Quark–gluon plasma phenomenology from anisotropic lattice QCD

Jon-Ivar Skullerud

Collaborators:

Gert Aarts Chris Allton Alessandro Amato Wynne Evans Simon Hands Tim Harris Aoife Kelly Dhagash Mehta Maria-Paola Lombardo Seyong Kim Buğra Oktay Sinéad Ryan Don Sinclair

+ Yannis Burnier Alexander Rothkopf

Maynooth University, FASTSUM

Confinement XI, St Petersburg, 8 Oct 2014

Outline

Background

Lattice simulations Spectral functions

Conductivity

Charm

Temperature dependence

Nonzero momentum

D mesons

Charmonium potential

Beauty

NRQCD Spectral functions

Summary and outlook

Background Conductivity Charm Beauty

Background

Lattice simulations Spectral functions

Background

- Quark–gluon plasma is created in heavy-ion collisions at RHIC and LHC
- No direct observation of QGP must infer from "fallout"
- Dynamical medium: expanding, cooling fireball
 - $\rightarrow\,$ transport coefficients are crucial in understanding
 - $\rightarrow\,$ most perfect liquid known to humankind?
- Hard probes may carry information from early stages
- Sequential suppression —> quarkonia as QGP thermometers?

Lattice simulations Spectral functions

Lattice simulations

- QGP near crossover is strongly interacting: nonperturbative methods required
- Equilibrium thermal field theory formulated in euclidean space
 suitable for Monte Carlo simulations

$$\langle \mathcal{O}
angle = \int \mathcal{D}[\Phi] \mathcal{O}[\Phi] e^{-\mathcal{S}[\Phi]}$$

- Temperature $T = \frac{1}{L_{ au}} = (N_{ au}a_{ au})^{-1}$
- Real-time quantities may be determined from spectral function

$$G_E(\tau; T) = \int_0^\infty d\omega K(\omega, \tau; T) \rho(\omega; T)$$

2+1 active light flavours required for quantitative predictions!

Lattice simulations Spectral functions

Dynamical anisotropic lattices

- A large number of points in time direction required to extract spectral information
- For $T = 2T_c$, $\mathcal{O}(10)$ points $\Longrightarrow \frac{a_t}{a_t} \sim 0.025$ fm
- Far too expensive with isotropic lattices $a_s = a_t!$
- Fixed-scale approach
 - ightarrow vary ${\cal T}$ by varying $N_{ au}$ (not a)
 - $\rightarrow\,$ need only 1 $\,T=0$ calculation for renormalisation
 - $\rightarrow\,$ independent handle on temperature

- Introduces 2 additional parameters
- Non-trivial tuning problem
 [PRD 74 014505 (2006); HadSpec Collab, PRD 79 034502 (2009)]

Lattice simulations Spectral functions

Simulation parameters

Gen	N _f	ξ	a_s (fm)	$a_{ au}^{-1}$ (GeV)	$m_\pi/m_ ho$	Ns	L_s (fm)
1	2	6.0	0.162	7.35	0.54	12	1.94
2	2+1	3.5	0.123	5.63	0.45	24	2.94
						32	3.94

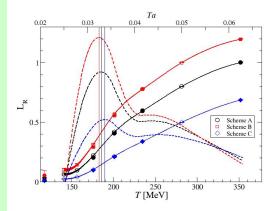
	Gen 1			Gen 2	
$N_{ au}$	T (MeV)	T/T_c	$N_{ au}$	T (MeV)	T/T_c
80	92	0.42	128	44	0.24
			48	117	0.63
32	230	1.05	40	141	0.76
28	263	1.20	36	156	0.84
24	306	1.40	32	176	0.95
20	368	1.68	28	201	1.09
18	408	1.86	24	235	1.27
16	459	2.09	20	281	1.52
			16	352	1.90

Lattice simulations Spectral functions

Deconfinement transition

Renormalised Polyakov loop

$$L_{R} = e^{-F_{q}/T} = e^{-(F_{0} + \Delta F)/T} = (e^{\Delta F})^{\frac{1}{T}} e^{-F_{0}/T} = z_{L}^{N_{\tau}} L_{0}$$



