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Background

I Quark–gluon plasma is created in heavy-ion collisions
at RHIC and LHC

I No direct observation of QGP — must infer from “fallout”
I Dynamical medium: expanding, cooling fireball

→ transport coefficients are crucial in understanding
→ most perfect liquid known to humankind?

I Hard probes may carry information from early stages

I Sequential suppression −→ quarkonia as QGP thermometers?
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Lattice simulations

I QGP near crossover is strongly interacting:
nonperturbative methods required

I Equilibrium thermal field theory formulated in euclidean space
— suitable for Monte Carlo simulations

〈O〉 =

∫
D[Φ]O[Φ]e−S[Φ]

I Temperature T = 1
Lτ

= (Nτaτ )−1

I Real-time quantities may be determined from spectral function

GE (τ ;T ) =

∫ ∞
0

dωK (ω, τ ;T )ρ(ω;T )

I 2+1 active light flavours required for quantitative predictions!
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Dynamical anisotropic lattices

I A large number of points in time direction required to extract
spectral information

I For T = 2Tc , O(10) points =⇒ at ∼ 0.025 fm

I Far too expensive with isotropic lattices as = at !
I Fixed-scale approach

→ vary T by varying Nτ (not a)
→ need only 1 T = 0 calculation for renormalisation
→ independent handle on temperature

I Introduces 2 additional parameters

I Non-trivial tuning problem
[PRD 74 014505 (2006); HadSpec Collab, PRD 79 034502 (2009)]

6 / 39



Background
Conductivity

Charm
Beauty

Summary and outlook

Lattice simulations
Spectral functions

Simulation parameters
Gen Nf ξ as (fm) a−1

τ (GeV) mπ/mρ Ns Ls (fm)
1 2 6.0 0.162 7.35 0.54 12 1.94
2 2+1 3.5 0.123 5.63 0.45 24 2.94

32 3.94

Gen 1 Gen 2
Nτ T (MeV) T/Tc Nτ T (MeV) T/Tc

80 92 0.42 128 44 0.24
48 117 0.63

32 230 1.05 40 141 0.76
28 263 1.20 36 156 0.84
24 306 1.40 32 176 0.95
20 368 1.68 28 201 1.09
18 408 1.86 24 235 1.27
16 459 2.09 20 281 1.52

16 352 1.90
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Deconfinement transition
Renormalised Polyakov loop

LR = e−Fq/T = e−(F0+∆F )/T = (e∆F )
1
T e−F0/T = zNτ

L L0

Scheme A:
LR(T = 1

16a) = 1

Scheme B:
LR(T = 1

20a) = 1

Scheme C:
LR(T = 1

20a) = 1
2
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Spectral functions

I ρΓ(ω,−→p ) related to euclidean correlator GΓ(τ,−→p )

GΓ(τ,−→p ) =

∫
ρΓ(ω,−→p )

cosh[ω(τ − 1/2T )]

sinh(ω/2T )
dω

[for mesonic correlators in thermal equilibrium]

I an ill-posed problem

I use Maximum Entropy Method to determine most likely ρ(ω)

I requires a large number of time slices to have any chance of a
reliable determination

I must introduce model function m(ω)

I in absence of data, MEM will reproduce model function

I parametrise ρ(ω) = m(ω) exp[
∑

ckuk(ω)]
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Transport coefficients
Transport coefficients can be related to spectral functions through
Kubo relations

κ = cκ lim
ω→0

ρ(ω)

ω

ρ(ω) is the spectral function of the relevant conserved current.
Conductivity and diffusion coefficients are both determined from
the vector current correlator

Gij(τ,
−→p ) =

∫
d3xe i

−→p ·−→x 〈Vi (τ,
−→x )Vj(0,

−→
0 )〉

I Sensitive to long-distance, nearly constant modes

I Very high precision data required

I Model function must allow ρ(ω)/ω finite as ω → 0
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Conductivity
[PRL 111 172001 (2013)] — 2nd generation

σ = lim
ω→0

ρemii (ω)

6ω

Used conserved vector current:
no renormalisation required
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Conductivity
[PRL 111 172001 (2013)] — 2nd generation

σ = lim
ω→0

ρemii (ω)

6ω

Used conserved vector current:
no renormalisation required
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Conductivity results
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[Note that narrow transport peak at low T cannot be ruled out]
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Charge susceptibility and diffusion
Electric charge susceptibility is given by

χQ =
T

V

∂2 lnZ

∂µ2
Q

=
∑

i,j=u,d,s

qiqjχij

Analogous definitions for isospin, baryon number susceptibilites
Related to event-by-event fluctuations in heavy-ion collisions

Charge diffusion related to conductivity, susceptibility: DQ = σ/χQ
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Charm

I J/ψ suppression — a probe of the quark–gluon plasma?
[Matsui & Satz 1986]

I c quarks created in primordial collisions, hard probes?

I To what extent do c quarks thermalise?

I How reliable are quenched lattice simulations?

I Are potential models valid?
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S-wave T dependence (ηc)
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S-wave T dependence (J/ψ)

J/ψ (S-wave) melts at T ∼ 370− 400 MeV or 1.7− 1.9Tc? 16 / 39
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P-waves

P-waves melt at T < 250 MeV or 1.2Tc? 17 / 39
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Second generation [Preliminary]

Consistent with 1st generation results!
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Nonzero momentum

[With MB Oktay, arXiv:1005.1209; A Kelly et al, in progress]

I Charmonium is produced at nonzero momentum

I Transverse momentum (and rapidity) distributions important
to distinguish between models

I Momentum dependent binding?

