# Leading chiral logarithm for the nucleon mass 

Johan Bijnens
Alexey A. Vladimirov
Department of Astronomy and Theoretical Physics Lund University

## Introduction

Chiral perturbation theory (ChPT) is low-energy effective field theory.

$$
\begin{gathered}
\mathcal{A}=\mathcal{A}^{(0)}+\frac{q^{2}}{\left(4 \pi F_{\pi}\right)^{2}} \mathcal{A}^{(1)}+\left(\frac{q^{2}}{\left(4 \pi F_{\pi}\right)^{2}}\right)^{2} \mathcal{A}^{(2)}+\left(\frac{q^{2}}{\left(4 \pi F_{\pi}\right)^{2}}\right)^{3} \mathcal{A}^{(3)}+\ldots \\
q=\text { momenta, masses, etc } \lesssim m_{\pi}
\end{gathered}
$$

- Infinite effective Lagrangian with dimensional couplings (non-renormalizable theory).
- Ordering in dimension allows to systematically calculate low-energy expansion.
- With increasing chiral order the number of low-energy constants (LECs) grows.

$$
\mathcal{L}_{\mathrm{ChPT}}^{N+\pi}=\mathcal{L}^{(0)}\left(F_{\pi}, m_{\pi}, g_{A}\right)+\mathcal{L}^{(1)}\left(c_{1}, . ., c_{4}\right)+\mathcal{L}^{(2)}\left(l_{1}, . ., l_{10}, d_{1}, . ., d_{23}\right)+\ldots
$$

Logarithmical structure of chiral expansion

- Leading logarithms (LLogs) involves only the leading order Lagrangian. [Büchler,Colangelo,03]


## Chiral Logs from renormalization group

The renormalization scale invariance implies

$$
\mathcal{A}\left(\mu^{2}\right)=\exp \left(\ln \left(\frac{\mu^{2}}{\mu_{0}^{2}}\right) \sum_{n=0}^{\infty} \beta^{(n)} \frac{\partial}{\partial c^{(n)}}\right) \mathcal{A}\left(\mu_{0}^{2}\right)
$$

The LECs obey the equation

$$
\mu^{2} \frac{d}{d \mu^{2}} c^{(n)}=\beta^{(n)}\left[c^{(n-1)}, \ldots, c^{(0)}\right] \quad \leftarrow \text { infinite set of equations }
$$

With help of these equations one can extract the logarithmical contributions with minimum efforts.

- For LLog contributions one needs only the one-loop $\beta$-functions for LECs of chiral order up to order of calculation.
- For NLLog contribution one needs one- and two-loop $\beta$-function
- etc.


## LLogs in meson ChPT

The renormalization group technique has been successfully applied in meson sector.

$$
\mathcal{L}_{\pi}^{(0)}=\frac{F^{2}}{4} \operatorname{tr}\left(\partial_{\mu} U \partial^{\mu} U^{\dagger}+m^{2}\left(U+U^{\dagger}\right)\right)
$$

- The physical pion mass has been calculated up to six-loop order [Bijnens,et al,12]

$$
\begin{gathered}
m_{\text {phys }}^{2}=m^{2}\left(1-\frac{1}{2} L+\frac{17}{8} L^{2}-\frac{103}{24} L^{3}+\frac{24367}{1152} L^{4}-\frac{8821}{144} L^{5}+\frac{1922964667}{6220800} L^{6}+\cdots\right), \\
\text { here: } \quad L=\frac{m^{2}}{(4 \pi F)^{2}} \log \left(\frac{\mu^{2}}{m^{2}}\right) .
\end{gathered}
$$

- Pion decay constant, form factors and wave-lengths up to five-loop order (complete automatization limited by the computer calculation time)[Bijnens, Carlone,10]
- For the massless pions exact all-order equation ( $\sim 2-3 \times 10^{2}$ loops within hour) [Kivel,et al,08]

Aim: to evaluate nucleon physical mass at LLog accuracy (up to possible highest order).

