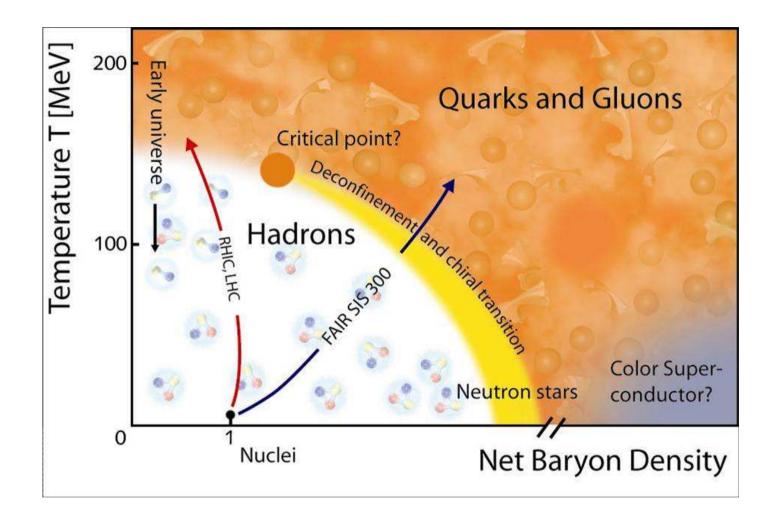
QCD at nonzero chemical potential: recent progress on the lattice

Gert Aarts

Swansea University Prifysgol Abertawe

QCD phase diagram



a well-known possibility

QCD phase diagram

partition function

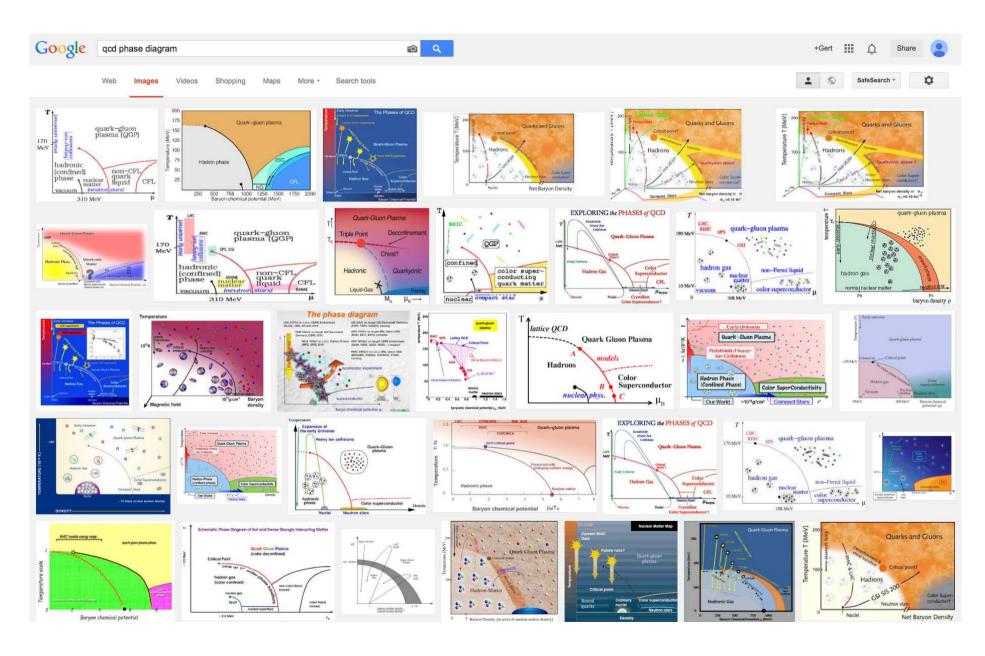
$$Z = \int DU D\bar{\psi} D\psi \, e^{-S} = \int DU \, e^{-S_{\rm YM}} \, \det M$$

at nonzero quark chemical potential

$$[\det M(\mu)]^* = \det M(-\mu^*)$$

- fermion determinant is complex
- straightforward importance sampling not possible
- Iattice QCD: sign problem
- ⇒ phase diagram has not yet been determined non-perturbatively

