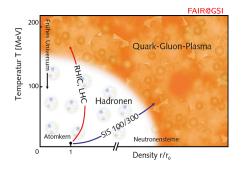
Dynamical Locking of the Chiral and the Deconfinement Phase Transition in QCD at Finite Chemical Potential

Paul Springer

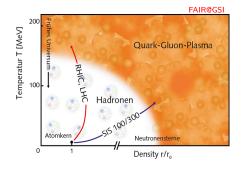
Jens Braun, Marc Leonhardt, Stefan Rechenberger

XIth Quark Confinement and the Hadron Spectrum in Saint-Petersburg

September 9, 2014

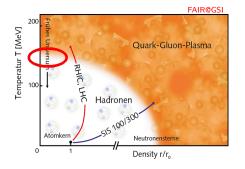


- Confinement ⇔ gauge degrees of freedom
- $\chi SB \Leftrightarrow \text{quark}$ self-interactions



- Confinement ⇔ gauge degrees of freedom
- *χSB* ⇔ quark self-interactions

However, quark self-interactions are generated by gluodynamics

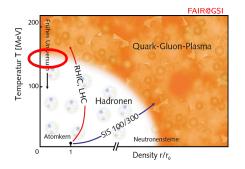


- Confinement ⇔ gauge degrees of freedom
- $\chi SB \Leftrightarrow$ quark self-interactions

However, quark self-interactions are generated by gluodynamics

Lattice QCD:

At $\mu=0$ pseudo-critical temperatures are very similar for both crossovers e.g. [Karsch et al., 2003], [Endrodi et al., 2006], [Aoki et al., 2009] etc.



- Confinement ⇔ gauge degrees of freedom
- $\chi SB \Leftrightarrow \text{quark}$ self-interactions

However, quark self-interactions are generated by gluodynamics

Lattice QCD:

At $\mu=0$ pseudo-critical temperatures are very similar for both crossovers e.g. [Karsch et al., 2003], [Endrodi et al., 2006], [Aoki et al., 2009] etc.

Deeper relation between chiral and confining dynamics???

λ_{ψ} -deformed QCD

Real QCD:
$$\mathcal{L} = \frac{1}{4} F^{\mu\nu} F_{\mu\nu} + \bar{\psi} (i \partial \!\!\!/ + g \!\!\!/ \!\!\!A) \psi$$
 (chiral limit)

• Only **one** parameter: $\alpha_s(m_\tau)$ ($\Leftrightarrow \Lambda_{QCD}$)

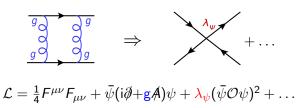
λ_{ψ} -deformed QCD

Real QCD:
$$\mathcal{L} = \frac{1}{4}F^{\mu\nu}F_{\mu\nu} + \bar{\psi}(i\partial \!\!\!/ + g \!\!\!/ +)\psi$$
 (chiral limit)

• Only **one** parameter: $\alpha_s(m_\tau)$ ($\Leftrightarrow \Lambda_{QCD}$)

λ_{ψ} -deformed QCD:

Integrate out fluctuations:



- Quark self-interactions are induced by the gauge fields
- **Two** parameters: $\lambda_{\psi}(m_{\tau})$ and $\alpha_{s}(m_{\tau})$ ($\Leftrightarrow \Lambda_{\text{QCD}}$)
- Chiral symmetry breaking is triggered by strong λ_{ψ}

λ_{ψ} -deformed QCD

We investigate λ_{ψ} -deformed QCD (model) with two massless flavors, N_{c} colors and finite chemical potential:

$$\mathcal{L} = \bar{\psi}(i\partial \!\!\!/ + \gamma_0 \bar{g} \langle A_0 \rangle + i \gamma_0 \mu) \psi + \frac{\bar{\lambda}_{\psi}}{2} [(\bar{\psi}\psi)^2 - (\bar{\psi}\vec{\tau}\gamma_5\psi)^2)]$$

- **two** parameters: $\lambda_{\psi}(\Lambda)$, $\langle A_0 \rangle$
- deconfinement order parameter:

$$\operatorname{Tr}_{F} L[\langle A_{0} \rangle] = \frac{1}{N_{c}} \operatorname{Tr}_{F} [\mathcal{P} e^{i\beta \bar{g} \langle A_{0} \rangle}] \geq \frac{1}{N_{c}} \langle \operatorname{Tr}_{F} [\mathcal{P} e^{i\bar{g} \int_{0}^{\beta} A_{0}}] \rangle$$

• Note: in PNJL/PQM-type model calculations:

$$\operatorname{Tr}_{F} L[\langle A_{0} \rangle] = \frac{1}{N_{c}} \operatorname{Tr}_{F} [\mathcal{P} e^{i\beta \bar{g} \langle A_{0} \rangle}] \stackrel{!}{=} \frac{1}{N_{c}} \langle \operatorname{Tr}_{F} [\mathcal{P} e^{i\bar{g} \int_{0}^{\beta} A_{0}}] \rangle$$

e.g. [Meisinger, Ogilvie, 1996]