I Gives an additional window to transport properties

I Related to screening masses
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Reconstructed correlators

Reconstructed correlator is defined as

Gr (τ ;T ,Tr ) =

∫ ∞
0

ρ(ω;Tr )K (τ, ω,T )dω

where K is the kernel

K (τ, ω,T ) =
cosh[ω(τ − 1/2T )]

sinh(ω/2T )

If ρ(ω;T ) = ρ(ω;Tr ) then Gr (τ ;T ,Tr ) = G (τ ;T )

We use Nτ = 32 as our reference temperature for Gen1
since the spectral function is most reliably determined there
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Reconstructed correlators

Significant differences between longitudinal and transverse modes
at high p?
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D mesons [Preliminary!]

I Small but significant thermal effects in D correlators

I Apparently similar in magnitude to charmonium system

I Spectral analysis in progress
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Charmonium potential

[PWM Evans, CR Allton, JIS, PRD 89 071502 (2014); arXiv:1309.3415]

I Potential models are widely used to study quarkonia

I At T = 0 the potential between two infinitely heavy quarks
can be uniquely determined from the euclidean Wilson loop

I At T > 0 this gives the free energy Fqq = Uqq − TS
— no direct relation to potential in Schrödinger equation!

I Potential may be derived in effective theories [Laine, Brambilla,

Petrezcky et al] −→ real and imaginary parts

I Recent progress in determining potential nonperturbatively
from spectral functions of Wilson loops [Rothkopf&Burnier]

Almost no results for finite quark masses
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Reverse-engineering Schrödinger equation
Define point-split correlators

CΓ(r, τ) =
∑
x

〈q̄(x, τ)ΓU(x , x + r)q(x + r, τ) q̄(0)Γ̄q(0)〉

=
∑
j

ψ∗
j (0)ψj(r)

2Ej

(
e−Ejτ + e−Ej (Nτ−τ)

)
,

Schrödinger equation for NBS wavefunctions ψj(r):[
− 1

2µ

∂2

∂r2
+ VΓ(r)

]
ψj(r) = Ejψ(r), µ =

mc

2
≈ MJ/ψ

4

Ignoring the backward mover, we see that

∂CΓ(r , τ)

∂τ
=
∑
j

(
1

2µ

∂2

∂r2
− VΓ(r)

)
ψ∗
j (0)ψj(r)

2Ej
e−Ejτ

=

(
1

2µ

∂2

∂r2
− VΓ(r)

)
CΓ(r , τ).
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Central and spin-dependent potential
In general, for S-waves

VΓ(r) = VC (r) + s1 · s2 VS(r)

=⇒ VC (r) =
3

4
VV (r) + VPS(r) , VS(r) = VV (r)− VPS(r)

1st generation results
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Potential results

27 / 39



Background
Conductivity

Charm
Beauty

Summary and outlook

NRQCD
Spectral functions

Beauty (and the beast?)

I Many b quarks are produced at LHC

I Cold nuclear matter effects, recombination less important
→ cleaner probes?

I TΥ
d ∼ 3− 5Tc — hard to do on the lattice

I χb,Υ(2S) melt at T ′d . 1.2Tc?

I Sequential suppression observed at CMS (+ ATLAS, STAR)?
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NRQCD
Scale separation MQ � T ,MQv
Integrate out hard scales −→ Effective theory
Expand in orders of heavy quark velocity v; we use O(v4) action

Advantages

I No temperature-dependent kernel, G (τ) =
∫
ρ(ω)e−ωτ dω

2π

I No zero-modes

I Longer euclidean time range

I Appropriate for probes not in thermal equilibrium

Disadvantages

I Not renormalisable, requires Mas & 1

I Does not incorporate transport properties
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Spectral functions

Correlators

Bound state

G (τ) ∼ e−∆Eτ

Effective mass aτmeff(τ) = log(G (τ − aτ )/G (τ))

Noninteracting quarks

S-waves: GS(τ) ∼ e−ω0ττ−3/2

P-waves: GP(τ) ∼ e−ω0ττ−5/2

ω0 is threshold representing additive energy shift.
Effective power αeff(τ) = −τG ′(τ)/G (τ)
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Correlator ratios (S-waves)

Note: Changes are entirely due to changes in spectral density 31 / 39
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Correlator ratios (P-waves)
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Spectral functions — T = 0

1st generation
[JHEP 1111 103 (2011)]

2nd generation [JHEP 1407

097 (2014)] ]

Υ (1S), Υ (2S) clearly identified
[3rd peak does not coincide with physical Υ (3S)]
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Spectral functions — First generation
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Spectral functions — Second generation

Υ (2S) melts, but ground state remains robust
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P-waves

1st generation

[JHEP 1312 064 (2013)]

P-waves dissociate close
to Tc

2nd generation

[JHEP 1407 097 (2014)]
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Mass shift and width
Fit (left side of) peaks to gaussian
−→ determine peak position (mass) and width
Width is upper bound

Results are consistent with perturbation theory,

Γ

T
=

1156

81
α3
s ,

δE

M
=

17π

9
αsT

2M2 ,

with αs ∼ 0.4.
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Burnier–Rothkopf method [Preliminary!]
[See also talk by Alexander Rothkopf, Thu 1430]

P-wave appears to survive to
higher T?
Analysis of mass shift and
width in progress
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Summary
I Anisotropic lattices provide a wealth of information on QGP

phenomenology

I Conductivity increasing with T across the transition
I Charge diffusion has dip near Tc

I Charmonium S-waves survive to T ∼ 1.6− 2Tc

I P-waves melt at T < 1.3Tc

I Significant momentum dependence in reconstructed corrs
I Charmonium potential is screened at high T
I Beautonium S-wave ground states survive up to T & 2Tc

I Mass shift and width consistent with perturbation theory
I P-waves and excited states dissociate close to Tc?
I 2+1 flavours with larger anisotropy planned → higher T
I Further analysis of spectral reconstruction systematics in

progress
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