Pion-nucleon ChPT

- In order to bypass the counting problem of nucleon-pion ChPT we work in heavy baryon formulation
- The lowest order Lagrangians are

$$
\begin{gathered}
\mathcal{L}_{N \pi}^{(0)}=\bar{N}\left(i v^{\mu} D_{\mu}+g_{A} S^{\mu} u_{\mu}\right) N \\
\mathcal{L}_{\pi N}^{(1)}=\bar{N}_{v}\left[\frac{(v \cdot D)^{2}-D \cdot D-i g_{A}\{S \cdot D, v \cdot u\}}{2 M}+c_{1} \operatorname{tr}\left(\chi_{+}\right)+\left(c_{2}-\frac{g_{A}^{2}}{8 M}\right)(v \cdot u)^{2}\right. \\
\left.+c_{3} u \cdot u+\left(c_{4}+\frac{1}{4 M}\right) i \epsilon^{\mu \nu \rho \sigma} u_{\mu} u_{\nu} v_{\rho} S_{\sigma}\right] N_{v}
\end{gathered}
$$

- The physical mass of nucleon is known up to two-loop order [Schindler,et al,07]

Structure of nucleon mass at "LLog" accuracy [Schindler,et al,07]

$$
M_{\text {phys }}=M-\begin{gathered}
4 c_{1} m^{2} \\
\frac{\mathcal{L}^{(1)}}{}
\end{gathered}-\frac{3 \pi}{2} g_{A}^{2} \frac{m^{3}}{(4 \pi F)^{2}} \begin{gathered}
+\frac{3}{4}\left(\frac{g_{A}^{2}}{M}+c_{2}+4 c_{3}-8 c_{1}\right) \frac{m^{4}}{(4 \pi F)^{2}} \ln \left(\frac{\mu^{2}}{m^{2}}\right) \\
\text { LLog contribution, } \mathcal{L}^{(0)}+\mathcal{L}^{(1)}
\end{gathered}
$$

Structure of nucleon mass at "LLog" accuracy [Schindler,et al,07]


Structure of nucleon mass at "LLog" accuracy [Schindler,et al,07]

$$
M_{\text {phys }}=M-\begin{array}{|c}
\begin{array}{c}
\sim \sqrt{m_{q}} \text { term, finite part of 1-loop } \\
\text { elder then LLog }
\end{array} \\
\frac{\mathcal{L}^{(1)} m^{2}}{-} \\
-\frac{3 \pi}{2} g_{A}^{2} \frac{m^{3}}{(4 \pi F)^{2}} \\
\hline+\frac{3}{4}\left(\frac{g_{A}^{2}}{M}+c_{2}+4 c_{3}-8 c_{1}\right) \frac{m^{4}}{(4 \pi F)^{2}} \ln \left(\frac{\mu^{2}}{m^{2}}\right) \\
\text { LLog contribution, } \mathcal{L}^{(0)}+\mathcal{L}^{(1)}
\end{array}
$$

$$
\begin{aligned}
& \quad \begin{array}{l}
\sim \sqrt{m_{q}} \text { term, 2-loop NLLog } \\
\text { elder then LLog }
\end{array} \\
& +\frac{3 \pi}{8} g_{A}^{2}\left(3-16 g_{A}^{2}\right) \frac{m^{5}}{(4 \pi F)^{4}} \ln \left(\frac{\mu^{2}}{m^{2}}\right) \\
& \hline-\frac{3}{4}\left(\frac{g_{A}^{2}}{M}+c_{2}+4 c_{3}-6 c_{1}\right) \frac{m^{6}}{(4 \pi F)^{4}} \ln ^{2}\left(\frac{\mu^{2}}{m^{2}}\right)+\ldots \\
& \text { 2-loop LLog contribution }
\end{aligned}
$$

- The proper "LLog" accuracy contains the true LLog contribution, as well as, LLog non-analytical in $m_{q}$ contribution (which is of NLLog nature).