Scheme A: $L_R(T = \frac{1}{16a}) = 1$ Scheme B: $L_R(T = \frac{1}{20a}) = 1$ Scheme C: $L_R(T = \frac{1}{20a}) = \frac{1}{2}$

Lattice simulations Spectral functions

Spectral functions

• $\rho_{\Gamma}(\omega, \overrightarrow{\rho})$ related to euclidean correlator $G_{\Gamma}(\tau, \overrightarrow{\rho})$

$$G_{\Gamma}(\tau, \overrightarrow{p}) = \int \rho_{\Gamma}(\omega, \overrightarrow{p}) \frac{\cosh[\omega(\tau - 1/2T)]}{\sinh(\omega/2T)} d\omega$$

[for mesonic correlators in thermal equilibrium]

- an ill-posed problem
- use Maximum Entropy Method to determine most likely $\rho(\omega)$
- requires a large number of time slices to have any chance of a reliable determination
- must introduce model function $m(\omega)$
- in absence of data, MEM will reproduce model function
- parametrise $\rho(\omega) = m(\omega) \exp[\sum c_k u_k(\omega)]$

Lattice simulations Spectral functions

Transport coefficients

Transport coefficients can be related to spectral functions through Kubo relations

$$\kappa = c_{\kappa} \lim_{\omega \to 0} \frac{\rho(\omega)}{\omega}$$

 $\rho(\omega)$ is the spectral function of the relevant conserved current. Conductivity and diffusion coefficients are both determined from the vector current correlator

$$G_{ij}(\tau, \overrightarrow{p}) = \int d^3x e^{i \overrightarrow{p} \cdot \overrightarrow{x}} \langle V_i(\tau, \overrightarrow{x}) V_j(0, \overrightarrow{0}) \rangle$$

- Sensitive to long-distance, nearly constant modes
- Very high precision data required
- Model function must allow $ho(\omega)/\omega$ finite as $\omega
 ightarrow 0$

2

Conductivity [PRL 111 172001 (2013)] — 2nd generation $\sigma = \lim_{\omega \to 0} \frac{\rho_{ii}^{em}(\omega)}{6\omega}$ Used conserved vector current: no renormalisation required $T\omega/(\omega)q$ Conductivity Signal $C_{\rm em}^{-1} \rho(\omega)/\omega^2$ p peak 0.5 1.5 ω[GeV] _____1.89 T 1.08 T 0.63 T

4

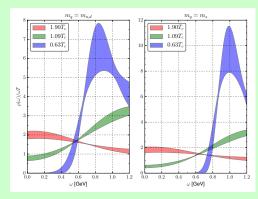
6

ω[GeV]

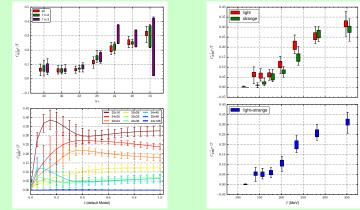
8

10

$\begin{array}{l} \mbox{Conductivity} \\ \mbox{[PRL 111 172001 (2013)]} & - \mbox{2nd generation} \\ \sigma = \lim_{\omega \to 0} \frac{\rho_{ii}^{em}(\omega)}{6\omega} & \mbox{Used conserved vector current:} \\ \mbox{no renormalisation required} \end{array}$



Conductivity results



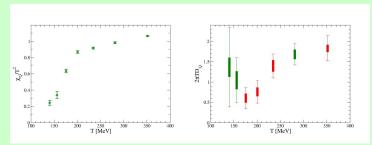
[Note that narrow transport peak at low T cannot be ruled out]

Charge susceptibility and diffusion Electric charge susceptibility is given by

$$\chi_Q = \frac{T}{V} \frac{\partial^2 \ln Z}{\partial \mu_Q^2} = \sum_{i,j=u,d,s} q_i q_j \chi_{ij}$$

Analogous definitions for isospin, baryon number susceptibilites Related to event-by-event fluctuations in heavy-ion collisions

