Magnetohydrodynamics, charged currents and directed flow in heavy ion collisions

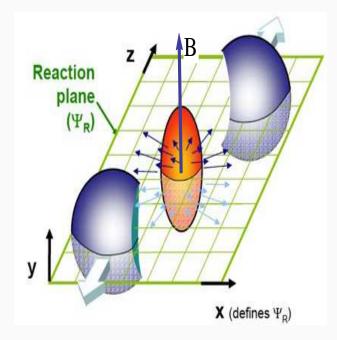
Umut Gürsoy

Utrecht University

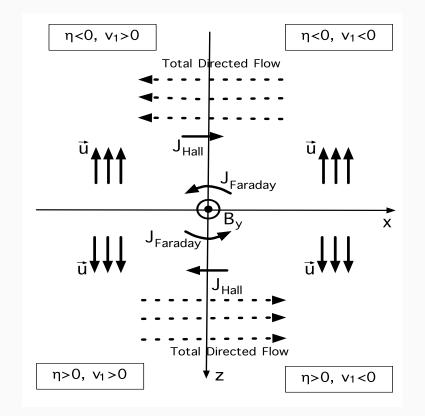
Quark Confinement XI, St. Petersburg 12.09.2014

with D. Kharzeev and K. Rajagopal Phys. Rev. C, 089 (2014), arXiv:1401.3805

Heavy ion collisions and magnetic fields



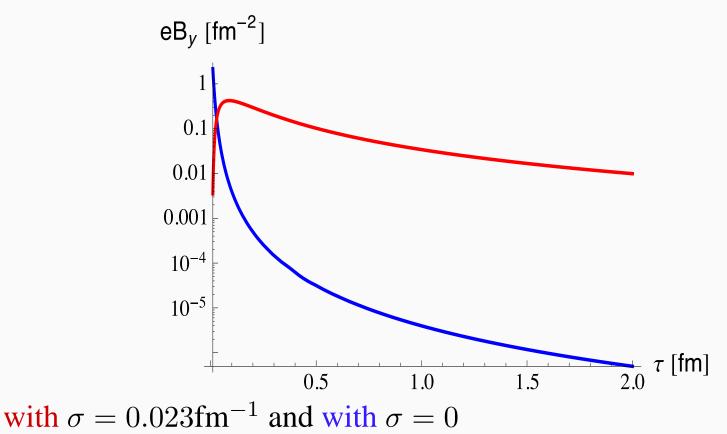
- Initial magnitude of B
- Bio-Savart: $B_0 \sim \gamma Z e \frac{b}{R^3} \Rightarrow$ $eB \approx 5 - 15 \times m_{\pi}^2$ at RHIC (LHC).
- In this talk b = 7fm and R = 7fm.
- Motivation: find observables that are directly tied to the presence of B



"Classical" currents in charged and expanding medium:

- Faraday currents $\vec{J}_F \sim \sigma \vec{E}_F$ with $\nabla \times \vec{E}_F = -\frac{\partial \vec{B}}{\partial t}$
- Hall currents $\vec{J}_H \sim \sigma \vec{E}_H$ with $\vec{E}_H = \vec{u} \times \vec{B}$

Time profile of B at LHC



• Simplifying assumption hard-sphere distribution for spectators and participants

• For participants empirical distribution over Y: Kharzeev et al. 2007 $f(Y_b) = (4\sinh(Y_0/2))^{-1} e^{Y_b/2}, \quad -Y_0 \le Y_b \le Y_0$

Perturbative Magnetohydrodynamics

- Suppose $u^{\mu}(x)$ with no back reaction of electromagnetic fields and \vec{E} , \vec{B} are known
- Go to the comoving frame by $\Lambda(-\vec{u})$ e.g. $F'_{\mu\nu} = (\Lambda \cdot F \cdot F)_{\mu\nu}$
- Compute the stationary velocity:

$$m\frac{d\langle \vec{v_B}\rangle}{dt} = q\langle \vec{v_B}\rangle \times \vec{B'} + q\vec{E'} - \mu m\langle \vec{v_B}\rangle = 0,$$

