



# Precise lattice calculation of nucleon form factor with all-mode-averaging Eigo Shintani (Mainz)

#### **1.** Introduction and motivation

Lattice computation of nucleon EM form factor ( $G_{FM}$ ) and axial charge ( $G_{\Delta}$ ) has still 10 times larger uncertainty than experimental result. The main issue is how to control excited state contamination p↓

$$\begin{array}{c} \mathbf{p} \uparrow & \mathbf{t} \\ \mathbf{N} & \mathbf{t}_{\mathrm{sep}} \end{array} \\ \sim & e^{-E_N t - m_N (t_{\mathrm{sep}} - t)} \times \left[ \{G_X, g_A\} \\ & +c_1 e^{-\Delta(t_{\mathrm{sep}} - t)} + c_2 e^{-\Delta' t} \right] \\ & (\Delta \text{ and } \Delta' \text{ denote exited state mass differentiation of the state mass different$$

 $\Delta'$  denote exited state mass difference.)

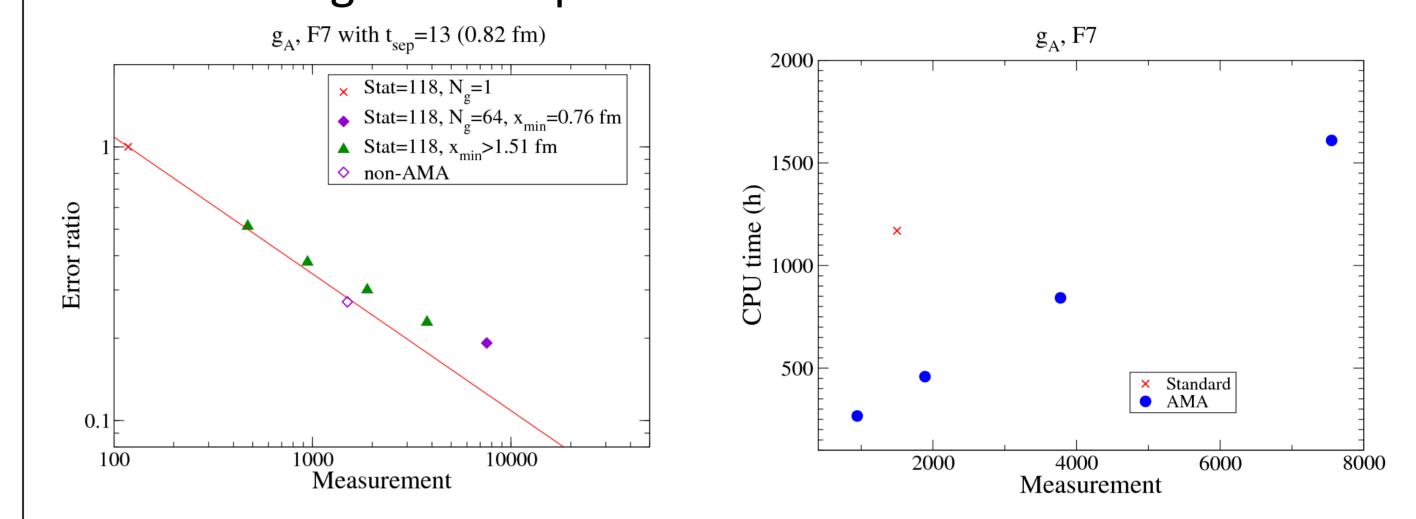
At t<sub>sep</sub> >> 1 and t<sub>sep</sub>-t >>1, excited state is suppressed, but signal-tonoise ratio becomes worse as  $S/N(t) \sim N^{1/2} \exp[-(m_N - 3m_\pi/2)t]$ This study is, to figure out what range of ground state dominance, we demonstrate all-mode-averaging technique (AMA) in form factor



computation. By using AMA, statistical error can be reduced to 40% and less.

### 2. All-mode-averaging (AMA)

All-mode-averaging technique [1] is the recent idea to reduce the statistical error of correlation function in Monte-Carlo simulation. The AMA improved estimator is defined as

