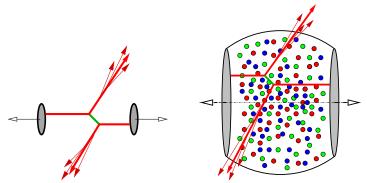

From Jet Quenching to Wave Turbulence

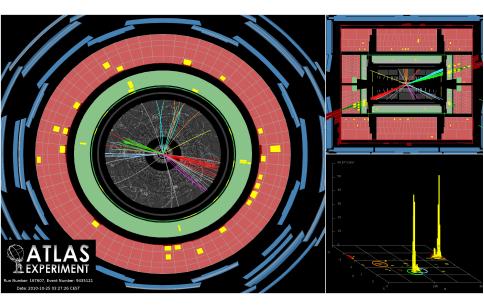
Edmond Iancu Photon-Jet PhartsSaclay & CNRS

Heavy ion collisions @ the LHC

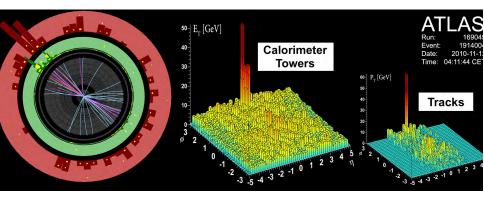


- Pb+Pb collisions at the LHC: ~ 1600 hadrons at central rapidity
- They carry information about the early partonic stages
- Best appreciated if one uses p+p as a benchmark

Confinement XI, St. Petersburg, 2014 From Jet Quenching to Wave Turbulence

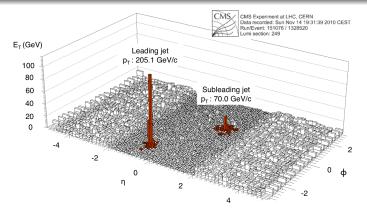

Hard probes

- Hard partons are typically created in pairs which propagate back-to-back in the transverse plane
- Particle production can be modified by the surrounding medium



- The ensemble of these modifications : 'jet quenching'
- 'Jet': 'leading particle' + 'products of fragmentation'

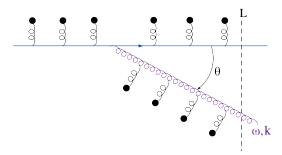
Di-jets in p+p collisions at the LHC



Di-jet asymmetry (ATLAS)

- Central Pb+Pb: 'mono-jet' events
- The secondary jet cannot be distinguished from the background: $E_{T1} \ge 100$ GeV, $E_{T2} > 25$ GeV

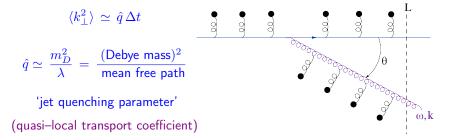
Di-jet asymmetry (CMS)



- Additional energy imbalance as compared to p+p : 20 to 30 GeV
- Compare to the typical scale in the medium: $T \sim 1$ GeV (average p_{\perp})
- Detailed studies show that the 'missing energy' is carried by many soft ($p_{\perp} < 2$ GeV) hadrons propagating at large angles

pQCD : the BDMPSZ mechanism

Baier, Dokshitzer, Mueller, Peigné, and Schiff; Zakharov (96–97) Wiedemann (2000); Arnold, Moore, and Yaffe (2002–03); ...


• Additional gluon radiation triggered by interactions in the medium

- Originally developed for a single gluon emission (energy loss by the LP)
- The LHC data call for a global understanding of the jet evolution
- Recent extension of the theory to multiple medium-induced emissions Blaizot, Dominguez, E.I., Mehtar-Tani (2012–13)

Transverse momentum broadening

- Gluon emission is linked to transverse momentum broadening
 - transverse kicks provide acceleration and thus allow for radiation
 - $\bullet\,$ they increase the emission angle θ
 - they occur randomly \Longrightarrow Brownian motion in k_{\perp}

- Gluon emissions require a formation time $au_f \simeq \omega/k_\perp^2$
- During formation, the gluon acquires a momentum $k_\perp^2 \sim \hat{q} au_f$