## Course of calculation

## LLog contribution

For $n$ 'th order LLog coefficient one needs:

1) Lagrangian $\mathcal{L}_{N \pi}^{(2 n(+1))}\left(\pi^{0}\right)$ for tree diagrams
2) 1-loop $\beta$-functions for all LECs with $\chi_{\text {order }}+N_{\text {pions }}=2 n(+1)$

- Calculation of 1-loop $\beta$ is performed by FORM
(typical number of diagrams for 4-loop LLog $\sim 10^{4}$ )
- The next order Lagrangian is generated as terms necessary for renormalization (non-minimal Lagrangian [Bijnens,Carloni,10])
(typical number of diagrams for 4-loop LLog $\sim 5 \times 10^{2}$ )
- 

$$
\operatorname{LLog} \text { coef. }=\frac{1}{[n / 2]!}\left(\sum_{k} \beta_{1-\mathrm{loop}}^{(k)} \frac{\partial}{\partial c^{(k)}}\right)^{n / 2} \operatorname{tre} \mathrm{e}^{(n)}
$$

Non-analytical in $m_{q}$ terms
For $n$ 'th order LLog non-analytical in $m_{q}$ terms one additionally needs:
3) Finite part of one-loop diagrams without external pions

$$
\sim \sqrt{m_{q}} \operatorname{LLog} \text { coef. }=\frac{1}{[(n-1) / 2]!}\left(\sum_{k} \beta_{1-\operatorname{loop}}^{(k)} \frac{\partial}{\partial c^{(k)}}\right)^{(n-1) / 2} \quad(\text { finite part 1-loop })^{(n-1)}
$$

$$
M_{\mathrm{phys}}=M+k_{2} \frac{m^{2}}{M}+k_{3} \frac{\pi m^{3}}{(4 \pi F)^{2}}+k_{4} \frac{m^{4}}{(4 \pi F)^{2} M} \ln \left(\frac{\mu^{2}}{m^{2}}\right)+k_{5} \frac{\pi m^{5}}{(4 \pi F)^{4}} \ln \left(\frac{\mu^{2}}{m^{2}}\right)+\cdots
$$

## LLog coefficients

$$
\begin{align*}
k_{2} & -4 c_{1} M \\
k_{4} & \frac{3}{4}\left(g_{A}^{2}+\left(c_{2}+4 c_{3}-8 c_{1}\right) M\right) \\
k_{6} & -\frac{3}{4}\left(g_{A}^{2}+\left(c_{2}+4 c_{3}-6 c_{1}\right) M\right) \\
k_{8} & \frac{27}{8}\left(g_{A}^{2}+\left(c_{2}+4 c_{3}-\frac{16}{3} c_{1}\right) M\right) \\
k_{10} & -\frac{257}{32}\left(g_{A}^{2}+\left(c_{2}+4 c_{3}-5 c_{1}\right) M\right) \tag{4-loop}
\end{align*}
$$

[Bernard,et al,92]
[Schindler,et al,07]

Non-analytical in $m_{q}$ LLog coefficients

$$
\begin{align*}
& k_{3}-\frac{3}{2} g_{A}^{2} \\
& k_{5} \frac{3 g_{A}^{2}}{8}\left(3-16 g_{A}^{2}\right) \\
& k_{7} g_{A}^{2}\left(-18 g_{A}^{4}+\frac{35 g_{A}^{2}}{4}-\frac{443}{64}\right) \\
& k_{9} \frac{g_{A}^{2}}{3}\left(-116 g_{A}^{6}+\frac{2537 g_{A}^{4}}{20}-\frac{3569 g_{A}^{2}}{24}+\frac{55609}{1280}\right) \\
& k_{11} \frac{g_{A}^{2}}{2}\left(-95 g_{A}^{8}+\frac{5187407 g_{A}^{6}}{20160}-\frac{449039 g_{A}^{4}}{945}+\frac{16733923 g_{A}^{2}}{60480}-\frac{298785521}{1935360}\right) \tag{5-loop}
\end{align*}
$$

[Bernard,et al,92]

$$
\begin{aligned}
k_{2} & -4 c_{1} M \\
k_{4} & \frac{3}{4}\left(g_{A}^{2}+\left(c_{2}+4 c_{3}-8 c_{1}\right) M\right) \\
k_{6} & -\frac{3}{4}\left(g_{A}^{2}+\left(c_{2}+4 c_{3}-6 c_{1}\right) M\right) \\
k_{8} & \frac{27}{8}\left(g_{A}^{2}+\left(c_{2}+4 c_{3}-\frac{16}{3} c_{1}\right) M\right) \\
k_{10} & -\frac{257}{32}\left(g_{A}^{2}+\left(c_{2}+4 c_{3}-5 c_{1}\right) M\right)
\end{aligned}
$$