Charge diffusion related to conductivity, susceptibility: $D_Q = \sigma / \chi_Q$



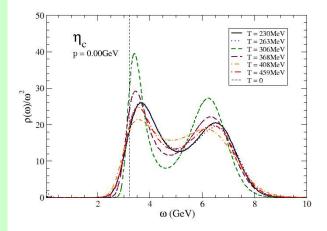
Temperature dependence Nonzero momentum D mesons Charmonium potential

Charm

- J/ψ suppression a probe of the quark-gluon plasma? [Matsui & Satz 1986]
- c quarks created in primordial collisions, hard probes?
- To what extent do c quarks thermalise?
- How reliable are quenched lattice simulations?
- Are potential models valid?

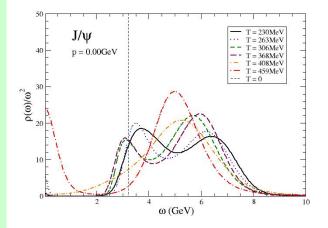
Temperature dependence Nonzero momentum D mesons Charmonium potential

S-wave T dependence (η_c)



Temperature dependence Nonzero momentum D mesons Charmonium potential

S-wave T dependence (J/ψ)

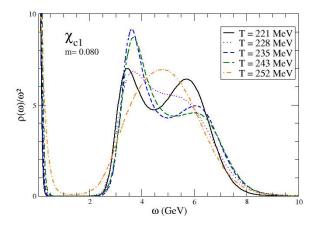


 J/ψ (S-wave) melts at $T\sim 370-400$ MeV or $1.7-1.9T_c$?

16 / 39

Temperature dependence Nonzero momentum D mesons Charmonium potential

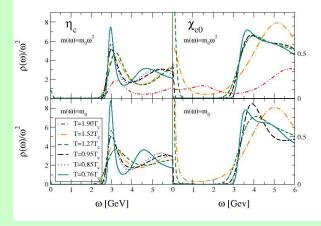
P-waves



P-waves melt at T < 250 MeV or $1.2T_c$?

Temperature dependence Nonzero momentum D mesons Charmonium potential

Second generation [Preliminary]



Consistent with 1st generation results!

Temperature dependence Nonzero momentum D mesons Charmonium potential

Nonzero momentum

[With MB Oktay, arXiv:1005.1209; A Kelly et al, in progress]

- Charmonium is produced at nonzero momentum
- Transverse momentum (and rapidity) distributions important to distinguish between models
- Momentum dependent binding?
- Gives an additional window to transport properties
- Related to screening masses

Temperature dependence Nonzero momentum D mesons Charmonium potential

Reconstructed correlators

Reconstructed correlator is defined as

$$G_r(\tau; T, T_r) = \int_0^\infty \rho(\omega; T_r) K(\tau, \omega, T) d\omega$$

where K is the kernel

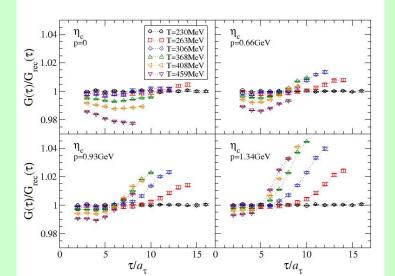
$$\mathcal{K}(au, \omega, T) = rac{\cosh[\omega(au - 1/2T)]}{\sinh(\omega/2T)}$$

If $\rho(\omega; T) = \rho(\omega; T_r)$ then $G_r(\tau; T, T_r) = G(\tau; T)$

We use $N_{\tau} = 32$ as our reference temperature for Gen1 since the spectral function is most reliably determined there

Temperature dependence Nonzero momentum D mesons Charmonium potential

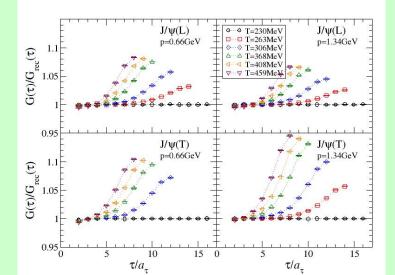
Reconstructed correlators



21/39

Temperature dependence Nonzero momentum D mesons Charmonium potential

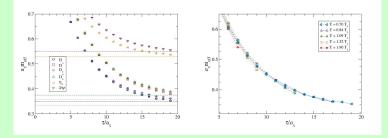
Reconstructed correlators



22 / 39

Temperature dependence Nonzero momentum **D mesons** Charmonium potential

D mesons [Preliminary!]