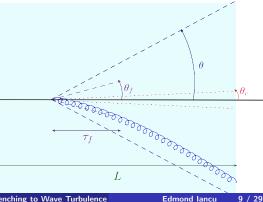
Formation time & emission angle

$$au_f \simeq rac{\omega}{k_\perp^2} \quad \& \quad k_\perp^2 \simeq \hat{q} au_f \quad \Longrightarrow \quad au_f \simeq \sqrt{rac{\omega}{\hat{q}}}$$

• Maximal ω for this mechanism: $\tau_f \leq L \Rightarrow \omega \leq \omega_c \equiv \hat{q}L^2$

ho soft gluons ($\omega \ll \omega_c$) have small formation times: $au_f \ll L$

• The emission angle keeps increasing with time, via rescattering


$$heta(\omega) \simeq rac{\sqrt{\hat{q}L}}{\omega} > heta_f(\omega)$$

 $\mathsf{maximal} \ \mathsf{energy} \Leftrightarrow \mathsf{minimal} \ \mathsf{angle}$

 $\theta_c \equiv \theta(\omega_c)$

soft gluons \Leftrightarrow large angles

$$\omega \ll \omega_c \implies \theta \gg \theta_c$$

Confinement XI, St. Petersburg, 2014 From Jet Quenching to Wave Turbulence

Emission probability

• Spectrum : Bremsstrahlung \times average number of emissions

$$\omega \frac{\mathrm{d}N}{\mathrm{d}\omega} \simeq \alpha \frac{L}{\tau_f(\omega)} \simeq \alpha \sqrt{\frac{\omega_c}{\omega}} \qquad (\omega_c = \hat{q}L^2)$$

• LPM effect : the emission rate decreases with increasing ω (from Landau, Pomeranchuk, Migdal, within QED)

- coherence: many collisions contribute to a single, hard, emission
- formation time $\tau_f(\omega) \gg$ mean free path λ
- Energy loss by the leading particle :

$$\Delta E = \int^{\omega_c} \mathrm{d}\omega \,\,\omega \,\frac{\mathrm{d}N}{\mathrm{d}\omega} \,\,\sim \,\,\alpha\omega_c$$

- integral dominated by its upper limit $\omega = \omega_c$ (hard emission)
- rare event : probability of $\mathcal{O}(\alpha)$
- small emission angle $\theta_c \Rightarrow$ the energy remains inside the jet

Edmond Iancu 10 / 29

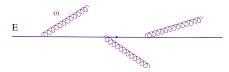
Soft emissions at large angles

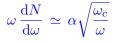
• Spectrum : Bremsstrahlung \times average number of emissions

$$\omega \frac{\mathrm{d}N}{\mathrm{d}\omega} \simeq \alpha \frac{L}{\tau_f(\omega)} \simeq \alpha \sqrt{\frac{\omega_c}{\omega}} \qquad (\omega_c = \hat{q}L^2)$$

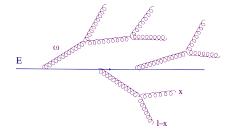
- Relatively soft emissions with $\omega \ll \omega_c$:
 - small formation times : $au_f \ll L$
 - quasi-deterministic : probability of ${\cal O}(1)$ for $\ \omega \ \lesssim \ \omega_s \equiv lpha^2 \omega_c$
 - a relatively smaller contribution to the energy loss : $\Delta E_s \sim \alpha^2 \omega_c$
 - ... but this can be lost at very large angles : heta \gtrsim $heta_s$ \equiv $heta_c/lpha^2$
- Potentially relevant for the di-jet asymmetry 🙂
- When probability of $\mathcal{O}(1) \Longrightarrow$ multiple branchings become important

Multiple branchings

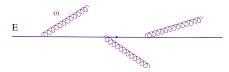

• Multiple 'primary' emissions with $\omega \lesssim \alpha^2 \omega_c$ by the leading particle

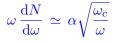

Е ooooo

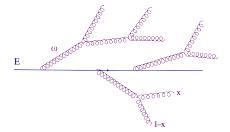
 $\omega \frac{\mathrm{d}N}{\mathrm{d}\omega} \simeq \alpha \sqrt{\frac{\omega_c}{\omega}}$


Multiple branchings

• Multiple 'primary' emissions with $\omega \lesssim \alpha^2 \omega_c$ by the leading particle

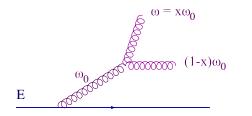



• Each primary gluon develops its own gluon cascade


Multiple branchings

• Multiple 'primary' emissions with $\omega \lesssim \alpha^2 \omega_c$ by the leading particle

