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Outline

& The local renormalisation group

& The Weyl consistency conditions
and some of their consequences:

& The perturbative “a theorem”

& Cross-relations for 3 functions

<& 3 functions in the Standard Model
and stability of the vacuum
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Scale transformations

Classically, field theories are invariant under a rescaling of all

dimensionful quantities, or equivalently under a rescaling of the
metric:

Yur — Vv

But the scale symmetry is broken at the quantum level:
the renormalised couplings depend on a scale

gi(p) = g:(Q 2 p)

= scale anomaly

(= conformal anomaly = trace anomaly = Weyl anomaly)

3 /20 CPB Ol:lgl}'_@




Scale transformations

Renormalised generating functional:

W — log /D@ eiSrenormalised+?:Scounterterms

Srenormalised — /d4$v — ['C'free + g’boz]

Transformation under a rescaling Yur — € Vuw, g(1) = gle ? p)

0 4]
Aa = 0 (2'}’;1,1/ 5,'tu ,Bz 5_92)

AW =0 (T‘u = ,Bz@z)

M | “trace anomaly”
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Conformal transformations

Conformal transformation = local version of scale transformation

Yuv — Q(IE )’Y;w “Weyl transformation”

Obviously defined in curved space

But it has conseguences in flat space as well!

Working in curved space means that there are new correlation
functions of the form

) )
0Yuv 0Ypr

W ~ (THYTPT)

which have to be made finite by an appropriate renormalisation
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Renormalisation in curved space

In the presence of a curved background, additional counterterms
are needed to make the theory finite:

Weurved = Waat + /d4$\/ — [Za£+ Zb,ﬁf + Zc WMUPUWNVPU]

A

All possible 4d curvature terms: Euler density Weyl tensor squared

Under a Weyl transformation A, = / d*z o(x) (27,“, &f ﬁz%>
737 7

Aa Weurved = / d4£E V=70 [&E b R2 & Wuupa W;.Ll/pd] Weyl anomaly
$ 11

. 1
e.g. for free fields, a = 90 (872 (ns + - I + 62 nU)

D. Capper, M.d. Duff (1973), ...
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Space-time-dependent couplings

Under a Weyl rescaling, the coupling “constants” are not constant

gi(1) = gi(Uz) )

A

the gi become x-dependent!

The couplings gi(x) act as auxiliary fields and are sources for the
composite operators O°

= one can compute correlation functions of composite operators

52 o
W ~(0'07), _

59i59j LS must also be made finite

((’)i(’)j C’)k>, ((’)i 0j0k01> by renormalisation!
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Renormalisation with local couplings

. Jack, H. Osborn (1987-1991)

With space-dependent couplings, even more counterterms are
needed, proportional to 0,,9:(x)

Complete Weyl anomaly:

AW = /d‘lm\/—fy [an + G (a ¥ 0,.9:0,9; + 0,0 W 8,,92-) + .. ]

Einstein tensor a, x4, wt,...: Functions of
GHY — RMV _ LYWR the couplings g;
2

There are 1.6 diffeomorphism-invariant .. eglect here anomalous |
terms that include curvature tensors | flavour currents that can |

and derivatives of the couplings lead to limit cycles |
| Fortin, Grinstein, Stergiou (2012) {
(2012) §

Luty, Polchinski, Rattazzi
- N
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The Weyl consistency conditions

H. Osborn (1987-1991)

The Weyl anomaly has to be abelian:
A AW = A AW

Gives a number of consistency relations among the functions
a Xz'j wi
) ) )

One of them is particularly interesting:

oa . Owt  Owd |
— — A. LY} | N — g — (° ;
g & (X dg; Bgz-) a=a-wp

Valid also In flat space and with constant couplings!
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Conseqguence |: the a theorem in 4d

J. Cardy (1988), Z. Komargodski, A. Schimmer (2011)

The matrix x* can be computed In perturbation theory and
happens to be positive definite at leading order, for arbitrary
theories with scalar, fermions and gauge fields

— 3 } a=qaq — W )
5~ I\X" T ag; g, ﬁ
d oa
— 1 — . — = : J >

The function a is monotonic along the renormalisation group
flow and coincides with a at fixed points

= perturbative a theorem

10/ 20 CPB Ol:lgl}'_@




Consequence Il: relations among B functions

The function w'is an exact one-form at the leading orders in

perturbation theory -
a ij
94, X" Fj

By positivity of x| this can be inverted to give

oa
Bi & Xij (9_93

The RG flow is a gradient flow in a space with metric x*

The B functions of a theory are not independent but can all be
derived from a unigque function, and satisty

0% 0 , ko O
89:0g;  Og; (x 5’“)"‘893- OB
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In terms of Feynman diagrams

a Is equal to the trace of the energy-momentum tensor
on a 4-sphere:
A(z)