Many QCD phase diagrams

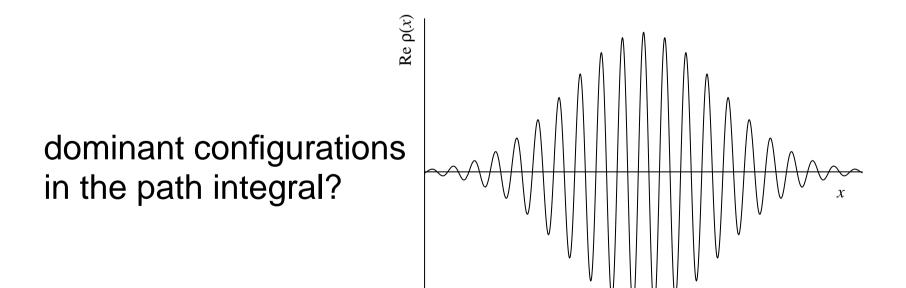


Overlap problem

complex weight is a hard problem: cannot be ignored

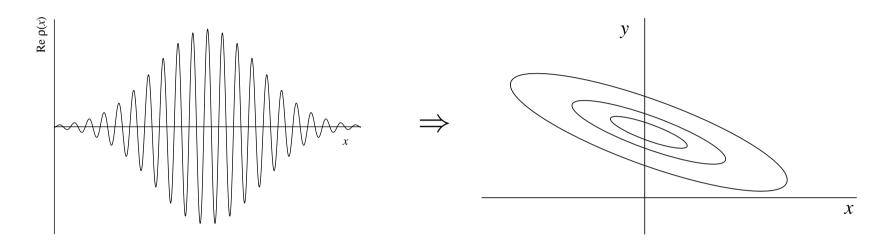
 $\det M(\mu) = |\det M(\mu)|e^{i\theta}$

 correct physics easily destroyed (e.g. by phase-quenching)



Complexified field space

dominant configurations in the path integral?



conjecture: \exists a real and positive distribution P(x, y)

$$\int dx \,\rho(x)O(x) = \int dx dy \,P(x,y)O(x+iy)$$

 \Rightarrow can be obtained as solution of stochastic process

complex Langevin dynamics

Parisi 83, Klauder 83

Outline

- complex Langevin dynamics
- **s** gauge theories: from SU(N) to SL(N, \mathbb{C})
- recent developments:
 - heavy dense QCD
 - full QCD
 - hopping parameter expansion to all orders
 - SU(3) with a θ -term (not shown here)
- summary and outlook

```
with Nucu Stamatescu, Erhard Seiler, Dénes Sexty
Benjamin Jäger, Pietro Giudice, Jan Pawlowski
Lorenzo Bongiovanni, Felipe Attanasio, Frank James
reviews: 1302.3028, 1303.6425
```

Complex Langevin dynamics: basics

partition function $Z = \int dx \, e^{-S(x)}$ $S(x) \in \mathbb{C}$

- reach equilibrium distribution à la Brownian motion
- no importance sampling, instead stochastic process

$$\dot{x} = -\operatorname{Re} \partial_z S(z) + \eta \qquad \langle \eta(t)\eta(t') \rangle = 2\delta(t - t')$$

$$\dot{y} = -\operatorname{Im} \partial_z S(z) \qquad S(z) = S(x + iy)$$

associated distribution P(x, y; t)

$$\langle O(x+iy)(t)\rangle = \int dxdy P(x,y;t)O(x+iy)$$

■ x(t), y(t) Langevin eq $\Leftrightarrow P(x, y; t)$ Fokker-Planck eq

$$\dot{P}(x,y;t) = \left[\partial_x \left(\partial_x + \operatorname{Re} \partial_z S\right) + \partial_y \operatorname{Im} \partial_z S\right] P(x,y;t)$$

Complex Langevin dynamics

does it work?

