semíleptonic B decays

Giulia Ricciardi

Quark Confinement and the Hadron Spectrum XI

Overview

$\mathrm{b} \rightarrow \mathrm{clv}$ - Exclusive $\left.\mathrm{B} \rightarrow \mathrm{D}^{*}\right) \ell \mathrm{V}$,

- Inclusive $B \rightarrow X_{c} l v$
$\mathrm{b} \rightarrow \mathrm{ulv}$ • Exclusive $\mathrm{B} \rightarrow \pi(\ldots) \mathrm{ev}$,
- Inclusive $B \rightarrow X_{u}{ }^{\text {ev }}$

Most precise determination of $\left|V_{u b}\right| \quad\left|V_{c b}\right|$

- Tension between inclusive and exclusive determinations
- Low mass open charm spectrum
- BSM when $l \rightarrow \mathbf{T}$

Exclusive decays $\left.B \rightarrow D^{*}\right) \ell_{v}$

$$
\frac{d \Gamma}{d \omega}\left(B \rightarrow D^{*}(D)\right) \propto\left|V_{c b}\right|^{2}\left(\omega^{2}-1\right)^{1 / 2(3 / 2)} \mathcal{F}(\omega)^{2}\left(G(\omega)^{2}\right)
$$

$$
\omega=\frac{p_{D(*)} \cdot p_{B}}{m_{B} m_{D(*)}}
$$

Standard Step by Step

Comparison with data at a kinematically not suppressed point $\mathcal{F}(\omega)^{2}\left|V_{c b}\right|^{2}$

Extrapolation at zero-recoil point $\omega=1$

Perturbative and non-perturbative $1 / m_{c, b}^{n}$ dependence on corrections to unity form factors (in HF limit) parameterization

- pertubative order: complete α_{s}^{2} at zero recoil

$B \rightarrow D^{*} P V$

Generally Preferred

\checkmark less suppressed at zero recoil: $\left(\omega^{2}-1\right)^{1 / 2}$ (rather than $\left.\left(\omega^{2}-1\right)^{3 / 2}\right)$

\checkmark vanishing corrections order $1 / \mathrm{m}$ (Luke's theorem)

\checkmark Latest from Lattice
-first unquenched calculation
includes loops of sea quarks, up, down, strange $N f=2+1$

$$
\mathcal{F}(1)=0.906 \pm 0.004 \pm 0.012
$$

- B $\rightarrow \mathrm{D}^{\prime} / v$ (FNAL/MILC, arXiv:1403.0635)

$$
0.0390(5)_{\mathrm{exp}}(5)_{\mathrm{lat}}(2)_{\mathrm{QED}}
$$

- $\mathrm{B} \rightarrow \mathrm{D}^{*} / v$ (FNAL/MILC, PRD 2009)

Central value unchanged, total uncertainty on $|\mathrm{Vcb}|$ reduced to 1.9%; lattice and exp errors commensurate

$B \rightarrow D^{*}{ }^{2}$

\checkmark Important to have additional LQCD calculations
-Preliminary results ETM Nf=2 ensembles ("ratio method" to reduce errors) in agreement
-only quenched results at the non-recoil point
de Divitiis et al 0707.0582 («step scaling» method, alternative to HQET)
\checkmark Comparison with most recent zero recoil sum rules

$$
\mathscr{F}(1)=0.86 \pm 0.02
$$

-Slightly lower average than LQCD $\left(\rightarrow\right.$ higher $\left.\left|\mathrm{V}_{\mathrm{cb}}\right|\right)$
-Much larger th error (More than twice on $\left|V_{c b}\right|$)

$\mathrm{B} \rightarrow \mathrm{Dev}$

\checkmark Latest from Lattice unquenched calculations at non-zero recoil full kinematic range