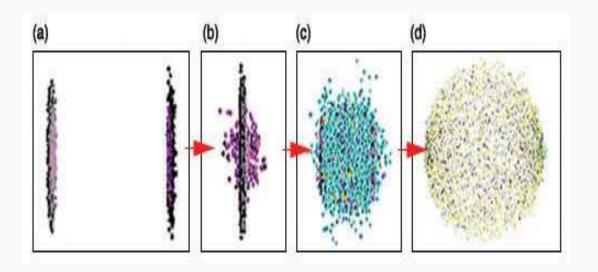
 μm the drag coefficient; e.g. from AdS/CFT: $\frac{\pi\sqrt{\lambda}}{2}T^2$

- Go back to the center of mass frame: by $V^{\mu} = \Lambda(\vec{u})^{\mu}_{\nu}v^{\nu}_{B}$
- V^{μ} contains both u^{μ} and v^{μ}_{B} \Rightarrow construct observables from V

Assumptions

- Validity of Perturbative magnetohydro $\Rightarrow |\vec{v}_B| \ll |\vec{u}|$
- Validity of classical force equation \Rightarrow magnetic energy $E_B \ll \frac{2\pi h}{\lambda}$ with $\lambda \approx R = 7$ fm.
- Both are checked in our set-up
- First may be violated in reality

Constructing u^{μ} for the expanding fluid



- Start from the Bjorken flow: Bjorken '83
 - 1. Boost invariance along z: $\xi = z\partial_t + t\partial_x$
 - 2. Rotation around z: $\xi = x\partial_y y\partial_x$
 - 3. Translations in transverse plane: $\xi = \partial_x$ and $\xi = \partial_y$
- Solution to $[\xi, u] = 0$ is $u = \partial_{\tau} (ds^2 = -d\tau^2 + \tau^2 d\eta^2 + dx_{\perp}^2 + x_{\perp}^2 d\phi^2)$
- Fine except transverse translations

Gubser's flow solution

Gubser '10

- Begin by Bjorken's flow
- Replace $\xi_i = \partial_x$, ∂_y with $\xi_i = \partial_i + q^2 \left[2x^i x^\mu \partial_\mu x^\mu x_\mu \partial_i \right]$
- Solution to $[\xi, u] = 0$ is $u = \cosh \kappa \partial_{\tau} + \sinh \kappa \partial_{\perp}$ with $\kappa = \frac{2q^2 \tau x_{\perp}}{1+q^2 \tau^2 + q^2 x_{\perp}^2}$
- Solution to Hydrodynamics: $\nabla_{\mu}T^{\mu\nu} = 0$ with

$$\epsilon = \frac{\hat{\epsilon}_0}{\tau^{4/3}} \frac{(2q)^{8/3}}{\left[1 + 2q^2(\tau^2 + x_\perp^2) + q^4(\tau^2 - x_\perp^2)^2\right]^{4/3}}$$

- Also analytic dissipative correction with η/S .
- Two parameters to fix: Initial energy $\hat{\epsilon}_0$ and "system size" 1/q

- Gubser's solution has axial symmetry around the beam axis
- How is this consistent with non-zero B then?

- Gubser's solution has axial symmetry around the beam axis
- How is this consistent with non-zero B then?
- This is actually precisely what we want:
- Adding electromagnetism on an axial plasma ⇒ extract effects on only charge identified hadrons!
- e.g. v_1 , v_2 , etc. flow coefficients will be only for charged constituents, neutral background subtracted.
- We will see clearly: $v_1 = v_2 = \cdots = 0$ for Gubser flow u^{μ} but non-zero for Gubser + electrodynamics $V^{\mu} = u^{\mu} + v_B^{\mu}$

How to test Gubser's flow?

