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Fig. 4. Configuration of the event with the largest value of ~ET, 127 GeV (M = 140 GeV): (a) charged tracks pointing to the inner 

face of the central calorimeter are shown together with cell energies (indicated by heavy lines with lengths proportional to cell en- 
ergies). (b) the cell energy distribution as a function of polar angle 0 and azimuth ~. 

(C1, C2) in each event (we assign to each cluster a 

four-momentum (Eu, E), E being the cluster energy 

and u the unit vector pointing from the event vertex 

to the cluster center). We measure PT to be 6 GeV/c 

on the average, of  which at least 3 GeV/c are of  in- 

strumental nature (non-inclusion of  large angle frag- 
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Fig. 5. (a) Azimuthal separation between C1 and C2 (see text) 
for E~ '2 > 10 and 14 GeV. (b) Azimuthal separation between 

C1 and the forward/backward sector having E T > 5 GeV for 
e ~  > 10 GeV andE~/E~ < 0.4 (see text). 
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ments in the cluster, energy resolution, edge effects, 

etc.). 

The above observations support  the interpretat ion 

of Sjj as a sample of  two-jet events resulting from a 

hard parton collision. We remark however that  the 

spectacular configuration illustrated in fig. 4 is not re- 

presentative of  the whole sample. As shown in fig. 3a 

the two-jet system accounts for only a fraction of  

~ E  T. The rest o f  the transverse energy in the event, 

ET, is distributed among clusters, of  which typically 

2 to 3 are in excess of  1 GeV. Their detailed study is 

beyond the scope of  the present report .  We simply re- 

mark that they are only weakly correlated with the 

jet  directions and that their mult ipl ici ty and transverse 

energy ~s t r ibu t ions  are the same as in events having 

S E  T = E T- 

Given the presence of  relatively abundant and hard 

clusters accompanying the two-jet system, we further 

ascertain the emergence of  a two-jet (as opposed to 

multi-jet) structure by measuring the dependence 

upon ZE T of  the ratios r21 = E~/E1T and r32 = E3/E 2. 
As ~ E  T increases, r21 increases and r32 decreases (fig. 

3b),  again illustrating the dominance of  two-jet events 

for ~ E  T exceeding "~60 GeV. 

UA2 Jet Production

1982

Almost 40 years of jet physics!

!
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[see also SPEAR, 1975; PETRA, 1979]
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A QCD Renaissance!

c. 2008–present

LHC (vs. Tevatron)

Higher Energy (≈ x3.5–7)


Higher Luminosity (≈ x10–20)


Finer Segmentation (≈ x5)

Theoretical Progress

New Jet Algorithms (esp. anti-kT)

Loop/Leg/Log Explosion

Jet Substructure

[Anti-kT: Cacciari, Salam, Soyez, 2008]

[BDRS: Butterworth, Davison, Rubin, Salam, 2008; see also Seymour, 1991, 1994]
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Maximize discovery potential of LHC

Enhance understanding of QCD
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Maximize discovery potential of LHC

Enhance understanding of QCD
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[CMS EXO-11-006, CMS JME-13-007]

[Using JHU/CMSTopTagger: Kaplan, Rehermann, Schwartz, Tweedie, 0806.0848]


[Using Pruning: Ellis, Vermilion, Walsh, 0903.5081]

Jets or Jet Substructure?
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[CMS EXO-11-006, CMS JME-13-007]

[Using JHU/CMSTopTagger: Kaplan, Rehermann, Schwartz, Tweedie, 0806.0848]


[Using Pruning: Ellis, Vermilion, Walsh, 0903.5081]
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[CMS B2G-13-001]

High Energy:  Boosted Regime is Inevitable
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High Luminosity:  Pileup is Inevitable

⇒

Secondary Collision Debris

Boosted

Top Quark


(mtop ≈ 170 GeV)
+

[ATLAS PERF-2012-02]

[Krohn, JDT, Wang, 0912.1342]
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Core Principles of

Jet Substructure:

Mass Drop, pT Balance, Y-splitter,

Filtering, Trimming, Pruning, Soft Drop,

Angularities, Planar Flow, N-subjettiness,

Angular Structure Functions, Jet Charge, Jet Pull, 

Energy Correlation Functions, Dipolarity, pT

D,

Zernike Coefficients, Fox-Wolfram Moments,

JHU/CMSTopTagger, HEPTopTagger, 

Template Method, Shower Deconstruction,

Jets Without Jets, Subjet Counting, Wavelets,

Q-Jets, Telescoping Jets, Jet Reclustering, etc.

Prong-like Behavior

Radiation Patterns

Flavor Tagging

!