Peculiarity 1

$$
\text { No higher powers of } g_{A} \text {, only } g_{A}^{2} \text {. }
$$

- Consequence of Lorentz invariance (?)
- It implies that: diagrams with odd-number-of-pion vertices do not contribute to the LLog coefficient of nucleon mass.
Note: these diagrams are non-zero, but cancel with each other within the solution of pole-equation.
- Supposing that this behavior holds at higher orders we can suppress higher power during calculation (significant speed improvement!)

$$
\begin{aligned}
k_{2} & -4 c_{1} M \\
k_{4} & \frac{3}{4}\left(g_{A}^{2}+\left(c_{2}+4 c_{3}-8 c_{1}\right) M\right) \\
k_{6} & -\frac{3}{4}\left(g_{A}^{2}+\left(c_{2}+4 c_{3}-6 c_{1}\right) M\right) \\
k_{8} & \frac{27}{8}\left(g_{A}^{2}+\left(c_{2}+4 c_{3}-\frac{16}{3} c_{1}\right) M\right) \\
k_{10} & -\frac{257}{32}\left(g_{A}^{2}+\left(c_{2}+4 c_{3}-5 c_{1}\right) M\right) \\
k_{12} & \frac{115}{3}\left(g_{A}^{2}+\left(c_{2}+4 c_{3}-\frac{24}{5} c_{1}\right) M\right)
\end{aligned}
$$

Peculiarity 1

$$
\text { No higher powers of } g_{A} \text {, only } g_{A}^{2} \text {. }
$$

- Consequence of Lorentz invariance (?)
- It implies that: diagrams with odd-number-of-pion vertices do not contribute to the LLog coefficient of nucleon mass.
Note: these diagrams are non-zero, but cancel with each other within the solution of pole-equation.
- Supposing that this behavior holds at higher orders we can suppress higher power during calculation (significant speed improvement!)

$$
\begin{aligned}
k_{2} & -4 c_{1} M \\
k_{4} & \frac{3}{4}\left(g_{A}^{2}+\left(c_{2}+4 c_{3}-4 c_{1}\right) M\right)-3 c_{1} M \\
k_{6} & -\frac{3}{4}\left(g_{A}^{2}+\left(c_{2}+4 c_{3}-4 c_{1}\right) M\right)+\frac{3}{2} c_{1} M \\
k_{8} & \frac{27}{8}\left(g_{A}^{2}+\left(c_{2}+4 c_{3}-4 c_{1}\right) M\right)-\frac{9}{2} c_{1} M \\
k_{10} & -\frac{257}{32}\left(g_{A}^{2}+\left(c_{2}+4 c_{3}-4 c_{1}\right) M\right)+\frac{257}{32} c_{1} M \\
k_{12} & \frac{115}{3}\left(g_{A}^{2}+\left(c_{2}+4 c_{3}-4 c_{1}\right) M\right)-\frac{92}{3} c_{1} M
\end{aligned}
$$

Peculiarity 2

$$
\begin{gathered}
\text { Universal structure of the expression } \\
k_{2 n}=b_{n}\left(\frac{-3 c_{1} M}{n-1}+\frac{3}{4}\left(g_{A}^{2}+\left(c_{2}+4 c_{3}-4 c_{1}\right) M\right)\right)
\end{gathered}
$$

- Scientific guess: Coefficients $b_{n}$ are related to the pure pion physics.
- Indeed: They coincides with the LLog expansion of $m_{\text {phys }}^{4}$ (accidentally?)

$$
\begin{aligned}
k_{2} & -4 c_{1} M \\
k_{4} & \frac{3}{4}\left(g_{A}^{2}+\left(c_{2}+4 c_{3}-4 c_{1}\right) M\right)-3 c_{1} M \\
k_{6} & -\frac{3}{4}\left(g_{A}^{2}+\left(c_{2}+4 c_{3}-4 c_{1}\right) M\right)+\frac{3}{2} c_{1} M \\
k_{8} & \frac{27}{8}\left(g_{A}^{2}+\left(c_{2}+4 c_{3}-4 c_{1}\right) M\right)-\frac{9}{2} c_{1} M \\
k_{10} & -\frac{257}{32}\left(g_{A}^{2}+\left(c_{2}+4 c_{3}-4 c_{1}\right) M\right)+\frac{257}{32} c_{1} M \\
k_{12} & \frac{115}{3}\left(g_{A}^{2}+\left(c_{2}+4 c_{3}-4 c_{1}\right) M\right)-\frac{92}{3} c_{1} M
\end{aligned}
$$