Each primary gluon develops its own gluon cascade

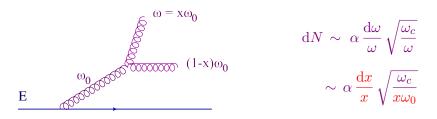


- Their subsequent branchings are quasi-democratic
 - the daughter gluons carry comparable energy fractions: $x \sim 1/2$

Confinement XI, St. Petersburg, 2014 From Jet Quenching to Wave Turbulence

Quasi-democratic branchings

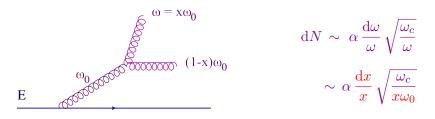
- Non-trivial ! Not true for bremsstrahlung in the vacuum !
- Bremsstrahlung in the vacuum : splittings are strongly asymmetric



$$dN \sim \alpha \frac{d\omega}{\omega} \sim \alpha \frac{dx}{x}$$
$$\Delta N \sim \alpha \int \frac{dx}{x} \sim \alpha \ln \frac{1}{x}$$

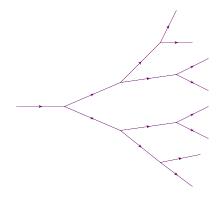
- probability of $\mathcal{O}(1)$ when $\alpha \ln(1/x) \sim 1 \Longrightarrow$ favors $x \ll 1$
- argument independent of the parent energy ω₀
 ▷ all that matters is the splitting fraction x
- 'soft singularity' (x
 ightarrow 0) of bremsstrahlung

Quasi-democratic branchings


• In-medium radiation : a consequence of the LPM effect

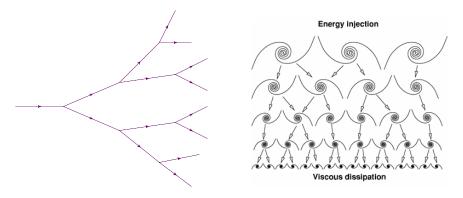
- ullet the rate also depends upon the parent gluon energy ω_0
- $\bullet\,$ probability of $\mathcal{O}(1)$ when $\omega_0\sim \alpha^2\omega_c$ for any value of x
- the phase space favors generic values of x: 'quasi-democratic'

Quasi-democratic branchings

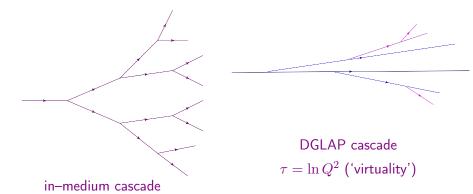

• In-medium radiation : a consequence of the LPM effect

- ullet the rate also depends upon the parent gluon energy ω_0
- probability of $\mathcal{O}(1)$ when $\omega_0\sim \alpha^2\omega_c$ for any value of x
- the phase space favors generic values of x: 'quasi-democratic'
- A similar scenario at strong coupling (Y. Hatta, E.I., Al Mueller '08)
- ... but no other known example in a weakly coupled gauge theory

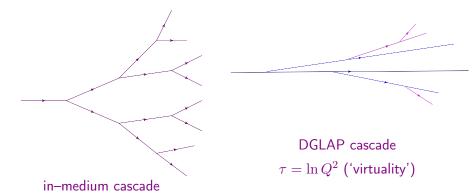
Wave turbulence


- Democratic branchings imply an energy flux independent of ω (or x)
 - \bullet the energy flows from large x to small x w/o accumulating at any intermediate value of x

- $\bullet\,$ the cascade stops when $\omega\sim T$
- gluons with $\omega \sim T$ 'thermalize' (lose their energy towards the medium)
- since very soft, such gluons propagate at very large angles w.r.t. jet axis


Wave turbulence

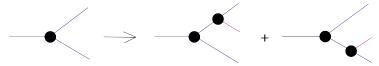
- Democratic branchings imply an energy flux independent of ω (or x)
 - \bullet the energy flows from large x to small x w/o accumulating at any intermediate value of x


Uniform flux \leftarrow turbulent cascade (Kolmogorov, '41; Zakharov, '92)
 the prototype: Richardson cascade for breaking-up vortices

Compare to DGLAP cascade (jet in the vacuum)