- for real actions: stochastic quantisation
 Parisi & Wu 81
- equivalent to path integral quantisation
- for complex actions: formal proof was notably absent

recent progress:

- theoretical foundation given¹
- \bullet practical criteria for correctness formulated²
- severe sign and Silver Blaze problems solved³
- first results for gauge theories⁴ and even full QCD⁵

```
<sup>1</sup>0912.3360 <sup>1,2</sup>1101.3270 1306.3075 <sup>3</sup>0810.2089 1006.0332 
<sup>4</sup>0807.1597 1211.3709 <sup>5</sup>1307.7748 1408.3770 +...
```

Localised distributions

crucial role played by distribution P(x, y) if

- the action is holomorphic (no $\log\det!)$ and
 - the distribution is localised, i.e.

P(x,y) = 0 for $|y| > y_{\text{max}}$ [or $P(x,y) \to 0$ fast enough]

then

Correct result is obtained GA, Seiler & Stamatescu 0912.3360

for meromorphic drifts – with poles –, problems *may* appear but not necessarily so

Mollgaard & Splittorff 1309.4335, Greensite 1406.4558

SU(N) gauge theory: complexification to SL(N, \mathbb{C})

Iinks $U \in SU(N)$: complex Langevin update

 $U(n+1) = R(n) U(n) \qquad \qquad R = \exp\left[i\lambda_a\left(\epsilon K_a + \sqrt{\epsilon\eta_a}\right)\right]$

Gell-Mann matrices λ_a ($a = 1, \ldots N^2 - 1$)

• drift:
$$K_a = -D_a(S_{YM} + S_F)$$
 $S_F = -\ln \det M$

SU(N) gauge theory: complexification to SL(N, \mathbb{C})

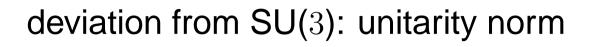
Iinks $U \in SU(N)$: complex Langevin update

 $U(n+1) = R(n) U(n) \qquad \qquad R = \exp\left[i\lambda_a\left(\epsilon K_a + \sqrt{\epsilon}\eta_a\right)\right]$

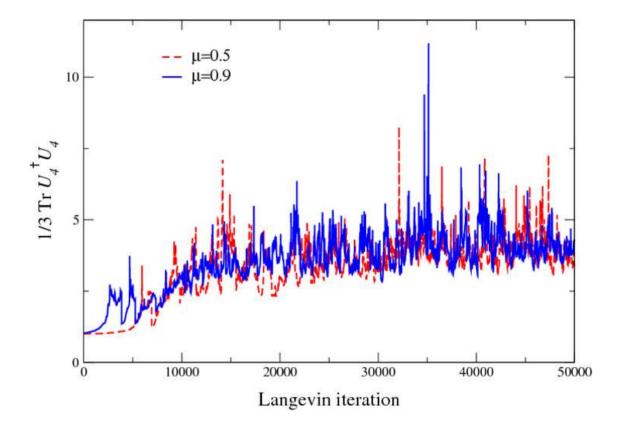
Gell-Mann matrices λ_a ($a = 1, \ldots N^2 - 1$)

- drift: $K_a = -D_a(S_{YM} + S_F)$ $S_F = -\ln \det M$
- complex action: $K^{\dagger} \neq K \Leftrightarrow U \in SL(N, \mathbb{C})$
- **s** deviation from SU(N): unitarity norms

$$\frac{1}{N} \operatorname{Tr} \left(U U^{\dagger} - \mathbb{1} \right) \ge 0 \qquad \qquad \frac{1}{N} \operatorname{Tr} \left(U U^{\dagger} - \mathbb{1} \right)^2 \ge 0$$