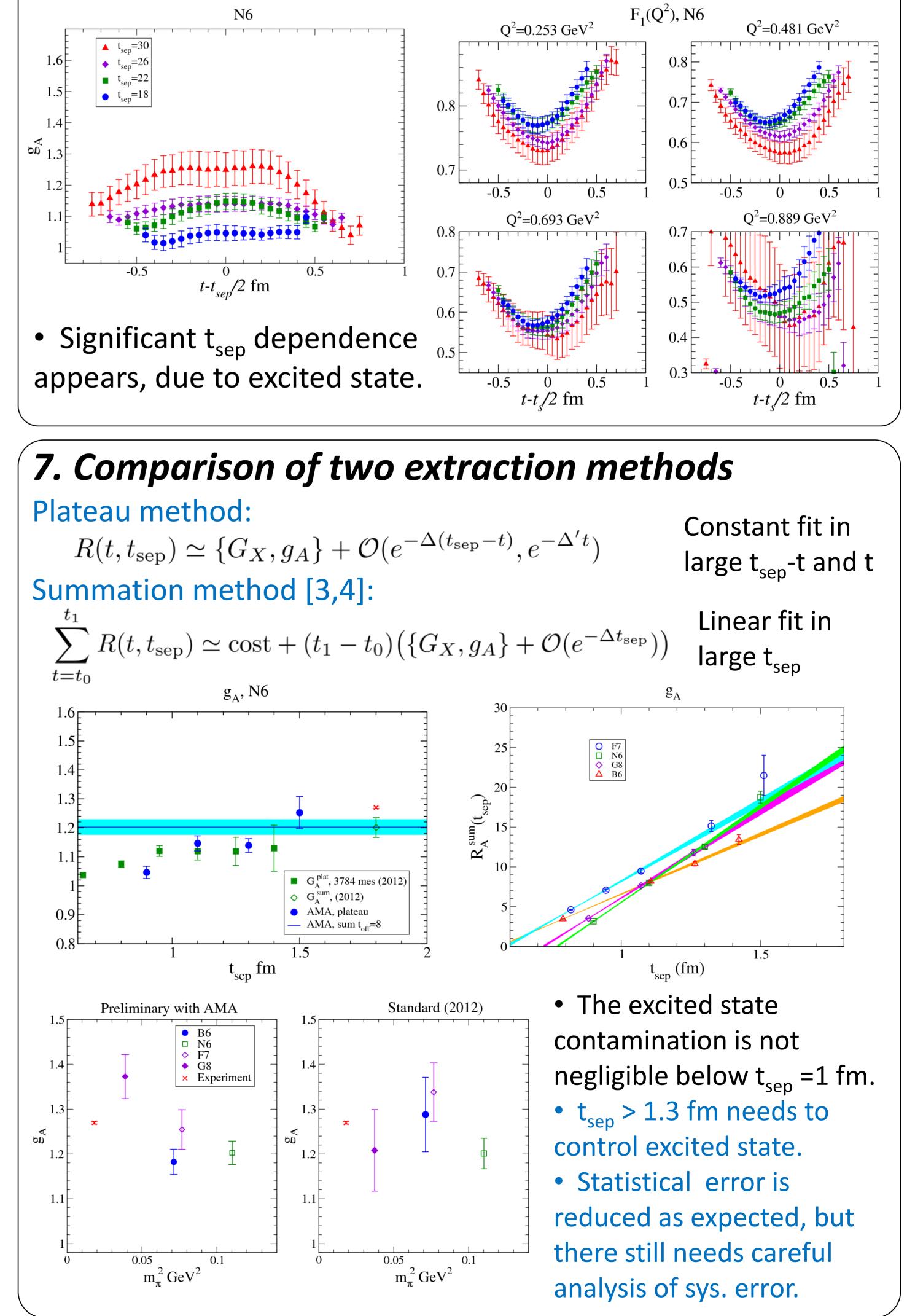

$$O^{(\text{imp})} = O^{(\text{rest})} + \frac{1}{N_G} \sum_{g \in G} O^{(\text{appx}),g}, \ O^{(\text{rest})} = O - O^{(\text{appx})}$$

where we compute  $N_{G}$  approximation  $O^{(appx)}$  whose cost is much <u>smaller than O.</u> The lattice transformation g of the symmetry G is used for average of O<sup>(appx)</sup>. The statistical error is reduced to

$$\frac{\sigma^{\rm imp}}{\sigma} \simeq \sqrt{\frac{1}{N_G} + 2\Delta r + R^{\rm corr}}, \quad R^{\rm corr} = \frac{1}{N_g^2} \sum_{q \neq q'} r_{gg'}, \quad \Delta r = 1 - r$$

In this equation, the correlations are important factors,

$$r = \frac{\langle \Delta O \Delta O^{(\text{appx})} \rangle}{\sigma \sigma^{(\text{appx}),g}} \qquad : \text{Correlation between } O^{(\text{appx})} \text{ and } O$$
$$r_{gg'} = \frac{\langle \Delta O^{(\text{appx}),g} \Delta O^{(\text{appx}),g'} \rangle}{\sigma^{(\text{appx}),g} \sigma^{(\text{appx}),g'}} \qquad : \text{Correlation between different } g$$