- The asymmetric splittings amplify the number of gluons at small x
- Yet, the energy remains in the few partons with larger values of x
- That is, the energy remains at small angles

Compare to DGLAP cascade (jet in the vacuum)



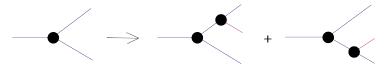
- The asymmetric splittings amplify the number of gluons at small x
- Yet, the energy remains in the few partons with larger values of x
- That is, the energy remains at small angles
- Di-jet asymmetry strongly suggests a turbulent cascade

Confinement XI, St. Petersburg, 2014 From Jet Quenching to Wave Turbulence

The rate equation

- Multiple branching pprox a classical branching process (Markovian)
 - independent splittings with the rate given by BDMPSZ

- interference effects are suppressed by scattering in the medium Mehtar-Tani, Salgado, Tywoniuk; Casalderrey-Solana, E. I. (10-11) Blaizot, Dominguez, E.I., Mehtar-Tani (arXiv: 1209.4585)
- Evolution equation for the gluon spectrum ('rate equation')


$$D(x,t)\,\equiv\,xrac{\mathrm{d}N}{\mathrm{d}x}$$
 where $x=rac{\omega}{E}$ and $t\,\leq\,L$

• Previously conjectured and used for phenomenological studies Baier, Mueller, Schiff, Son '01 ('bottom-up thermalization'); Arnold, Moore, Yaffe, '03; Jeon, Moore '05; MARTINI (McGill)

Confinement XI, St. Petersburg, 2014 From Jet Quenching to Wave Turbulence

The rate equation

- Multiple branching pprox a classical branching process (Markovian)
 - independent splittings with the rate given by BDMPSZ

- interference effects are suppressed by scattering in the medium Mehtar-Tani, Salgado, Tywoniuk; Casalderrey-Solana, E. I. (10-11) Blaizot, Dominguez, E.I., Mehtar-Tani (arXiv: 1209.4585)
- Evolution equation for the gluon spectrum ('rate equation')

$$D(x,t) \equiv x rac{\mathrm{d}N}{\mathrm{d}x}$$
 where $x = rac{\omega}{E}$ and $t \leq L$

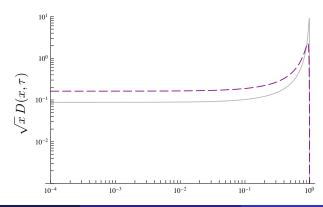
• Turbulence aspects only recently recognized (exact solutions) J.-P. Blaizot, E. I., Y. Mehtar-Tani, PRL 111, 052001 (2013)

Small times : the small-x region

- Initial condition: $D(x, \tau = 0) = \delta(x 1)$ (the leading particle)
- At small times: just one branching \implies BDMPSZ spectrum :

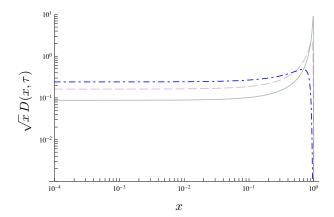
 $D^{(1)}(x,\tau) \simeq \alpha \sqrt{\frac{\hat{q}}{\omega}} t \equiv \frac{\tau}{\sqrt{x}}$ ($\tau = \text{dimensionless 'time'}$) 10^{0} $\sqrt{x} D(x, \tau)$ 10-1 10^{-2} 10^{-4} 10^{-3} 10^{-2} 10^{-1} 10^{0}

x

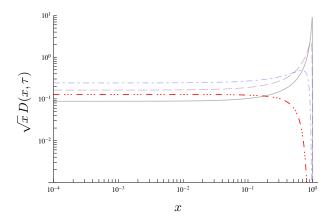

Confinement XI, St. Petersburg, 2014 From Jet Quenching to Wave Turbulence

Small times: the leading particle

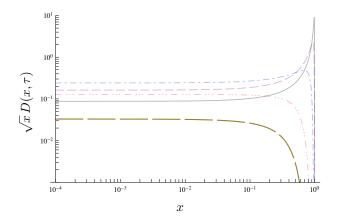
• Already for small times, multiple branchings are visible via the broadening of the leading particle


$$D(x,\tau) = rac{ au}{\sqrt{x}(1-x)^{3/2}} \, \mathrm{e}^{-\pi rac{ au^2}{1-x}}$$

