1 B r 51 3 3
JI=1— — . SN = 53 —
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For arbitrary NV, J& is a polinomial in 1/422 of the power [(/V — 1)/2|

(integer part of (N — 1)/2.
Strictly backwards the phase space has different form, Jxn(6/N) enters

g1 (BN ) which is different from zero at ¢ = 7, and we have
N—2

N
I, ) = [ & [&ﬁ# - ~1(RZl WY — Crer—1/ 2n +0L/ ?:]} |:11_[1 fffrff"tff??t] 2rdidy ) =

N — 52 .
(ANGF (242 )V
T Yl N T AN —3727
T (2R IV IN(2ZN — 5 (=2577) /
Integration over dioay_ takes place over the whole 2o interwval.




To illustrate the azimuthal focusing which takes place near ¢ — w the
ratio is useful of the phase spaces near the backward direction and strictly at
# — . The ratio of the observed cross sections in the interval of several degrees
slightly depends on the elementary cross sections and is defined mainly by this
ratio of phase spaces. It is

R () — D =) o S (2n — 5N g =5)
o D(E — ) 2R 2NN — 2l sin(w /N ) T (250)
Near & — 7 we use that
T — 8 . . TT
Tar(25) ~ JT[JﬁJ’(H‘:;{}SIﬂ:ﬁT
and thus we get
&Fjr.'l’
o (B — Py | —
R (6) R P
with
Crnr T (2NN (2N — 5t
— W' IR T EET P — = -
(T2 (R 2lsin(7 /N2 /25 (N — 2)12¥ 1
T o TNy . T = T VN o L2 = "
N | (TR (RN | sin(w/N) | [(JR(zR)) sin®(w/N)] g |zh] | Oa
3 4 0.866 1.612 1 .38
4 | 2.83 0.707 0.999 0.707 0.32
5 | 2.11 0.588 0.655 (0. 486 (.29
G 1.540 0.5 0.438 0.333 0.27
T 1087 0.434 0.208 0.229 0.26

Table 1. MNumerical values of the guantities which enter the particles production cross section near

backward direction, # = 7. Here z5; = cos(w /N ).
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The angular dependence of inclusive cross section of the production of positive
pions by projectile protons with momentum 8.9Gel//e. a) pions with momen-
tum 0.5 GeV/c emitted from Pb nucleus. The error bars at some points have not
heen clearly indicated in the original paper; b) pions with momentum 0.3 Gev/c
emitted from He nucleus. The data are taken from Fig. 18 of the paper by
V.S.Stavinsky, Fiz.Elem.Chast. At.Yadra (1979)).
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Angular distributions of secondary protons with kinetic energy between 0.06
and 0.24 GeV emitted from the Pb nucleus, in arbitrary units. The momentum
of the projectile protons is 4.5 GeV/e. a) The energy of emitted protons in the
interval 0.11 — 0.24GeV': b) the energy interval 0.08 — 0.11 GeV"; ¢) the energy
interval 0.06 — 0.08 GeV. Data obtained by G.A.Leksin group at ITEP, taken
from Fig. 3 of paper Yad.Fiz. (1986).
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Angular distributions of secondary pions with kinetic energy greater 0.14 Gel”
emitted from the Ph nucleus, in arbitrary units. The momentum of the projec-
tile protons is 4.5 GeV /e, Data obtained by G.A . Leksin group at ITEP, taken
from Fig. 5 of paper Yad.Fiz. (1986}.

In many other cases the Hat behaviour of the differential eross section near
# ~ m takes place, but it was probably not sufficient resolution to detect the
enhancement of the cross section near # = 7. In some experiments the deviation
of the final angle from 180 deg. is large, therefore, further measurements near
# = m are desirable, also for kaons, hyperons as cumulative particles.
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Angular distributions of secondary pions with kinetic energy greater 0:14 GeV emitted from the
Pb nucleus, in arbitrary units. The momentum of the projectile protons is 4:5 GeV/c. Data
obtained by G.A.Leksin group at ITEP.

In many other cases the at behaviour of the di

erential cross section

Near 180 degll[takes place, but it was probably not sullcient resolution to detect
the enhancement of the cross section near [J180L1. In some experiments the
deviation of the



Azimuthal focusing takes place for any values of the polar scattering an-
gles 877, After substitution sinfge, — @

S
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She—1
2s 5L 235:_1

where we introduced shorter notations s, = siné..
The quadratic form depending on the small azimuthal deviations ¢, which
enters the sum >.(1 — zx) for the NV-fold process is

gen S3 o S+ 83 5 2+ sS4 o Spr_a -+ Sy g

(Crrwor) — 2+ LT3 2 2T e 2N i —
51 Sa S5 Spr—1
—2ipwe — 2 — ... — 2w = ||lal||YT (L, L B e,
with s ay sintd. E.g., for W = 5 we have the matrix
|- 52,';51 —1 ] 0 ]
GETt —1 [:31 —+ Sq_}'."fé‘:?') —1 0
A5 (L B, B, B = : =
||ﬂ||_.l"-,—,,( 1,02, V3. 1} 0 —1 (82+‘;1}be —1 ]
o o —1 [:53 —+ Sﬂ}f:‘;d
(4.4)

and generalization to arbitrary /V is straight forward.