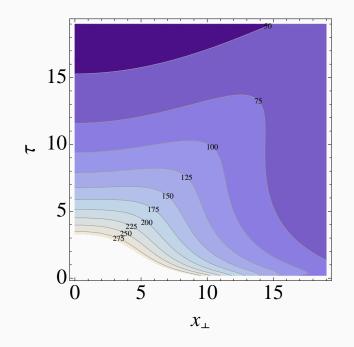
• Hadron spectrum from hydrodynamic flow: Cooper-Frye:

 $S_i = p^0 \frac{dN_i}{dp^3} = -\frac{g_i}{(2\pi)^3} \int d\Sigma_\mu p^\mu F\left(\frac{p^\mu V_\mu}{T_f}\right)$

How to test Gubser's flow?

• Hadron spectrum from hydrodynamic flow: Cooper-Frye:

 $S_i = p^0 \frac{dN_i}{dp^3} = -\frac{g_i}{(2\pi)^3} \int d\Sigma_\mu p^\mu F\left(\frac{p^\mu V_\mu}{T_f}\right)$

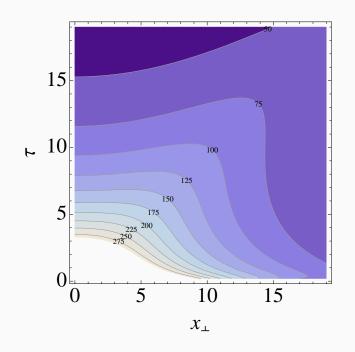


- Isothermal "freezout surface"
- T_f is the freezout temperature, $T_f \approx 130 \text{ MeV}$
- Assume Boltzmann distribution: $F(x) = e^x$

How to test Gubser's flow?

• Hadron spectrum from hydrodynamic flow: Cooper-Frye:

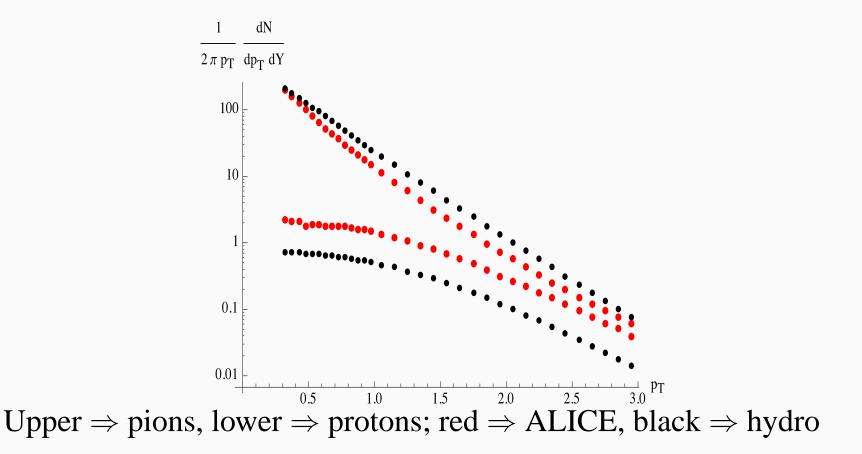
 $S_i = p^0 \frac{dN_i}{dp^3} = -\frac{g_i}{(2\pi)^3} \int d\Sigma_\mu p^\mu F\left(\frac{p^\mu V_\mu}{T_f}\right)$



- Isothermal "freezout surface"
- T_f is the freezout temperature, $T_f \approx 130 \text{ MeV}$
- Assume Boltzmann distribution: $F(x) = e^x$

- $S_i(p_T) = \frac{g_i}{2\pi^2} \int dx_\perp x_\perp \tau_f \left\{ K_1(\frac{m_T u^\tau}{T_f}) I_0(\frac{p_T u^\perp}{T_f}) \tau'_f p_T K_0(\frac{m_T u^\tau}{T_f}) I_1(\frac{p_T u^\perp}{T_f}) \right\}$
- Gubser's flow is independent of Φ_p and $Y \Rightarrow v_n = 0$