$$\frac{1}{3} \mathrm{Tr} \, U U^{\dagger} \ge 1$$



heavy dense QCD, 4^4 lattice with $\beta = 5.6$, $\kappa = 0.12$, $N_f = 3$

GA & Stamatescu 0807.1597

controlled evolution: stay close to SU(N) submanifold when

- small chemical potential μ
- small non-unitary initial conditions
- in presence of roundoff errors

controlled evolution: stay close to SU(N) submanifold when

- small chemical potential μ
- small non-unitary initial conditions
- in presence of roundoff errors

in practice this is not the case

- \Rightarrow unitary submanifold is unstable!
 - process will not stay close to SU(N)
 - distributions not localised
 - wrong results in practice, non-analytic around $\mu^2 \sim 0$

Unstable gauge theories

- uncontrolled dynamics in gauge directions
- unitarity norms grow exponentially
- control those with gauge cooling

Seiler, Sexty & Stamatescu 1211.3709

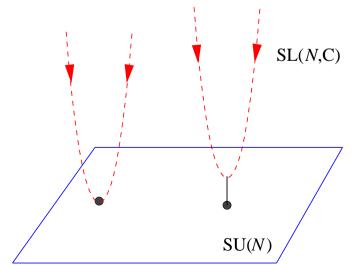
see also GA, Bongiovanni, Seiler, Sexty & Stamatescu 1303.6425

$$U_k \to \Omega_k U_k \Omega_{k+1}^{-1} \qquad \Omega_k = e^{-\alpha f_a^k \lambda_a} \qquad \alpha > 0$$

choose f_a^k as the gradient of the unitarity norm d after one update: linearise

$$\mathbf{d}' - \mathbf{d} = -\frac{\alpha}{N} (f_a^k)^2 + \mathcal{O}(\alpha^2) \le 0$$

reduce distance from SU(N)



Langevin with gauge cooling

in QCD:

- unitary submanifold very unstable
- gauge cooling essential
- alternate Langevin updates with cooling updates

recent and new results for

- heavy dense QCD
- full QCD
- hopping parameter expansion to all orders
- **SU(3) with a** θ -term (not shown here)

Benjamin Jäger, Felipe Attanasio, GA, Stamatescu, Sexty, Seiler

consider static quarks: fermion determinant simplifies

$$\det M = \prod_{\mathbf{x}} \det \left(1 + h e^{\mu/T} \mathcal{P}_{\mathbf{x}} \right)^2 \det \left(1 + h e^{-\mu/T} \mathcal{P}_{\mathbf{x}}^{-1} \right)^2$$

with $h = (2\kappa)^{N_{\tau}}$ and $\mathcal{P}^{(-1)}$ (conjugate) Polyakov loops

- full Wilson gauge action is included
- nontrivial phase diagram:
 - thermal deconfinement transition (as in pure glue)
 - μ -driven transition at $\mu_c \sim -\ln(2\kappa)$

test case for full QCD

consider static quarks: fermion determinant simplifies

$$\det M = \prod_{\mathbf{x}} \det \left(1 + h e^{\mu/T} \mathcal{P}_{\mathbf{x}} \right)^2 \det \left(1 + h e^{-\mu/T} \mathcal{P}_{\mathbf{x}}^{-1} \right)^2$$

with $h = (2\kappa)^{N_{\tau}}$ and $\mathcal{P}^{(-1)}$ (conjugate) Polyakov loops