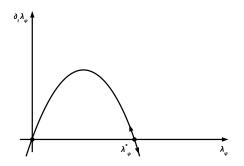
Tool: Wetterich flow equation [C. Wetterich, 1993]

$$\mathcal{L} = \bar{\psi}(\mathrm{i}\partial\!\!\!/ +$$

$$)\psi + rac{ar{\lambda}_{\psi}}{2}[(ar{\psi}\psi)^2 - (ar{\psi}\vec{ au}\gamma_5\psi)^2)]$$

RG-flow equation: T=0, $\mu=0$, $\langle A_0 \rangle=0$ (k is momentum scale)

$$k\partial_k \lambda_{\psi} = 2\lambda_{\psi} - C\lambda_{\psi}^2$$

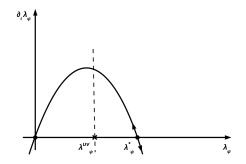


$$\mathcal{L} = \bar{\psi}(\mathrm{i} \partial \!\!\!/ +$$

$$(1)\psi + rac{ar{\lambda}_{\psi}}{2}[(ar{\psi}\psi)^2 - (ar{\psi}\vec{\tau}\gamma_5\psi)^2)]$$

RG-flow equation: T=0, $\mu=0$, $\langle A_0 \rangle=0$ (k is momentum scale)

$$k\partial_k \lambda_{\psi} = 2\lambda_{\psi} - C\lambda_{\psi}^2$$



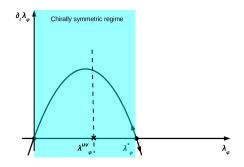
$$\mathcal{L} = \bar{\psi}(\mathrm{i} \partial \!\!\!/ +$$

RG-flow equation:
$$T=0, \ \mu=0, \ \langle A_0 \rangle=0$$

$$k\partial_k \lambda_\psi = 2\lambda_\psi - C\lambda_\psi^2$$

(k is momentum scale)

$$(\psi)\psi + \frac{\overline{\lambda}_{\psi}}{2}[(\overline{\psi}\psi)^2 - (\overline{\psi}\overrightarrow{\tau}\gamma_5\psi)^2)]$$

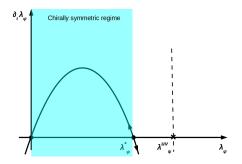


$$\mathcal{L} = \bar{\psi}(\mathrm{i} \partial \!\!\!/ +$$

RG-flow equation:
$$T=0, \ \mu=0, \ \langle A_0 \rangle=0$$
 (k is momentum scale)

$$k\partial_k \lambda_{\psi} = 2\lambda_{\psi} - C\lambda_{\psi}^2$$

$$)\psi+rac{ar{\lambda}_{\psi}}{2}[(ar{\psi}\psi)^2-(ar{\psi}ec{ au}\gamma_5\psi)^2)]$$

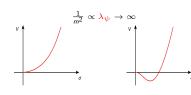


$$\mathcal{L} = \bar{\psi}(\mathrm{i}\partial\!\!\!/ +$$

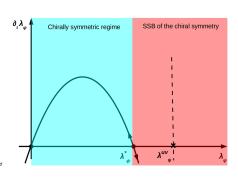
RG-flow equation:

$$T=0, \ \mu=0, \ \langle A_0 \rangle=0$$
 (k is momentum scale)

$$k\partial_k \lambda_{\psi} = 2\lambda_{\psi} - C\lambda_{\psi}^2$$



$$)\psi + \frac{\overline{\lambda}_{\psi}}{2} [(\bar{\psi}\psi)^2 - (\bar{\psi}\vec{\tau}\gamma_5\psi)^2)]$$

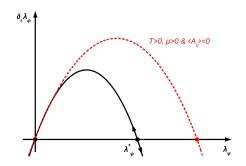


$$\lambda_{\psi}(\Lambda) > \lambda_{\psi}^* \Rightarrow \chi SB$$

$$\mathcal{L} = \bar{\psi}(i\partial \!\!\!/ + + i\gamma_0\mu)\psi + \frac{\bar{\lambda}_{\psi}}{2}[(\bar{\psi}\psi)^2 - (\bar{\psi}\vec{\tau}\gamma_5\psi)^2)]$$

RG-flow equation: $T \neq 0$, $\mu \neq 0$, $\langle A_0 \rangle = 0$ (k is momentum scale)

$$k\partial_k \lambda_{\psi} = 2\lambda_{\psi} - C(\frac{T}{k}, \frac{\mu}{k})\lambda_{\psi}^2$$

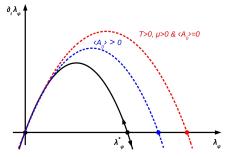


 $\lambda_{\psi}(\Lambda) > \lambda_{\psi}^*$, T or (and) μ increase \Rightarrow restoration of χ -Symmetry

$$\mathcal{L} = \bar{\psi}(i\partial \!\!\!/ + \gamma_0 \bar{g} \langle A_0 \rangle + i \gamma_0 \mu) \psi + \frac{\bar{\lambda}_{\psi}}{2} [(\bar{\psi}\psi)^2 - (\bar{\psi}\vec{\tau}\gamma_5\psi)^2)]$$