Qiu et al Fermilab/MILC 1312.0155
-same valence-quark actions and ensembles than B -> D^{*} consistent $\left|V_{c b}\right|$ (less precise :total uncertainty of about 5\%)
-Heavy-quark discretization errors largest source of uncertainty work in progress to reduce it
\checkmark Non-lattice heavy quark expansion (+ BPS limit)

$$
\mathcal{G}(1)=1.04 \pm 0.02
$$

-Consistently lower than unquenched
-Exp+th on $\left|V_{c b}\right|$ uncertainty comparable with LQCD

Prospects

\checkmark Experimental progress

- high statistics at LHCb for $B \rightarrow D^{(*)} \mid v$; however, at B factories fully reconstruction of B (or conjugate) helps measurements in presence of missing neutral particle (v)
-Belle II estimated error on $\left|\mathrm{V}_{\mathrm{cb}}\right|$ at $75 \mathrm{ab}^{-1}$ is about 1%
\checkmark Lattice attacking $B_{s} \rightarrow D_{s} \mid v$
-More affordable on lattice: light spectator fixed to its known mass (m_{s}) and no extrapolation in the light quark mass needed
-Modification of step scaling method
Blossier et al(ETM Collab). 0909.3187
-Agreement with SR data

$$
\mathcal{G}(1)=1.052(46)
$$

Atoui et al 1310.5238
\checkmark Extraction from baryonic decays at hadronic machines, (exp hard)

Exclusive summary

Exclusive decay	$\left\|\mathbf{V}_{\mathrm{cb}}\right\| \times 10^{3}$
$\bar{B} \rightarrow D^{*} l \bar{\nu}$	$39.04 \pm 0.49_{\exp } \pm 0.53_{\mathrm{QCD}} \pm 0.19_{\mathrm{QED}}$
FNAL/MILC (Lattice unquenched 2014)	$39.54 \pm 0.50_{\exp } \pm 0.74_{\mathrm{th}}$
HFAG (Lattice unquenched 2012)	$37.4 \pm 0.5_{\exp } \pm 0.8_{\mathrm{th}}$
Rome (Lattice quenched $\omega \neq 12008)$	$41.6 \pm 0.6_{\exp } \pm 1.9_{\mathrm{th}}$
HFAG (Sum Rules 2012)	
$\bar{B} \rightarrow D l \bar{\nu}$	$48.50 \pm 1.9_{\exp +l a t} \pm 0.2_{\mathrm{QED}}$
FNAL/MILC (Lattice unquenched $\omega \neq 12013)$	$41.6 \pm 1.8 \pm 1.4 \pm 0.7_{F F}$
PDG (HQE + BPS 2012)	
Rome (Lattice quenched $\omega \neq 12009)$	

Low mass open charm spectrum

higher mass charm states background events to $B \rightarrow D^{(*)} \mid v$ (e.g. via B $\rightarrow D^{* *} \mid v$)

Theoretical puzzles

1) $B R$ for inclusive $B \rightarrow X_{c} I v$ not saturated by sum of exclusive $B R$ (gap puzzle)
-Decays into $D^{(*)}$ make up $\sim 70 \%$ of total inclusive $B \rightarrow X_{c} \mid$ v rate
-Decays into $D^{* *}$ make up $\sim 15 \%$ of total inclusive $B \rightarrow X_{c}$ Iv rate
Leaves a gap of about 15%

In the HQ limit $\quad j_{l}=L \otimes s_{l}$
P-wave mesons can be grouped into two doublets:
$j_{i}=1 / 2$
strongly decays only though S-waves-> broad states
$\mathrm{j}_{\mathrm{i}}=3 / 2$
strongly decays only though D-waves-> narrow states
2) narrow width dominates over large width states (sum rules + HQ, quark models)

```
Le Yaouanc et al 96, Uraltsev 2001, Morenas et al. 1997, Ebert et al. }199
``` Leibovich et al. 2007, Bigi et al. 2007....)
not confirmed by data (\(1 / 2\) vs \(3 / 2\) puzzle) Belle, Babar 06
\(\checkmark\) Relevance of the infinite mass limit approach in \(b \rightarrow c\) decay
\(\checkmark\) Background for \(\left|V_{u b}\right|\)