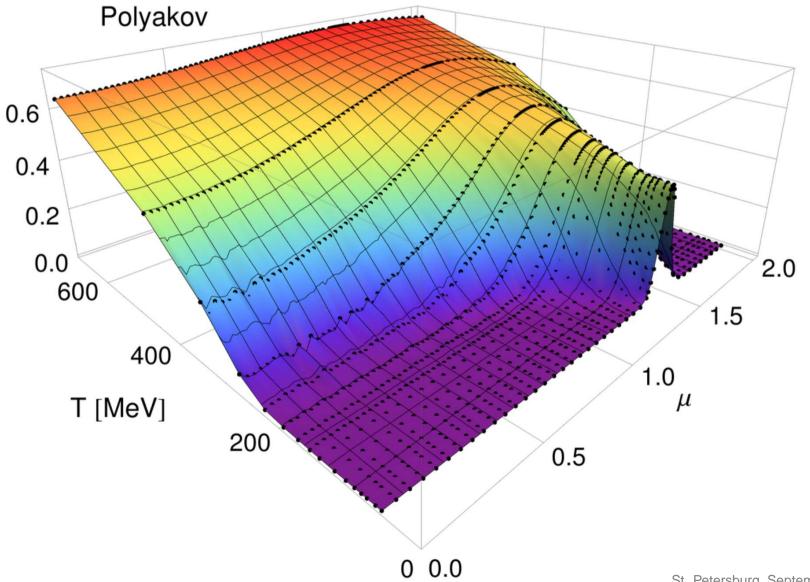
preliminary results for Polyakov loop and density and their susceptibilities

$$\beta = 5.8$$
 (*a* ~ 0.15 fm)

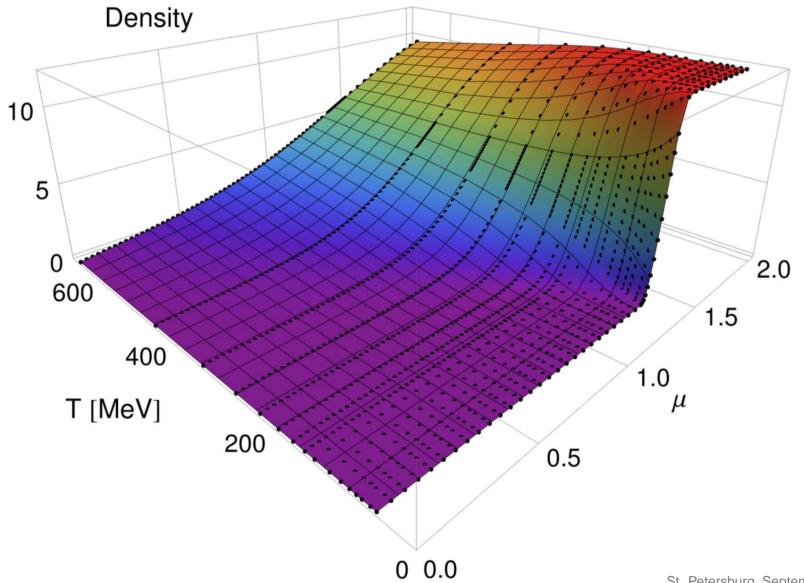
•
$$\kappa = 0.12$$
 $(\mu_c \sim -\ln(2\kappa) = 1.43)$