(& Pileup Mitigation)

High Stakes:  Cleverness is Inevitable
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t → bW

H → bb̄

Z → qq̄

W → qq̄0
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e.g. N-subjettiness:

[JDT, Van Tilburg, 1011.2268,1108.2701] 

[See also N-jettiness: Stewart, Tackmann, Waalewijn, 1004.2489]
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Quark-like   vs.   Gluon-like  

[Berger, Kucs, Sterman, 2003; Ellis, Vermilion, Walsh, Hornig, Lee, 2010]

[Recoil-free Versions:  Larkoski, Salam, JDT, 1305.0007; Larkoski, Neill, JDT, 2014]

e.g. Angularities:
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t → bW

H → bb̄

Z → qq̄

W → qq̄0

b

c
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(Sub)jet B-tagging 

[CMS BTV-13-001]
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Boon for New Physics Searches

e.g. Heavy W ʹSearch
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Maximize discovery potential of LHC

Enhance understanding of QCD
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Techniques Inspire Analytics…

Jet Trimming (Modified) Mass Drop
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…Inspire Techniques (and Analytics)…

[Diagrams from ATLAS, 1306.4945]

[Dasgupta, Fregoso, Marzani, Salam, 1307.0007]

[Larkoski, Marzani, Soyez, JDT, 1402.2657]
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[Larkoski, Marzani, Soyez, JDT, 1402.2657]
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…Inspire Measurements!
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Old Ideas Revisited

[Feynman, Field, 1978]

52 R.D. FieM, R.P. Feynman / A parameterization of the properties of quark ]ets 
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Fig. 21. Same as fig. 20 but  where the power p is taken to be 0.5. d-quark, (Qw) = - 0 . 1 5 ,  

u-quark,  (Qw) = 0.26. 

4 .  P r o p e r t i e s  o f  t h e  q u a r k  r a p i d i t y  p l a t e a u  

4.1. Rapidity correlations 

4.1.1. Correlations between adjacent-rank mesons 

There are two sources of  correlations in our model. Naturally, there is the corre- 

lation among secondary particles that are the decay products of  the same primary 

meson. In addition, however, the primary mesons are not formed at random in 

rapidity. Primary mesons adjacenf in rank are correlated in both flavor and rapidity 

since they each contain a quark (or antiquark) that came from the same q?t pair. 

The two primary mesons of  adjacent rank tend to occur near each other in rapidity, 

Yz, as shown in fig. 22. The mean [AYz[ between mesons adjacent in rank is about 

1.8 units, where all the decay products of  a particular primary meson are assigned 

the rank of  that meson (see fig. 1). Fig. 22 also shows the distribution of  IAYzl 

between mesons with the same rank ((IAYzl) = 0.9). All flavor correlations in the 

quark jets occur between primary mesons of  adjacent rank. The flavor o f  a meson 

Weighted Jet Charge… …on Firm Theoretical Ground

50 R.D. ~eld, R.P. Feynman / A parameterization of the properties of quark ]ets 

must be an integer and thus a random variable. There is an unavoidable noise depend- 

ing on whether a particular charged particle in the plateau happens to have Pz greater 

or less than zero. Even though the plateau is neutral and all the difference of u- and d- 

quark jets lies far away at higher z, one is trying to sum a long series like +1-1+1+1-1 

+ 1 - 1 - 1  ... not knowing where to stop, but knowing only that +1 and - 1  become 

more and more equally likely to occur as we go further down the series (to lower z). 

The proper thing to do is, of course, the analogue of Abel summation, weigh the 

terms with a gradually decreasing weight as we go down the series. If  the weight falls 

gradually enough from unity at the beginning, the excess charge there will be accu- 

rately picked up. However, the random +1 far down where the weight has fallen 

toward zero will produce no fluctuations. That is, if particle i has "z rapidity" Yz i 

and charge qi, we form the "weighted" charge 

Qw(p) = ~ qi exp(-pYz  i) = ~ zPqi , (3.9) 
i i 

where p is a small number. This quantity will have a mean (close to (Q) as p ~ 0) 

distinct for u- and d-quark jets. Furthermore, the "noise" or fluctuations expected 

from having to stop the sum below some f'mite Zmi n is +gPin which can be made 

small as long as Zmi n can be made small enough. 

For a given experimental circumstance, however, Zmi n is fixed and the criteria 

that p be small and that ZPmin alSO be small are opposed. For sufficiently small Zrnin 

there is no problem, but because of the wide fluctuations in rapidity that the par- 

ticles in our model suffer, we have found that in practice the method does not work 

as well as we hoped. For groin = 0.1, with p = 0.5, for example, the fluctuating un- 

certainty gPmin is 0.3 times less than the gross sum Q = ~ qi ; but such a large p means 

that Q(P) does not average as large as (Q). Even worse is that for such a large p the 

contributions of high-z particles depend so strongly on the precise z value they 

actually have. 