- Small but significant thermal effects in D correlators
- Apparently similar in magnitude to charmonium system
- Spectral analysis in progress

Temperature dependence Nonzero momentum D mesons Charmonium potential

Charmonium potential

[PWM Evans, CR Allton, JIS, PRD 89 071502 (2014); arXiv:1309.3415]

- Potential models are widely used to study quarkonia
- ► At T = 0 the potential between two infinitely heavy quarks can be uniquely determined from the euclidean Wilson loop
- At T > 0 this gives the free energy F_{qq} = U_{qq} − TS
 no direct relation to potential in Schrödinger equation!
- ► Potential may be derived in effective theories [Laine, Brambilla, Petrezcky et al] → real and imaginary parts
- Recent progress in determining potential nonperturbatively from spectral functions of Wilson loops [Rothkopf&Burnier]

Temperature dependence Nonzero momentum D mesons Charmonium potential

Charmonium potential

[PWM Evans, CR Allton, JIS, PRD 89 071502 (2014); arXiv:1309.3415]

- Potential models are widely used to study quarkonia
- ► At T = 0 the potential between two infinitely heavy quarks can be uniquely determined from the euclidean Wilson loop
- At T > 0 this gives the free energy F_{qq} = U_{qq} − TS
 no direct relation to potential in Schrödinger equation!
- ► Potential may be derived in effective theories [Laine, Brambilla, Petrezcky et al] → real and imaginary parts
- Recent progress in determining potential nonperturbatively from spectral functions of Wilson loops [Rothkopf&Burnier]

Almost no results for finite quark masses

Temperature dependence Nonzero momentum D mesons Charmonium potential

Reverse-engineering Schrödinger equation Define point-split correlators

$$egin{aligned} \mathcal{L}_{\Gamma}(\mathbf{r}, au) &= \sum_{\mathbf{x}} \langle ar{q}(\mathbf{x}, au) \Gamma U(x,x+\mathbf{r}) q(\mathbf{x}+\mathbf{r}, au) \ ar{q}(0) ar{\Gamma} q(0)
angle \ &= \sum_{j} rac{\psi_{j}^{*}(\mathbf{0}) \psi_{j}(\mathbf{r})}{2E_{j}} \ \left(e^{-E_{j} au} + e^{-E_{j}(N_{ au}- au)}
ight), \end{aligned}$$

Schrödinger equation for NBS wavefunctions $\psi_j(\mathbf{r})$:

$$\left[-\frac{1}{2\mu}\frac{\partial^2}{\partial r^2}+V_{\Gamma}(r)\right]\psi_j(r)=E_j\psi(r),\qquad \mu=\frac{m_c}{2}\approx\frac{M_{J/\psi}}{4}$$

Ignoring the backward mover, we see that

$$\begin{aligned} \frac{\partial C_{\Gamma}(r,\tau)}{\partial \tau} &= \sum_{j} \left(\frac{1}{2\mu} \frac{\partial^{2}}{\partial r^{2}} - V_{\Gamma}(r) \right) \frac{\psi_{j}^{*}(0)\psi_{j}(r)}{2E_{j}} e^{-E_{j}\tau} \\ &= \left(\frac{1}{2\mu} \frac{\partial^{2}}{\partial r^{2}} - V_{\Gamma}(r) \right) C_{\Gamma}(r,\tau). \end{aligned}$$

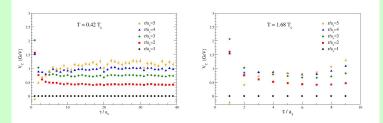
Temperature dependence Nonzero momentum D mesons Charmonium potential