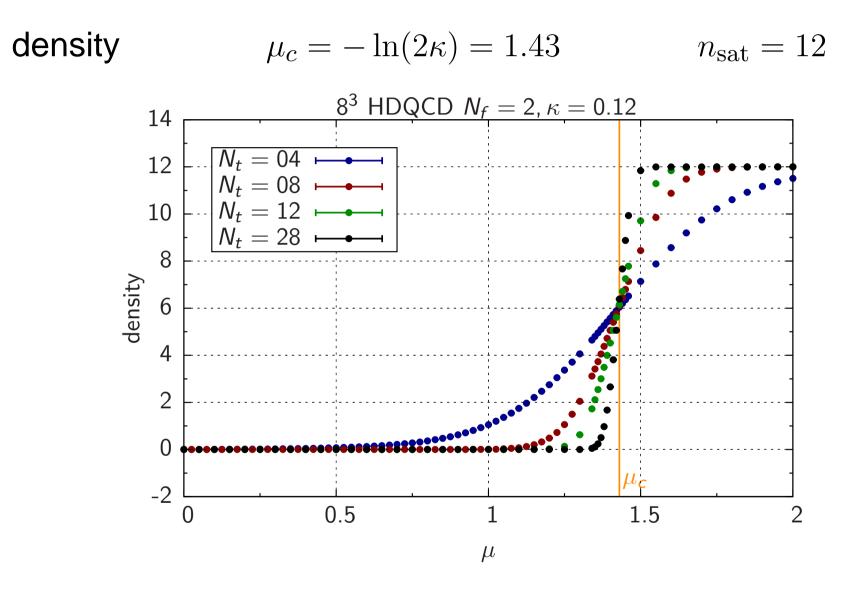
• volume
$$8^3 \times N_{ au}$$

Polyakov loop



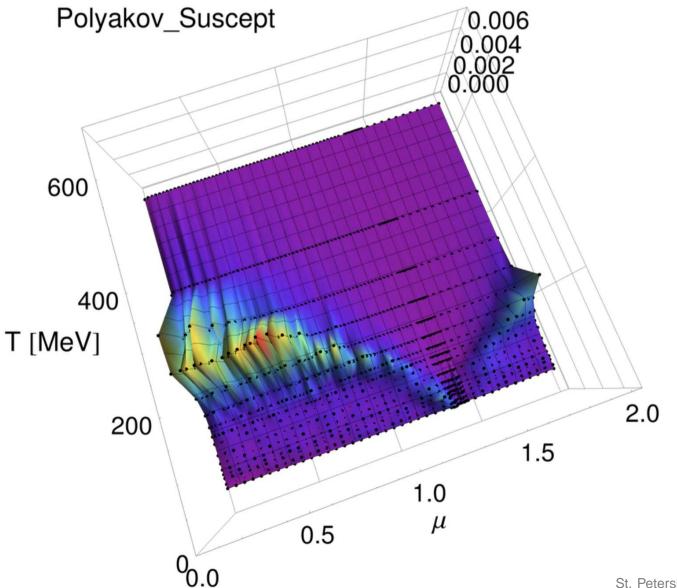
density





first order transition at T = 0 (expected) Silver Blaze

Polyakov loop susceptibility (and phase diagram)



Full QCD at nonzero density

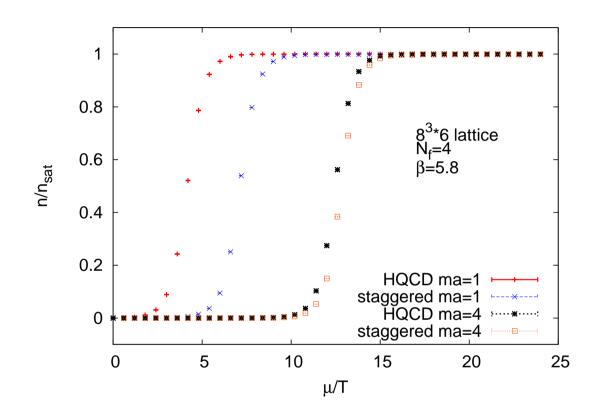
Dénes Sexty 1307.7748

first application to full QCD

- fermion determinant: additional drift term in CLE
- requires inversion of fermion matrix
- stochastic inversion using conjugate gradient

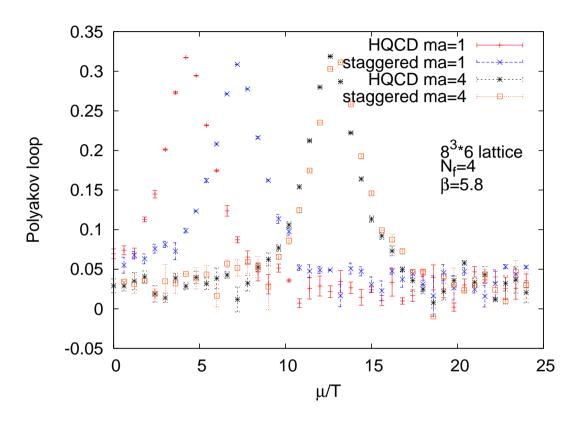
staggered fermions with 4 flavours (Wilson fermions as well)