Figs. 20 and 21 show the distribution of Qw (/7) with p = 0.2 and 0.5, respectively, 

for a u- and d-quark jet of energy Pq = 10 GeV (including all hadrons with 

Pz > 0). The p = 0.2 distributions are considerably broader than the p = 0.5 case; 

however, the former has mean values ~Qw) that are more widely separated 

(~Qw)u - (Qw)a = 0.64 for p = 0.2 and only 0.41 for p = 0.5). In both cases, there 

is a clear separation of the u- and d-jets. By the use of table 14, we fred a reliability 

of 0.37 if we assign jets with Qw f> 0 as u-quark type and those jets with Qw < 0 as 

d-quark type with p = 0.2. The efficiency of this criterion is excellent (99% since we 

include only those jets with at least one charged hadron). One can obtain a higher 

reliability (but lower efficiency) by excluding from consideration those jets with Qw 

values occurring in the overlap region of the u- and d-quark jet distributions. For 

example, table 15 shows that if we assign jets with Q~v t> 0.4 as u-type and those 

with Qw < -0 .3  as d-type, then forp  = 0.5 we get a 58% reliability with 46% effi- 

ciency. This "weighted" charge technique gives us better reliability factors than the 
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however, the former has mean values ~Qw) that are more widely separated 

(~Qw)u - (Qw)a = 0.64 for p = 0.2 and only 0.41 for p = 0.5). In both cases, there 

is a clear separation of the u- and d-jets. By the use of table 14, we fred a reliability 

of 0.37 if we assign jets with Qw f> 0 as u-quark type and those jets with Qw < 0 as 

d-quark type with p = 0.2. The efficiency of this criterion is excellent (99% since we 

include only those jets with at least one charged hadron). One can obtain a higher 

reliability (but lower efficiency) by excluding from consideration those jets with Qw 

values occurring in the overlap region of the u- and d-quark jet distributions. For 

example, table 15 shows that if we assign jets with Q~v t> 0.4 as u-type and those 

with Qw < -0 .3  as d-type, then forp  = 0.5 we get a 58% reliability with 46% effi- 

ciency. This "weighted" charge technique gives us better reliability factors than the 

[Krohn, Schwartz, Lin, Waalewijn, 1209.2421;  Waalewijn, 1209.3019]

[ATLAS-CONF-2013-086]
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New Calculational Paradigms
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New Calculational Paradigms
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 [Larkoski, JDT, 1307.1699]
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A Standard Candle for Jets?

(a.k.a Modified Mass Drop)
⇒

Fractional Energy Loss

no αs at fixed coupling (!)

≈ independent of quark vs. gluon

≈ independent of jet pT, jet radius

[Larkoski, Marzani, Soyez, JDT, 1402.2657; Larkoski, JDT, 1406.7011]
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Maximize discovery potential of LHC

Enhance understanding of QCD
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The Case for Jet Substructure

Exceptional LHC performance + Extreme kinematics + Jet contamination + (B)SM physics

Creative analysis strategies for hadronic final states

New analytic results in (non)perturbative field theory
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Backup Slides



Jesse Thaler — The Case for Jet Substructure 30

The Case for Jet Substructure

Maximize discovery potential of LHC

[Using Jet Trimming: Krohn, JDT, Wang, 0912.1342]

y
-4 -3 -2 -1 0 1 2 3 4

 [
ra

d
ia

n
s
]

0

1

2

3

4

5

6

1

10

2
10

3
10

 [
G

e
V

]
T
p 

  Preliminary SimulationATLAS Pythia di-jet

-2
10

-1
10

1

 f
ra

c
ti
o
n

T
p 

y
-4 -3 -2 -1 0 1 2 3 4

 [
ra

d
ia

n
s
]

0

1

2

3

4

5

6

1

10

2
10

3
10

 [
G

e
V

]
T
p 

  Preliminary SimulationATLAS Pythia di-jet

⇒

Creative analysis strategies for hadronic final states
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Enhance understanding of QCD

[Dasgupta, Fregoso, Marzani, Salam, 1307.0007]

New analytic results in (non)perturbative field theory

The Case for Jet Substructure

1
ρ
/σ

 d
σ

 /
 d
ρ

ρ = m
2
/(pt

2
 R

2
)

Analytic Calculation: quark jets

m [GeV], for pt = 3 TeV, R = 1

Trimming

Rsub=0.3, zcut=0.05

Rsub=0.3, zcut=0.1

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

10
-6  10

-4 0.01 0.1 1

 10  100  1000

ρ
/σ

 d
σ

 /
 d
ρ

ρ = m
2
/(pt

2
 R

2
)

Pythia 6 MC: quark jets

m [GeV], for pt = 3 TeV, R = 1

Trimming

Rsub = 0.3, zcut = 0.05

Rsub = 0.3, zcut = 0.1

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

10
-6  10

-4 0.01 0.1 1

 10  100  1000

ρ
/σ

 d
σ

 /
 d
ρ

vs.



Jesse Thaler — The Case for Jet Substructure 32

Old Measurements Revisited

Track-Based Observables

Thrust @ LEP 
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[Chang, Procura, JDT, Waalewijn, 1303.6637,1306.6630]

Theme:  Non-perturbative Objects

with Perturbative Evolution
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New Measurements Required

Quark/Gluon Truth Overlap

[Larkoski, JDT,  Waalewijn, 1408.3122]
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Reconsidering Old Assumptions

Recoil-Sensitive vs. Recoil-Free Angularities

[Bertolini, Chan, JDT, 1310.7584; Larkoski, Neill, JDT, 1401.2158; Salam, unpublished]

Which Axis? 

Recoil-Free:  Measurement Axis ≈ Hard Parton
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