\section*{B factories}
\(B \rightarrow D^{(*)} T V_{T}\)

\[
\mathcal{R}_{\tau / l}(S M)=0.297 \pm 0.017 \quad \text { 2.7б }
\]

Combined 3.4б
\(\mathcal{R}_{\tau / l}^{*}(S M)=0.252 \pm 0.003 \quad\) 2.0б
\(\checkmark\) Agreement with Belle sample \(657 \times 10^{6} \mathrm{~B}\) pair events
Belle 0910.4301.
\(\checkmark\) NP breaking of lepton-flavour universality?
compare with \(B \rightarrow T V_{T}\)
Previous disagreement with SM; now (with full Belle data set) consistency
Belle 1208.4678
Awaiting for Belle update with full data set \(\left(772 \times 10^{6} \mathrm{~B}\right.\) pairs \()\)

\section*{New charged Higgs?}

Babar 20121205.5442

\section*{Inclusive decays \(B \rightarrow X_{c} \mid v\)}
\[
\Gamma\left(B \rightarrow X_{q} l \nu\right)=\frac{G_{F}^{2} m_{b}^{5}}{192 \pi^{3}}\left|V_{q b}\right|^{2}\left[c_{3}\left\langle O_{3}\right\rangle+c_{5} \frac{\left\langle O_{5}\right\rangle}{m_{b}^{2}}+c_{6} \frac{\left\langle O_{6}\right\rangle}{m_{b}^{3}}+O\left(\frac{1}{m_{b}^{4}}\right)\right]
\]

OPE factorization of short and long distance dynamics
\(\checkmark\) Scheme dependence (quark mass definition:1S, kinetic, etc.)
\(\checkmark\) Kinetic scheme
- Complete \(O\left(a_{s}{ }^{2}\right)\) corrections to leading term (parton model)+BLM terms \(a_{s}{ }^{n+1} \beta_{0}{ }^{n}\)
[Melnikov, Czarnecki, Pak, Biswas , Gambino ,...]
- Complete \(\alpha_{s} \frac{\Lambda^{2}}{m b^{2}}\)
[Becher, Boos, Lunghi, Alberti , Ewerth, Gambino, Nandi ,...]
- \(O\left(1 / m b^{2,3}\right)\) known, \(O\left(\Lambda / m_{b}^{4,5}\right)\) estimated
[Gremm, Kapustin, Dassinger, Turczyk, Mannel , Gambino, Bigi, Uraltsev, Zwicky ...]
- \(\log m c, 1 / m c^{2} \ldots\) intrinsic charm estimates
[Breidenbach, Feldmann, Mannel, Turczyk, Bigi, Mannel, Uraltsev, ...]
- Threshold resumming (double Sudakov-like logs) not relevant (cut off by the mc mass)

\section*{Global fit results}
width + hadron, lepton momenta: about 70 measurements available (80\% from B factories)

Additional constraint to increase precision estimate in \(m_{b}\) photon energy moments in \(B \rightarrow X_{s} \gamma\), or a precise constraint on \(m_{c}\)
\begin{tabular}{c|c}
\hline Constraint & \(\left|V_{c b}\right|\left(10^{-3}\right)\) \\
\hline\(B \rightarrow X_{s} \gamma\) & \(41.94 \pm 0.43_{\mathrm{fti}} \pm 0.59_{\mathrm{th}}\)
\end{tabular}\(\quad\)\begin{tabular}{l}
kinetic scheme HFAG \(12 \quad \frac{\delta V_{c b}}{V_{c b}}<2 \%\) \\
\(m_{c}^{\mathrm{MS}}(3 \mathrm{GeV})\) \\
\(41.88 \pm 0.44_{\mathrm{fit}} \pm 0.59_{\mathrm{th}}\)
\end{tabular}\(\quad\)\begin{tabular}{l}
to compare with excl \(\sim 2 \%\) \\
\hline
\end{tabular}

Latest global fits in kinetic scheme (mc constraint)
\[
\left|V_{c b}\right|=(42.42 \pm 0.86) \times 10^{-3}
\]