• Error ratio of  $g_A : \Delta g_A / g_A [AMA] / (\Delta g_A / g_A [118 stat, w/o AMA])$ • Error scaling depends on [meas]<sup>1/2</sup> if there is no correlation

## 6. Time-slice dependence

The ratio of 3pt and 2pt is to factor out the leading exponent,

$$R(t, t_{\rm sep}) = \frac{\langle NJ_{\mu}\bar{N}\rangle(t, t_{\rm sep}|\vec{p})}{\langle N\bar{N}\rangle_{\rm sm}(t_{\rm sep}|\vec{0})} R_c(t, t_{\rm sep}|\vec{p}) \simeq \{G_X, g_A\} + c_1 e^{-\Delta(t_{\rm sep}-t)} + c_2 e^{-\Delta't}$$



with  $\Delta O = O - \langle O \rangle$ . For error reduction, we need to search the approximation having small <u>1-r and  $r_{gg'}$ </u>. Here we deal with

- G is translational invariance.
- O<sup>(appx)</sup> is constructed from fixed iter. in SAP + deflation + GCR [2]
- 3-parameters:
  - Domain-size in SAP
  - Number of deflation field
  - Number of GCR iteration

control the quality of approximation and computational cost.

#### **3.** Lattice setting

Two-flavor dynamical Wilson-clover fermions configurations generated by CLS group is used in this simulation.

|                | -                              |              | •                      | I                                    |                       |                                                                                         |       |
|----------------|--------------------------------|--------------|------------------------|--------------------------------------|-----------------------|-----------------------------------------------------------------------------------------|-------|
|                | Lattice                        | <i>a</i> (fm | ) $m_{\pi}$ (GeV       | V) N <sub>G</sub>                    | t <sub>sep</sub> (fm) | #conf                                                                                   | #meas |
| B6             | $96 \times 48^{3}$             | 0.079        | 0.267                  | 64                                   | 0.79, 1.11, 1.2       | 26 ~50                                                                                  | ~3200 |
|                |                                |              |                        | 112                                  | 1.42                  | 48                                                                                      | 5376  |
| F7             | $96 \times 48^{3}$             | 0.063        | 3 0.277                | 64                                   | 0.82, 0.95, 1.0       | 07 ~100                                                                                 | ~6400 |
|                |                                |              |                        | 64                                   | 1.32                  | 198                                                                                     | 12672 |
|                |                                |              |                        | 128                                  | 1.51                  | 193                                                                                     | 25344 |
| N6             | $96 \times 48^{3}$             | 0.05         | 0.332                  | 64                                   | 0.9                   | 17                                                                                      | 1088  |
|                |                                |              |                        | 32                                   | 1.1                   | 40                                                                                      | 1280  |
|                |                                |              |                        | 32                                   | 1.3, 1.5              | ~180                                                                                    | 5760  |
| G8             | $128 \times 64^{3}$            | 0.063        | 8 0.193                | 64                                   | 0.88, 1.07            | ~100                                                                                    | 6400  |
|                |                                |              |                        | 120                                  | 1.26                  | 98                                                                                      | 7680  |
| 4. AMA setting |                                |              |                        |                                      |                       |                                                                                         |       |
|                | SAP domain $ N_{\lambda} $ GCF |              | GCR iter.<br>(2pt:3pt) | x <sub>min</sub> (fr                 | n) Speed-up           | <ul> <li>N<sub>λ</sub>: # of deflation</li> <li>x<sub>min</sub>: Distance of</li> </ul> |       |
| B6             | 6x6x6x6                        | 40           | 4:3                    | 0.95                                 | 45                    | different O <sup>(appx),g</sup>                                                         |       |
| F7             | 5x6x6x6 30 4:3 0.76 67         |              | 67                     | <ul> <li>Speed-up is just</li> </ul> |                       |                                                                                         |       |
| N6             | 6x6x6x6                        | 30           | 4:3                    | 1.20                                 | 45                    | for solver part.                                                                        |       |
| G8             | 8x8x8x4                        | 40           | 4:3                    | 1.01                                 | 56                    |                                                                                         |       |

**References:** [1] T. Blum, T. Izubuchi, E. Shintani, PRD88.094503 (2013), 1402.0244 [hep-lat]. [2] M. Luscher, Comp.Phys.Comm.156,209 (2004). JHEP 07,081(2007). [3] Capitani et al. PRD86, 074502 (2012) [4] B. Jäger, T.D. Rae, et al, 1311.5804v2 [hep-lat]