RG-flow equation: $T \neq 0$, $\mu \neq 0$, $\langle A_0 \rangle \neq 0$ (color-confined regime)

$$k\partial_k \frac{\lambda_{\psi}}{\lambda_{\psi}} = 2\frac{\lambda_{\psi}}{\lambda_{\psi}} - C(\frac{T}{k}, \frac{\mu}{k}, \langle A_0 \rangle) \lambda_{\psi}^2$$



Finite $\langle A_0 \rangle \Rightarrow$ fixed point "moves" to the left

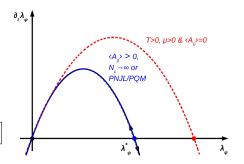
$$\mathcal{L} = \bar{\psi}(i\partial \!\!\!/ + \gamma_0 \bar{g} \langle A_0 \rangle + i \gamma_0 \mu) \psi + \frac{\bar{\lambda}_{\psi}}{2} [(\bar{\psi}\psi)^2 - (\bar{\psi}\vec{\tau}\gamma_5\psi)^2)]$$

Analytical result:

as long

- $N_c \to \infty$, or
- $\operatorname{Tr}_F L[\langle A_0 \rangle] \approx \langle \operatorname{Tr}_F L[A_0] \rangle$ (PNJL/PQM-models)

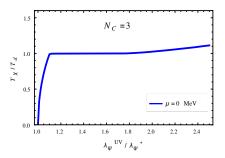
$$\Rightarrow \frac{\lambda^*(T,\mu,\langle A_0\rangle)}{\lambda^*(0,0,0)}$$



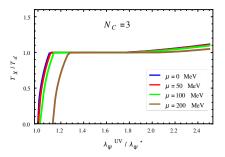
$$T_{\chi} \geq T_d$$

- We use the data for $\langle A_0 \rangle$ for pure $SU(N_c)$ gauge theory, i. e., we drop the back coupling of fermions to the gauge sector: T_d is fixed! [Braun, Gies, Pawlowski, 2010], [Braun, Eichhorn, Gies, Pawlowski, 2010]
- \bullet Back coupling \to corrections, but the main results should be the same on the qualitative level

- We use the data for $\langle A_0 \rangle$ for pure $SU(N_c)$ gauge theory, i. e., we drop the back coupling of fermions to the gauge sector: T_d is fixed! [Braun, Gies, Pawlowski, 2010], [Braun, Eichhorn, Gies, Pawlowski, 2010]
- \bullet Back coupling \to corrections, but the main results should be the same on the qualitative level



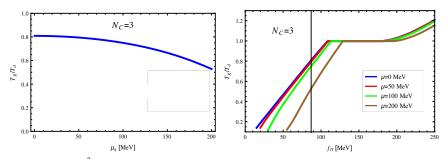
- We use the data for $\langle A_0 \rangle$ for pure $SU(N_c)$ gauge theory, i. e., we drop the back coupling of fermions to the gauge sector: T_d is fixed! [Braun, Gies, Pawlowski, 2010], [Braun, Eichhorn, Gies, Pawlowski, 2010]
- \bullet Back coupling \to corrections, but the main results should be the same on the qualitative level



- We use the data for $\langle A_0 \rangle$ for pure $SU(N_c)$ gauge theory, i. e., we drop the back coupling of fermions to the gauge sector: T_d is fixed! [Braun, Gies, Pawlowski, 2010], [Braun, Eichhorn, Gies, Pawlowski, 2010]
- \bullet Back coupling \to corrections, but the main results should be the same on the qualitative level



- We use the data for $\langle A_0 \rangle$ for pure $SU(N_c)$ gauge theory, i. e., we drop the back coupling of fermions to the gauge sector: T_d is fixed! [Braun, Gies, Pawlowski, 2010], [Braun, Eichhorn, Gies, Pawlowski, 2010]
- \bullet Back coupling \to corrections, but the main results should be the same on the qualitative level



$$\kappa = -T_{\chi} \frac{dT_{\chi}(\mu^2)}{d(\mu^2)} \mid_{\mu=0} = 0.385(5)$$

Conclusion

- PNJL/PQM-models \iff Large- N_c in the coupling of the matter and gauge sector (should not be confused with the standard large- N_c approximation, such as neglecting pion fluctuations etc.)
- $T_{\chi} \geq T_d$ in the phase diagram of PNJL/PQM-models
 - existence of quarkyonic phase in PNJL/PQM-models under debate
 - ⇒ Constraint on parametrization of Polyakov potential
- Locking window in parameter space also for $N_C = 3$ Finite μ shifts this window
- Curvature $\kappa=0.385(5)$ is in agreement with lattice QCD estimations: $0.0032(1)\lesssim\kappa\lesssim0.500(54)$ [Fodor and Katz, 2004], [Allton et al., 2003], [Karsch et al., 2003], [de Forcrand and Philipsen, 2002]

Conclusion and Outlook

Thank you for your attention!