S = Sk,
It can be shown by induction that at arbitrary NV

2]

Det (||a||45) = 5‘: Sg = Sn-

After integration the delta-function containing the quadratic form owver
the small azimuthal deviations we obtain

- N =32
51 A v (2N —3)/2
sg (N — 3)!

f‘g (A — [la||&" (O, - O prwr) digr .. dpn g = Cnoa,
= w for odd n, and «, — /27 for even n, and W — 3 = 0, see Appendix.

Characteristic angular dependence of the cumulative particles production
cross section near @ —

do ~

~ 51
Sa Voa— 8’

since sin@® ~—~ a7 — & for w — & <= 1.



5 Conclusions, prospects

The nuclear glory phenomenon is a natural property of the multiple
interaction mechanism for the cumulative particles production. The
dependence do ~ 1/v/7m — # near # ~ 7w, takes place regardless the mul-
tiplicity of the process.

Not clear how the transition to strictly backward direction pro-
ceeds. The angular distribution of emitted particles near # — « can
have a narrow dip, it may be of a crater (funnel)-like form.

This effect. observed first at JINR and ITEP, is a clear man-
ifestions of the fact that MIP make important contribution to the
cumulative particles production, although contributions of interac-
tion of the projectile with few-nucleon (multiquark) clusters are not
excluded.

Few examples of the optimal (basic) configuration of the MIP
are considered, but the azimuthal focusing., takes place for any kind
of MIP. Other possible variants of the optimal kinematical configu-
rations are of interest.

Important to detect the focusing effect for different types of
produced particles, baryons and mesons (a "smoking gun” of the
MIP mechanism).

Cosmophysical consequences (7)



6 Useful relations
Here we present for the readers convenience some formulas and relations which
hawve been used in sections 3 and 4.

T |
?rl:??r}':” il far— 272
(rn — 231

L. () = ffﬁ[& — rr:f —_— . — :3'::,3i day...dx,, =

for integer even .

(’2?1._}{”—1}..-"2

(me—2) /2
G — 2y

T N),, — fri[& — 3 — . — x22)dxy...dr, =
for integer odd . Relations

N P I:??’T;r — 1}”_ P T | (2?’?’1 — 2:}”
}'2 sin~ M@ df — (2rytt J{] SETL & de — 2(2?’?’1- TR

T integer, allow to check (A1) and (.A2) easily.

1
f SN — T — .. — 3:?;}(5(.‘1:1 + xe + ...+ oy deyodre,, de,, — ﬁf,?_l[&}
More generally, for any quatratic form in variables o, & = 1, ...n alter
diagonalization we obtain
da . ..da) 1
A — aprarpar ydry .odr, — Sl —a’? — gy e C (A,
/s £ T YT n= /s : nJdet|lal]  \Jdet||al| ()

The equality also holds for the (inverse) Jacobian of the transformation ¢ of our
quadratic form to the canonical forrmn:

J2(z) = det ||al|, Jo(z) = /det ||al].

It follows from the basic relation

fat = T,
where 7T is unit matrix n = rn, and g — e, SO
(det ||£]|) 2 = det ||al|, Jla) — _r vdet ||eall. (A.8)
det || ]|
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To obtain the relation (4.2) we write, first

Qrnvi1lz, e wr) = Qn(@r, 1) + wn—it )=, (4.3)

then rewrite this form similar to Eq. (4.1} and write down the equality for the
last several terms

IR s 2 NN —1 TR TR 1w Jh1 o
IT({'—}."'J—J —+ _ g2 Eoar—1 72 2. -+ ?‘:ﬂ}ﬂ (-A9)
A1 = A1 4 A = 4 A

From equality of coeflicients before % in the left and right sides we obtain

JE dE
Lo B L (A10),
=25 I ar

and eguation (4.2} follows immediately.
The relation can be obtained from Eq. (41.,2)

] ) ) 1 ) )
dn(z) = T w1 — E«IF-J—;.-—MIE (~4.11}
which, at W — 2, k& — e (e is the integer), leads to remarkable relation
2 o> o 1 o
(-'TE_..IH = ‘C"r.l_i.fl (*‘;r.l_r.lﬂ—l - 4431 ;1—1) - (-‘412}

Relation (LA.10) can be verified easily for Ji, J3F and J3, see section 4. It follows
from (A.10) that at N — 2 not only Jay(w,/N) = 0., but also J(29,/N) = 0
which has quite simple explanation.

For the odd values of W another useful Factorization property takes place:

1 ) - 1 - 1
— J2NT = [t —JE) (J*““ —JE) . A1
423 ( .ln) ( 22 TR -+ 22 TR ': 3}

- - P a2 > - - -
which can be easily verified for J7 and J5 given in section 4.
The polinomials J5 and equations for =%, — cos(7//N) can be obtained in
more conventional was., There is an obvious eguality

> > 2
f‘rg.ln—kl = (*‘;r.ln—kl}

l[exp(inm/ N} = explin) = —1 (1.14)
It can be written in the form
[cos(m/NY} + isin(w/N)Y = —1, (-.15)

210