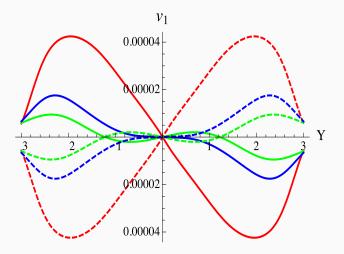
Cooper-Frye and parameter fixing

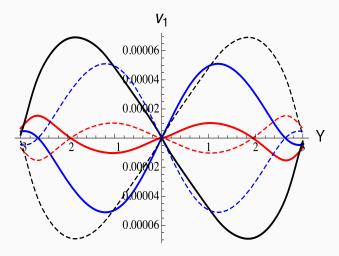


- Demand realistic comparison with ALICE data for pions and protons and reasonable hydronization temperature $T_h \approx 400 550 \text{ MeV}$
- Optimal solution $q^{-1} = 6.5$ fm and $\hat{\epsilon}_0 = (8.7)^4$.

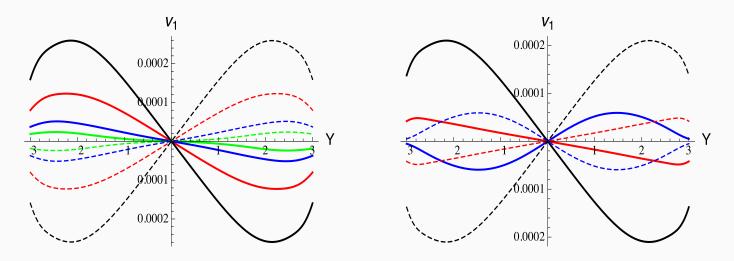
- Calculated *B*
- Fixed Gubser's flow parameters $\Rightarrow u^{\mu}$
- Solve classical force equation electromagnetic force = drag
- Do Cooper-Frye to calculate v_n
- The simplest and most direct effect: directed flow v_1 :

• Pions and protons at LHC

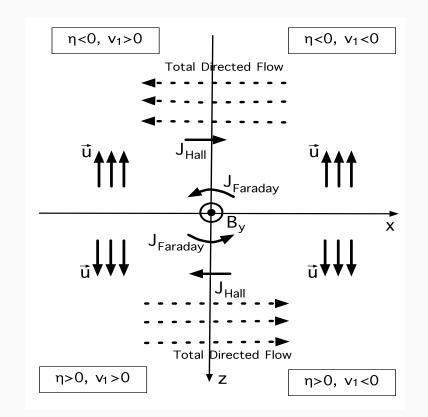




• Pions and protons at RHIC



Color coding: $p_T = 0.25$ (green), 0.5 (blue), 1 (red), 2 (black) GeV



- Effect is small: $\sim 5 \times 10^{-5}$ at LHC, $\sim 2 \times 10^{-4}$ at RHIC.
- Specific features for detection: $v_1(-Y) = -v_1(Y)$, $v_1^+ = -v_1^-$

Proposal for observables

• Define
$$A_1^{+-}(Y_1, Y_2) = v_1^+(Y_1) - v_1^-(Y_2)$$
,
 $A_1^{++}(Y_1, Y_2) = v_1^+(Y_1) - v_1^+(Y_2)$, etc.

to eliminate charge independent contributions to v_1 produced in event-by-event fluctuations

- Look at quadratic observables
 C₁^{+-,+-}(Y,Y) = (A₁⁺⁻(Y,Y)A₁⁺⁻(Y,Y)) = 4(v₁⁺(Y)v₁⁺(Y))
 to eliminate event-by-event fluctuations in direction of B.
- To be compared with data ...

Summary:

- Calculated the contribution of the time-varying B in an expanding plasma, using a perturbative approach to magnetohydrodynamics.
- Effect odd under charge and rapidity.
- Competition between Faraday and "Hall" effects.
- However the magnitude is small.

Summary:

- Calculated the contribution of the time-varying B in an expanding plasma, using a perturbative approach to magnetohydrodynamics.
- Effect odd under charge and rapidity.
- Competition between Faraday and "Hall" effects.
- However the magnitude is small.

Outlook:

- Time dependence of σ , μ , T etc.
- More realistic hydrodynamics.
- Backreaction of EM on hydro ⇒ full magnetohydrodynamics
- More realistic distributions for the sources
- Compute charge identified v_n for $n \ge 2$.

THANK YOU !