• Multiple emissions of non-perturbatively soft primary gluons


Larger times: suppression of the LP

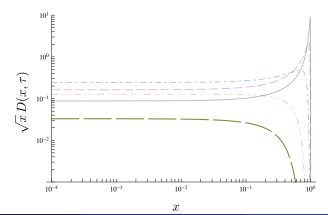
- The leading particle peak disappears when $au \sim 1$
- Naively : "the energy moves from the LP into the bins at small x"


Larger times: suppression of the LP

- The leading particle peak disappears when $au \sim 1$
- Naively : "the energy moves from the LP into the bins at small x"
- Not really ! The spectrum is suppressed at any x

Larger times: suppression of the LP

- The leading particle peak disappears when $au \sim 1$
- Naively : "the energy moves from the LP into the bins at small x"
- Not really ! The spectrum is suppressed at any x

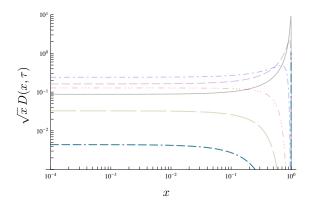


The Kolmogorov–Zakharov fixed point

• The BDMPSZ-like spectrum is preserved by multiple branchings

$$D(x,\tau) \simeq \frac{\tau}{\sqrt{x}} e^{-\pi\tau^2}$$

• KZ fixed point \implies energy flux uniform in $\omega \implies$ turbulence

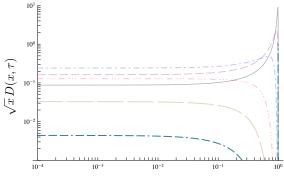

Confinement XI, St. Petersburg, 2014 From Jet Quenching to Wave Turbulence

The turbulent flow

• The energy flows out from the spectrum ... exponentially fast :

$$\int_0^1 \mathrm{d}x \, D(x,\tau) = \mathrm{e}^{-\pi\tau^2} \implies \mathcal{E}_{\mathrm{flow}}(\tau) = 1 - \mathrm{e}^{-\pi\tau^2}$$

• Formally, it accumulates into a condensate at x = 0



The turbulent flow

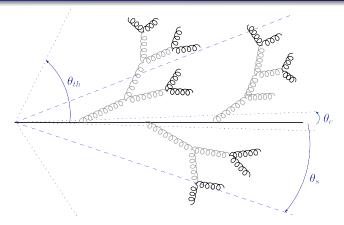
• The energy flows out from the spectrum ... exponentially fast :

$$\int_0^1 \mathrm{d}x \, D(x,\tau) = \mathrm{e}^{-\pi\tau^2} \implies \mathcal{E}_{\mathrm{flow}}(\tau) = 1 - \mathrm{e}^{-\pi\tau^2}$$

• Physically, it goes below $x_{\rm th} = T/E \ll 1$, meaning it thermalizes

Di-jet asymmetry: energy loss

• Jets at the LHC : high energy kinematics ('small time τ ')

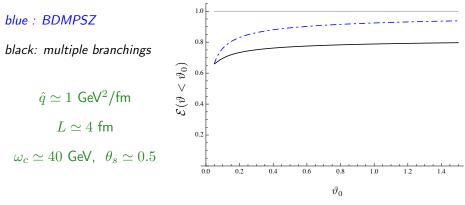

• $E = 100 \div 300 \text{ GeV} \gg \omega_c = \hat{q}L^2 = 10 \div 50 \text{ GeV}$

 $\mathcal{E}_{\text{flow}}(\tau) \simeq \pi \tau^2 \implies \Delta E \equiv E \mathcal{E}_{\text{flow}} \simeq \upsilon \omega_s$

• $\omega_s = \alpha^2 \omega_c$: characteristic scale for multiple branching

- $v = 2\pi$: average number of primary gluons with energy ω_s
- Typical energy loss (event by event): $\Delta E \simeq 10 \div 20 \text{ GeV } \checkmark$
- Universality : the energy lost via turbulent flow is
 - independent of the energy ${\boldsymbol E}$ of the leading particle
 - independent of the details of the thermalization mechanism
 - $\bullet\,$ carried by soft quanta with energies $\,\omega \sim T \lesssim 1~{\rm GeV}$
 - ... which propagate at large angles: $heta\simeq k_\perp/\omega\sim {\cal O}(1)$