Including \(a_{s} / m_{b}{ }^{2}\) : error decreases
\[
\left|V_{c b}\right|_{\text {inc }}=(42.42 \pm 0.81) \times 10^{-3}
\]

Incorporating \(a_{s} / m_{b}{ }^{3}\) in progress

\section*{\(3 \sigma\) disagreement}

\section*{Future:}
\(\square\) CLEO \(\rightarrow \approx 50-70\) more stat \(B\) factories \(\rightarrow \approx 50\) more stat Belle II
\(\square\) LHCb: about 5 million \(B \rightarrow D^{*} \mu v\) decay no prospects for \(\left|V_{c b}\right|\) measurement

\section*{\(\left|\mathrm{V}_{\mathrm{ub}}\right|\) exclusive detemination}
- Traditionally extracted by the decay \(B \rightarrow \pi \ell v\) (only a single form factor in massless limit)
\[
\frac{\mathrm{d} \Gamma\left(\bar{B}^{0} \rightarrow \pi^{+} \ell \bar{\nu}\right)}{\mathrm{d} q^{2}}=\frac{G_{F}^{2}\left|\vec{p}_{\pi}\right|^{3}}{24 \pi^{3}}\left|V_{u b}\right|^{2}\left|f_{+}\left(q^{2}\right)\right|^{2}
\]
\[
\begin{gathered}
\left\langle\pi^{+}(p)\right| \bar{u} \gamma_{\mu} b\left|\bar{B}^{0}(p+q)\right\rangle= \\
f_{+}\left(q^{2}\right)\left(2 p_{\mu}+q_{\mu}\right)
\end{gathered}
\]

Non-pert th predictions for \(f_{+}\)usually confined to regions of \(q^{2}\)

\section*{Complementarity}
\(\checkmark\) Light Cone Sum Rules LCSR low \(q^{2}\) regions \(\sim<16 \mathrm{GeV}\) (OPE near the light-cone)

LCSR Khodjamirian et al 11, BGL: Boyd, Grinstein, Lebed, ...
\(\checkmark\) Lattice large \(q^{2} \sim>16 \mathrm{GeV}\) (to avoid large discretization errors)
Better fit with data
[Unquenched HPQCD 07, FNAL/MILC 09, ma preliminary from ALPHA, HPQCD,
FNAL/MILC, RBC/UKQCD 2012
\(\left|V_{\mathrm{ub}}\right|\) HFAG exclusive detemination

also
simultaneous fit of the BCL parameterization to data and LQCD calculations (all q \({ }^{2}\) range)
\[
\left|\mathrm{V}_{\mathrm{ub}}\right|=(3.28+-0.29) \times 10^{-3}
\]