LLog expression for all orders
We have all-order conjecture for LLog expression for nucleon mass

$$
\begin{array}{r}
M=M_{\mathrm{phys}}+\frac{3}{4} m_{\mathrm{phys}}^{4} \frac{\log \left(\frac{\mu^{2}}{m_{\mathrm{phys}}^{2}}\right)}{(4 \pi F)^{2}}\left(\frac{g_{A}^{2}}{M_{\mathrm{phys}}}-4 c_{1}+c_{2}+4 c_{3}\right) \\
-\frac{3 c_{1}}{(4 \pi F)^{2}} \int_{m_{\mathrm{phys}}^{2}}^{\mu^{2}} m_{\mathrm{phys}}^{4}\left(\mu^{\prime}\right) \frac{d \mu^{\prime 2}}{\mu^{\prime 2}} .
\end{array}
$$

- Knowledge of pion mass LLog expansion up to six-order, allows us to guess two more coefficients.

$$
\begin{align*}
k_{2} & -4 c_{1} M \\
k_{4} & \frac{3}{4}\left(g_{A}^{2}+\left(c_{2}+4 c_{3}-4 c_{1}\right) M\right)-3 c_{1} M \\
k_{6} & -\frac{3}{4}\left(g_{A}^{2}+\left(c_{2}+4 c_{3}-4 c_{1}\right) M\right)+\frac{3}{2} c_{1} M \\
k_{8} & \frac{27}{8}\left(g_{A}^{2}+\left(c_{2}+4 c_{3}-4 c_{1}\right) M\right)-\frac{9}{2} c_{1} M \\
k_{10} & -\frac{257}{32}\left(g_{A}^{2}+\left(c_{2}+4 c_{3}-4 c_{1}\right) M\right)+\frac{257}{32} c_{1} M \\
k_{12} & \frac{115}{3}\left(g_{A}^{2}+\left(c_{2}+4 c_{3}-4 c_{1}\right) M\right)-\frac{92}{3} c_{1} M \\
k_{14} & -\frac{186515}{1536}\left(g_{A}^{2}+\left(c_{2}+4 c_{3}-4 c_{1}\right) M\right)+\frac{186515}{2304} c_{1} M \\
k_{16} & \frac{153149887}{259200}\left(g_{A}^{2}+\left(c_{2}+4 c_{3}-4 c_{1}\right) M\right)-\frac{153149887}{453600} c_{1} M \tag{7-loop}
\end{align*}
$$

LLog expression for all orders
We have all-order conjecture for LLog expression for nucleon mass

$$
\begin{array}{r}
M=M_{\mathrm{phys}}+\frac{3}{4} m_{\mathrm{phys}}^{4} \frac{\log \left(\frac{\mu^{2}}{m_{\mathrm{phys}}^{2}}\right)}{(4 \pi F)^{2}}\left(\frac{g_{A}^{2}}{M_{\mathrm{phys}}}-4 c_{1}+c_{2}+4 c_{3}\right) \\
-\frac{3 c_{1}}{(4 \pi F)^{2}} \int_{m_{\mathrm{phys}}^{2}}^{\mu^{2}} m_{\mathrm{phys}}^{4}\left(\mu^{\prime}\right) \frac{d \mu^{\prime 2}}{\mu^{\prime 2}} .
\end{array}
$$

## Conclusion

- The RG technique is elaborated for the heavy-baryon nucleon-pion ChPT.
- LLog and (N)LLog non-analytical in $m_{q}$ coefficients for the nucleon mass up to 4- and 5-loop order.
- Using conjectures which follows from the form of LLog coefficients we have obtained coefficient up to 7-loop order.
- We suggests an all order LLog expression for the nucleon mass

Nearest future result

- Relativistic calculation (infrared-renormalization scheme)
- LLog coefficients for axial coupling, form factors and nucleon-pion wave-lengths.