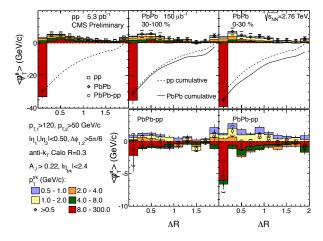
A typical gluon cascade



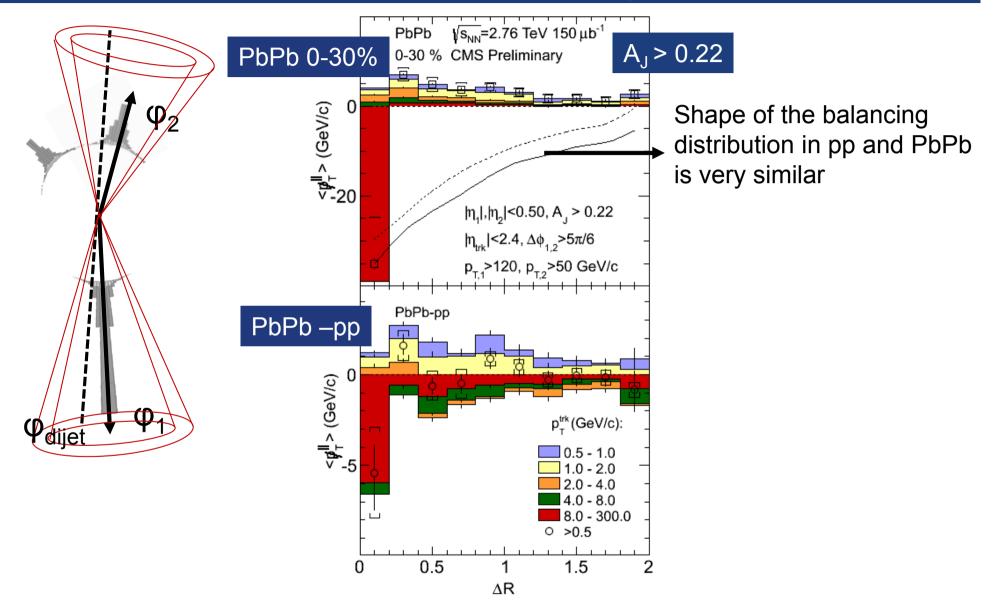
- The leading particle emits mostly soft gluons: $\omega \lesssim \omega_s \equiv \alpha^2 \omega_c$
- These primary gluons rapidly split into even softer ones.
- The primary gluons propagate along typical angles $\theta_s \simeq \theta_c/\alpha^2 \sim 0.5$
- The final gluons ($\omega \sim T$) make even larger angles $\theta_{\rm th} > \theta_s \gtrsim 1$

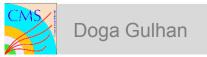
Di-jet asymmetry: angular dependence

(L. Fister, E. I., september 2014, tomorrow on arXiv)

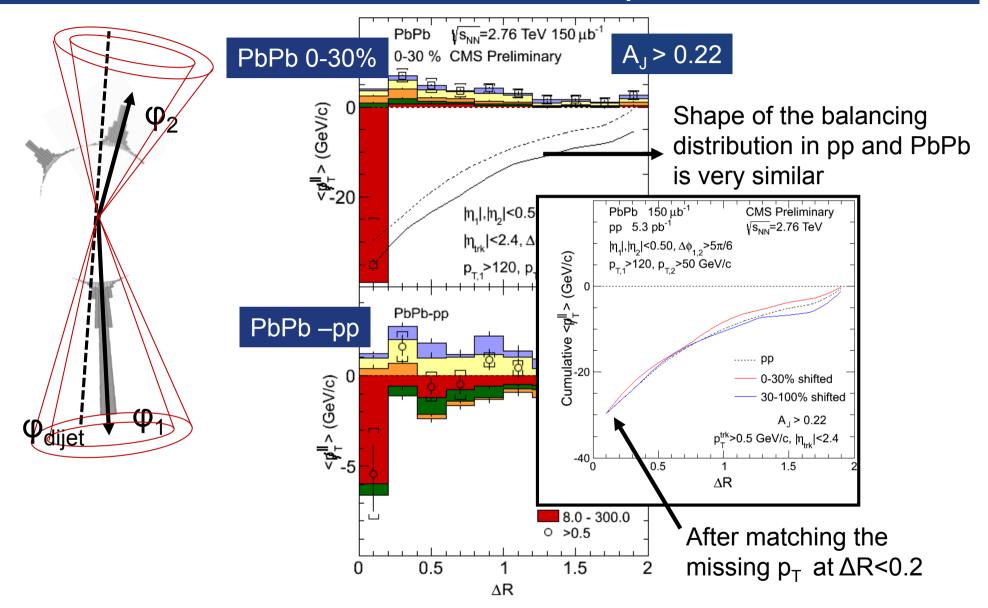

• $\mathcal{E}(\theta < \theta_0)$: the energy contained within a jet with opening angle θ