\section*{new players}
\begin{tabular}{|c|c|c|c|}
\hline \(x_{w}\) & Thevary & \[
\begin{gathered}
g^{2} \\
G \in V^{2} / e^{2}
\end{gathered}
\] & \[
\begin{gathered}
|v i n| \\
10-3
\end{gathered}
\] \\
\hline \(\pi^{11}\) & \[
\begin{gathered}
\operatorname{LCSR}[33] \\
\operatorname{LCSR}[34] \\
\mathrm{HPCOD}[35] \\
\text { FNAL[36] }
\end{gathered}
\] & \[
\begin{aligned}
& =12 \\
& =16
\end{aligned}
\] & \\
\hline \(\pi+\) & \[
\begin{gathered}
\text { LCSR [33] } \\
\text { LCSR [34] } \\
\text { HPCMD [35] } \\
\text { FNAL[36] }
\end{gathered}
\] & \[
\begin{aligned}
& =12 \\
& =16 \\
& =16
\end{aligned}
\] & \[
\begin{aligned}
& 3.40 \pm 0.13 \pm 0.09+\square 37 \\
& 3.58 \pm 0.12 \pm 0.09 \pm n \frac{\square}{72} \\
& 3.81 \pm 0.22 \pm 0.104 \square 85 \\
& 3.64 \pm 0.21 \pm 0.09+\square 33
\end{aligned}
\] \\
\hline \({ }^{\square}\) & \[
\begin{gathered}
\text { LCSR }[24] \\
\text { BM }[37] \\
\text { UGGCD }[38] \\
\text { ISCMV [25] }
\end{gathered}
\] & \[
\begin{aligned}
& \text { m } 16 \\
& \text { full } \\
& \text { range }
\end{aligned}
\] & \[
\begin{aligned}
& 3.56 \pm 0.11 \pm 0.09+\square .54 \\
& 3.76 \pm 0.11 \pm 0.10+\square 34 \\
& 3.68 \pm 0.10 \pm 0.10+\square 25 \\
& 3.98 \pm 0.11 \pm 0.10
\end{aligned}
\] \\
\hline \(p^{+}\) & \begin{tabular}{l}
LCSR [24] \\
BML [37] \\
UFGQD [38] \\
ISGMV2 [25]
\end{tabular} & \[
\begin{aligned}
& \text { " } 16 \\
& \text { full } \\
& \text { range }
\end{aligned}
\] & \[
\begin{aligned}
& 3.51 \pm 0.16 \pm 0.13+\square \frac{53}{\square} \\
& 3.66 \pm 0.15 \pm 0.14+\square \square \\
& 3.59 \pm 0.15 \pm 0.13+\square 23 \\
& 3.87 \pm 0.16 \pm 0.15
\end{aligned}
\] \\
\hline cul & \[
\begin{gathered}
\operatorname{LSR}[24] \\
\operatorname{ISGW}[25]
\end{gathered}
\] & \[
\begin{gathered}
=12 \\
\text { fanll } \\
\text { Tange }
\end{gathered}
\] & \[
\begin{aligned}
& 3.04 \pm 0.29 \pm 0.11 \pm \square 44 \\
& 3.03 \pm 0.23 \pm 0.11
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{Inclusive \(\left|\mathrm{V}_{\mathrm{ub}}\right|\)}

\[
\text { large } b \rightarrow c \text { background }\left(\left|\mathrm{V}_{\mathrm{cb}} / \mathrm{V}_{\mathrm{ub}}\right|^{2} \approx 100\right)
\]

Need experimental phase space cuts to reduce background; in general
\[
m_{x} \ll E_{x}
\]

Phase space regions where OPE fails become dominant; new unwelcome effects (with respect to semileptonic \(b \rightarrow c\)):
- Final gluon radiation strongly inhibited: soft and collinear singularities
- perturbative expansion of spectra affected by large logarithms
\[
a_{s}{ }^{n} \log ^{2 n}\left(2 E_{x} / m_{x}\right)
\]
to be resummed at all orders in PT
- non-perturbative effects related to a small vibration of the \(b\) quark in the B meson (Fermi motion) enhanced
- Experimental progress
- Belle \& Babar results access 90\% data
- Theoretical approaches (HAFG averages)
- predictions based on parameterizations of shape function, and OPE constraints

Bosch, Lange, Neubert, Paz, Gambino, Giordano, Ossola, Uraltsev , ...
- predictions based on resummed \(p Q C D\)

Andersen, Gardi, Aglietti, Di Lodovico, Ferrera, GR
- global fit of shape function, \(\left|V_{u b}\right|\) and \(m_{b}\)

Tackmann, Lacker, Ligeti, Stewart...

\section*{Results averages:} Long lasting puzzle
Inclusive

Space for NP reducing (?) Pokorski Crivellin 1407.1320

At SuperFlavour factories (\(75 \mathrm{ab}^{-1}\)) errors expected to reduce to 3 \% (excl) 2\% (incl)

\section*{Conclusions}

Semileptonic \(B\) decays on a well deserved podium to extract CKM matrix elements and to validate theoretical tools

Long standing \(\left|V_{u b}\right|\left|V_{c b}\right|\) discrepancy between exclusive, inclusive

Encouraging and impressive recent experimental progresses (LHCb now and Belle II from 2016 joining the arena)
---- We need th updates (Lattice, inclusive \(b \rightarrow u\))```