Central and spin-dependent potential

In general, for S-waves

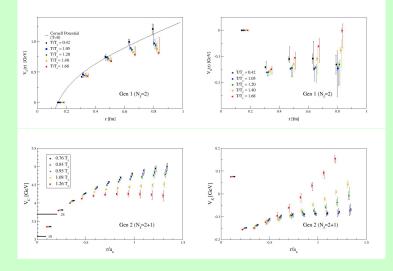
$$V_{\Gamma}(r) = V_{C}(r) + \mathbf{s}_{1} \cdot \mathbf{s}_{2} \ V_{S}(r)$$
$$\implies V_{C}(r) = \frac{3}{4} V_{V}(r) + V_{PS}(r), \qquad V_{S}(r) = V_{V}(r) - V_{PS}(r)$$

1st generation results



Temperature dependence Nonzero momentum D mesons Charmonium potential

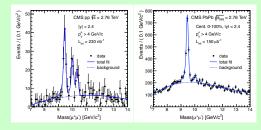
Potential results



NRQCD Spectral functions

Beauty (and the beast?)

- Many b quarks are produced at LHC
- Cold nuclear matter effects, recombination less important → cleaner probes?
- $T_d^{\Upsilon} \sim 3 5T_c$ hard to do on the lattice
- $\chi_b, \Upsilon(2S)$ melt at $T'_d \lesssim 1.2T_c$?
- Sequential suppression observed at CMS (+ ATLAS, STAR)?



NRQCD

Scale separation $M_Q \gg T$, $M_Q v$ Integrate out hard scales \longrightarrow Effective theory Expand in orders of heavy quark velocity \mathbf{v} ; we use $\mathcal{O}(\mathbf{v}^4)$ action Advantages

NRQCD

- No temperature-dependent kernel, $G(\tau) = \int \rho(\omega) e^{-\omega \tau} \frac{d\omega}{2\pi}$
- No zero-modes
- Longer euclidean time range
- Appropriate for probes not in thermal equilibrium

Disadvantages

- \blacktriangleright Not renormalisable, requires $\mathit{Ma_s}\gtrsim 1$
- Does not incorporate transport properties

NRQCD Spectral functions

Correlators

Bound state

$$G(au) \sim e^{-\Delta E au}$$

Effective mass $a_{\tau}m_{\text{eff}}(\tau) = \log(G(\tau - a_{\tau})/G(\tau))$

Noninteracting quarks

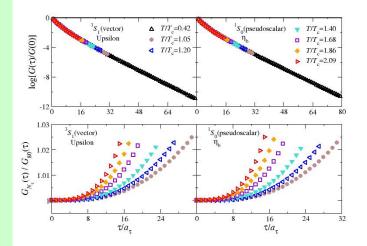
S-waves:
$$G_S(\tau) \sim e^{-\omega_0 \tau} \tau^{-3/2}$$

P-waves: $G_P(\tau) \sim e^{-\omega_0 \tau} \tau^{-5/2}$

 ω_0 is threshold representing additive energy shift. Effective power $\alpha_{\text{eff}}(\tau) = -\tau G'(\tau)/G(\tau)$

NRQCD Spectral functions

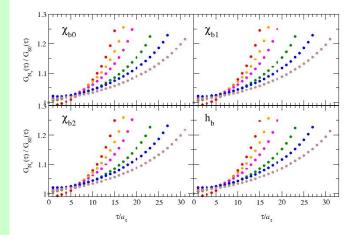
Correlator ratios (S-waves)



Note: Changes are entirely due to changes in spectral density

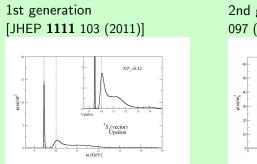
NRQCD Spectral functions

Correlator ratios (P-waves)

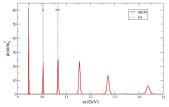


NRQCD Spectral functions

Spectral functions — T = 0



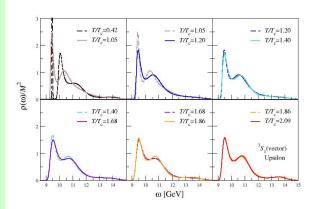
2nd generation [JHEP **1407** 097 (2014)]]