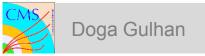
- offset at $heta_0 \sim \pi/2$: the energy $\mathcal{E}_{\mathrm{flow}}$ taken away by the flow
- almost flat in θ_0 : energy is lost directly at large angles


Angular distribution at the LHC (CMS)

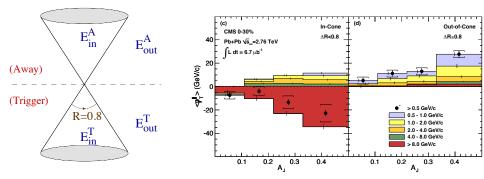

• For each bin in θ : energy difference between trigger jet and away jet

- the offset in Pb+Pb is clearly visible (larger than for p+p)
- the ΔR dependence looks stepper ... but is exactly the same in p+p

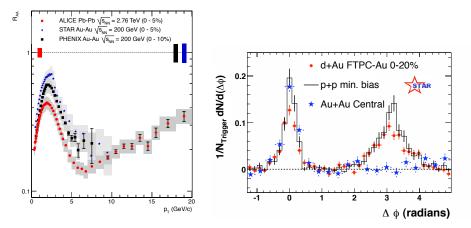

Results - Missing $p_T vs. \Delta R$



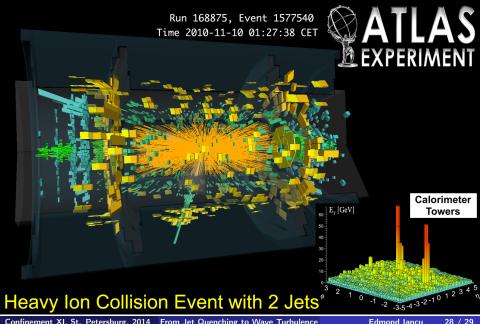
Results - Missing $p_T vs. \Delta R$



Soft hadrons at large angles


• The energy (im)balance for a jet with a wide opening : R = 0.8

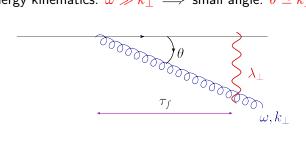
- Di–jet asymmetry : $E_{
 m in}^{
 m T}$ > $E_{
 m in}^{
 m A}$
- No missing energy : $E_{\rm in}^{\rm T} + E_{\rm out}^{\rm T} = E_{\rm in}^{\rm A} + E_{\rm out}^{\rm A}$
- \bullet The energy lost at large angles, $E_{\rm out}^{\rm A}-E_{\rm out}^{\rm T}$...
 - ... is carried mostly by soft hadrons with $p_T < 2$ GeV


Jet quenching

• Nuclear modification factor, di-hadron azimuthal correlations ...

• Energy loss & transverse momentum broadening by the leading particle

Jets in peripheral Pb+Pb collisions



Confinement XI, St. Petersburg, 2014 From Jet Quenching to Wave Turbulence

Edmond Jancu

The formation time (loffe's coherence time)

- The gluon must lose quantum coherence with respect to its source
 b the quark–gluon transverse separation b_⊥ at the formation time τ_f must be larger than the gluon transverse wavelength λ_⊥ ≃ 1/k_⊥
- High energy kinematics: $\omega \gg k_\perp \implies$ small angle: $\theta \simeq k_\perp / \omega$

$$b_{\perp} \simeq heta \, au_f \ \gtrsim \ \lambda_{\perp} \simeq 1/k_{\perp} \ \Longrightarrow \ au_f \simeq rac{1}{\omega heta^2} \simeq rac{\omega}{k_{\perp}^2}$$

• During formation, the gluon acquires a momentum $k_{\perp}^2 \sim \hat{q} au_f$