RN .’.
ﬂ'—‘-.~ \ ..
: ~ \-
a N T“ % @ (\“-,”’ + | | |
S4 N

® 8o 73(:8) WS(:B)

Partial derivatives are equivalent to removing one interaction vertex
oa o 0

fi & Xija—gj 0g; ' 6gi(x)

\ ’
\ /
\ /
\N /
L 4
=  amam_-- +... — ): +...
y = = N
/ N
4 N
’ N\
/ .
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Counting loops

< One-loop B function of a scalar quartic interaction

- — -

5 LT~ //’ / - _\\
N L7 e \v/ N Comes from a

N \ » 5 .

3 K . o I 4-loops diagram
SN N~ N in the function a

- .
\
N\
| | \
_____ l w-}
! :
7/
/7
\"h_-’

3-loops diagram

2-loops diagram
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Multiple couplings

What about diagrams involving multiple couplings?

4-loops diagram with
quartic and Yukawa couplings

9
Oy

e

1-loop contribution el 2-loops contribution
tothequartic {( )  ===== SO to the Yukawa
3 function N 3 function
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An example: the Standard Model

Neglecting all Yukawa coupling apart from the top one, the
theory has five couplings:

2 2 2 2
_ 91 92 g3 Yt A
{ala o, O3, ¢, O()‘} — { (47‘(’)2 9 (47‘(’)2 9 (47'(')2 9 (471')2 9 (471')2 }
The metric is diagonal at lowest order Jack, Osborn (1990)

. 1 3 8 2
" = dia 9 9 9 34
* ‘g(a% of ' of ' oy )

Gives a set of relations among the [3 functions,
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The Standard Model (3 functions

1 10 1 95
;31=2a’;’{ + "G+(—+ﬂ)a1+

163 145 5225n2
o + ( ne nG) a%

127 9 4" 54 | ) 1152 81 1458
87  Tng 137n¢ ,  [1375ng  242n%\ , ng
+ e — —_— ) —_— —_— )
(64 72 )0‘10‘2 162 1% +384 T 36 18 )% + ( 54 gL )3T g 2
N 17 2827 78 4 (U3 100w 1. (3, +34 -3
YT 127 5767 64 2 32 T 16 )7t T4 T 42T M

relations between the 2-loop gauge [3 functions

43  2ng 259  49ng 163 35ng  55n%\
8y =2a3{ — = 2 Ry
B2 az{ TR ( TR )‘”* "Ga3+(1152 54 162 )
187 13ng\ ne [ 667111 3206nc  415n%\ ,
(64 ! )0‘1"‘2 18“1"‘3+( 3456 27 54 )a2
13ng 125ng  22n?
+- 9 aga3+( 6 gc)ag
+ § %a Ea za + g+45nt o
L4 1927t 64 2 27T \32 16 /)"

relations between the 3-loop gauge
and 1-loop Higgs quartic 3 functions
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Precision running in the Standard Model

Knowing the value of the Standard Model couplings at an arbitrary
energy scale is crucial: vacuum stability, grand unification, cosmology...

The state-of-the-art computations make use of the gauge, top Yukawa
and Higgs quartic 3 functions at 3-loops order

Degrassi et al. (2012), Buttazzo et al. (2013)

Inconsistent with the Weyl symmetry!

Already going to 2 loops in the Higgs quartic 3 functions means
including diagrams that contributes to the 4-loop gauge (3 functions

The best Weyl-consistent running based on the existing computations:

o3
&2
O T
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0s in the gauge 3 functions
0s in the top Yukawa (3 function

0 In the Higgs quartic 3 function
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Standard Model vacuum stability
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Importance of precision running

“Coincidence” in the SM:

dA

—(p) =

= d
Alp) =0 an i

happen around the same scale "

— Higgs inflation?

With a slightly lower top mass...

: \\\ \ t; 171 .27 # — :¢
0.006:- My=125.7 GeV

| ay(Mz)=0.1184
0.004} .

Aeff | .

0002} N\ T

| it SN e
0.000} Q __________

IR 10 1016 108
RG scale u (GeV)
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Summary & Outlook

& The Weyl symmetry constrains the RG flow of any theory

& For theories with multiple couplings, it provides relations
among the (3 functions at different loop order

<& Precision computations should make use of a loop counting
scheme consistent with the Weyl symmetry

see talks by O. Antipin

More consequences of the local RGE: and E. Molgaard

& Important for the search of perturbative fixed points /
IN gauge-Yukawa theories

& Work in progress: Weyl consistency conditions for dim.-6
operators in the Standard Model

< Work in progress: local RGE and semiclassical solutions
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