- monitor unitarity norm, log det, distributions, ...
- compare with HDQCD for heavy quarks and reweighting for light quarks



density / density $_{sat}$ vs μ/T

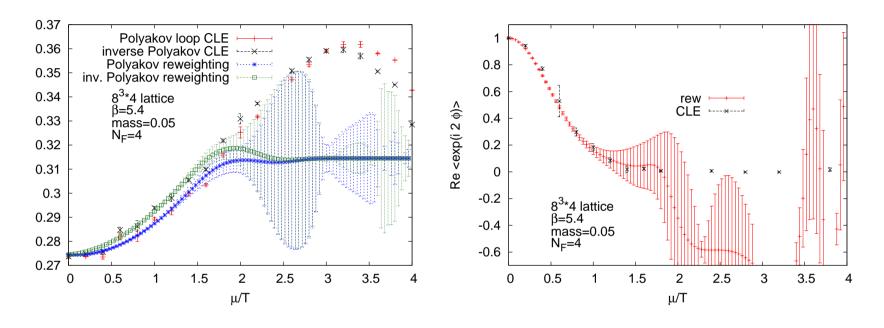
- for heavier quarks and lighter quarks
- comparison with HDQCD



Polyakov loop vs μ/T

- for heavier quarks and lighter quarks
- comparison with HDQCD

comparison with reweighting



Polyakov loop vs μ/T

average sign

- for light quarks
- agreement until reweighting breaks down

Fodor, Katz & Sexty in prep

From HDQCD to full QCD: hopping parameter expansion to all orders

Dénes Sexty, GA, Seiler, Stamatescu 1408.3770

From HDQCD to full QCD

heavy dense QCD

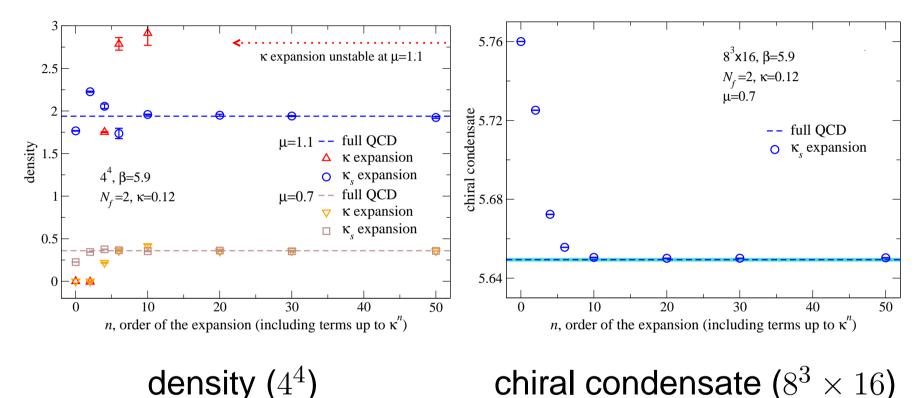
- Ieading order term in expansion in inverse quark kinetic mass: static limit
- several shortcomings: e.g. $m_B/3 = m_\pi/2 = m_q$, immediate saturation after onset

improve and make connection with full QCD

- systematic expansion of quark determinant to all orders in spatial hopping parameter κ_s
- truncate at high order, up to $\mathcal{O}(\kappa_s^{50})$
- determinant still complex: simulate with Langevin
- compare with full QCD results for Wilson fermions

From HDQCD to full QCD

convergence of hopping parameter expansion



- agreement between expansion and full result
- important cross check
- \square implies $\log \det$ not a problem in this case

Summary and outlook

complex Langevin: recent progress for gauge theories

- better mathematical and practical understanding
- gauge cooling for SU(N) gauge theories
- work in progress for
 - heavy dense QCD
 - full QCD at nonzero density
 - hopping parameter expansion to all orders
 - $SU(3) + \theta$ -term
 - role of determinant

towards the phase diagram of QCD many things to do!