 Υ (1S), Υ (2S) clearly identified [3rd peak does not coincide with physical Υ (3S)]

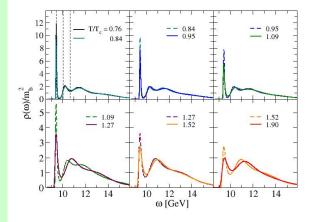
NRQCD Spectral functions

Spectral functions — First generation



NRQCD Spectral functions

Spectral functions — Second generation

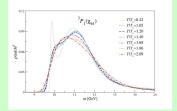


 Υ (2S) melts, but ground state remains robust

NRQCD Spectral functions

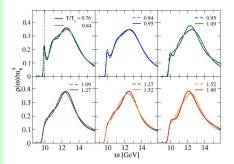
P-waves

1st generation [JHEP **1312** 064 (2013)]



P-waves dissociate close to T_c

2nd generation [JHEP **1407** 097 (2014)]

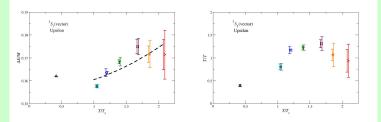


NRQCD Spectral functions

Mass shift and width

- Fit (left side of) peaks to gaussian
- \longrightarrow determine peak position (mass) and width
- Width is upper bound

W

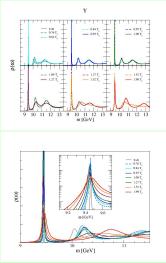


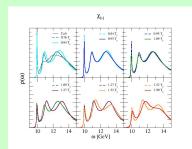
Results are consistent with perturbation theory,

$$\frac{\Gamma}{T} = \frac{1156}{81} \alpha_s^3 \,, \qquad \frac{\delta E}{M} = \frac{17\pi}{9} \alpha_s T^2 M^2 \,,$$
 ith $\alpha_s \sim 0.4$.

NRQCD Spectral functions

Burnier–Rothkopf method [Preliminary!] [See also talk by Alexander Rothkopf, Thu 1430]





P-wave appears to survive to higher T? Analysis of mass shift and width in progress

 Anisotropic lattices provide a wealth of information on QGP phenomenology

- Anisotropic lattices provide a wealth of information on QGP phenomenology
- Conductivity increasing with T across the transition
- Charge diffusion has dip near T_c

- Anisotropic lattices provide a wealth of information on QGP phenomenology
- Conductivity increasing with T across the transition
- Charge diffusion has dip near T_c
- Charmonium S-waves survive to $T \sim 1.6 2T_c$
- P-waves melt at $T < 1.3 T_c$
- Significant momentum dependence in reconstructed corrs
- Charmonium potential is screened at high T

- Anisotropic lattices provide a wealth of information on QGP phenomenology
- Conductivity increasing with T across the transition
- Charge diffusion has dip near T_c
- Charmonium S-waves survive to $T \sim 1.6 2T_c$
- P-waves melt at $T < 1.3 T_c$
- Significant momentum dependence in reconstructed corrs
- Charmonium potential is screened at high T
- Beautonium S-wave ground states survive up to $T \gtrsim 2T_c$
- Mass shift and width consistent with perturbation theory
- P-waves and excited states dissociate close to T_c?

- Anisotropic lattices provide a wealth of information on QGP phenomenology
- Conductivity increasing with T across the transition
- Charge diffusion has dip near T_c
- Charmonium S-waves survive to $T \sim 1.6 2T_c$
- P-waves melt at $T < 1.3 T_c$
- Significant momentum dependence in reconstructed corrs
- Charmonium potential is screened at high T
- Beautonium S-wave ground states survive up to $T \gtrsim 2T_c$
- Mass shift and width consistent with perturbation theory
- P-waves and excited states dissociate close to T_c ?
- ▶ 2+1 flavours with larger anisotropy planned \rightarrow higher *T*
- Further analysis of spectral reconstruction systematics in progress