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Heavy ion collisions @ the LHC

@ Pb+Pb collisions at the LHC: ~ 1600 hadrons at central rapidity
@ They carry information about the early partonic stages

@ Best appreciated if one uses p+p as a benchmark
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Hard probes

@ Hard partons are typically created in pairs which propagate
back—to—back in the transverse plane

@ Particle production can be modified by the surrounding medium

@ The ensemble of these modifications : ‘jet quenching’

e 'Jet': ‘leading particle’ + ‘products of fragmentation’
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Di—jets in p+p collisions at the LHC

qalas

Date: 2010-10-25 03:27:26 CEST —_—
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Di—jet asymmetry (ATLAS)

1 [GeV] ATLAS

Run: 16904

H Event: 191400
Calorimeter LA Lo
Towers Time: 04:11:44 CE

@ Central Pb+Pb: ‘mono—jet’ events

@ The secondary jet cannot be distinguished from the
background: Epy > 100 GeV, Epy > 25 GeV
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. — CMS | cMs Experiment at LHC, CERN

Data recorded: Sun Nov 14 19:31:39 2010 CEST
T Run/Event: 151076 / 1328520

Lumi section: 249
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o Additional energy imbalance as compared to p+p : 20 to 30 GeV

e Compare to the typical scale in the medium: 7" ~ 1 GeV (average p )

@ Detailed studies show that the ‘missing energy’ is carried by

many soft (p; < 2 GeV) hadrons propagating at large angles
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pQCD : the BDMPSZ mechanism

Baier, Dokshitzer, Mueller, Peigné, and Schiff; Zakharov (96-97)
Wiedemann (2000); Arnold, Moore, and Yaffe (2002-03); ...

@ Additional gluon radiation triggered by interactions in the medium
14 44 9
i
=S
o

@ Originally developed for a single gluon emission (energy loss by the LP)
@ The LHC data call for a global understanding of the jet evolution

@ Recent extension of the theory to multiple medium—induced emissions
Blaizot, Dominguez, E.I., Mehtar-Tani (2012-13)
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Transverse momentum broadening

@ Gluon emission is linked to transverse momentum broadening
e transverse kicks provide acceleration and thus allow for radiation
e they increase the emission angle 6

e they occur randomly = Brownian motion in &

(k1) ~ qAt % % % 3
= /

. om} (Debye mass)? %%
g~ P = — ‘
A mean free path .?q ‘?9

‘jet quenching parameter’

(quasi—local transport coefficient) i

e Gluon emissions require a formation time 7 ~ w/k?

o During formation, the gluon acquires a momentum k% ~ ¢7¢
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Formation time & emission angle
&ki:qﬁ'f :Tf:,i
TV
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@ Maximal w for this mechanism:
> soft gluons (w < w,) have small formation times: 7y < L

@ The emission angle keeps increasing with time, via rescattering

VqL
O(w) ~ vaz 0r(w)
w -
P 9
maximal energy < minimal angle P \gf N

0. = 0(we)
vy ~ . bhb%

soft gluons < large angles
L
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wLw, = 0>0,
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Emission probability

@ Spectrum : Bremsstrahlung x average number of emissions

dN L | We
w— ~« ~ a2k (we = GL?)
dw 7 (w) w

@ LPM effect : the emission rate decreases with increasing w
(from Landau, Pomeranchuk, Migdal, within QED)

e coherence: many collisions contribute to a single, hard, emission

o formation time 7/(w) > mean free path A
@ Energy loss by the leading particle :
AFE = /wc dw w% ~ QW
e integral dominated by its upper limit w = w. (hard emission)
o rare event : probability of O(«)

e small emission angle 6. = the energy remains inside the jet
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Soft emissions at large angles

@ Spectrum : Bremsstrahlung x average number of emissions

dN L We
—_— ~Y (l/

dw T (w) Vow
o Relatively soft emissions with w < w,. :

o small formation times : 74 < L
e quasi—deterministic : probability of O(1) for w < w, = a’w,
o a relatively smaller contribution to the energy loss : AE, ~ a?w,

o ... but this can be lost at very large angles : 0 > 0, = 0./a>

e Potentially relevant for the di—jet asymmetry ©

@ When probability of O(1) = multiple branchings become important
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Multiple branchings

e Multiple ‘primary’ emissions with w < a’w,. by the leading particle
y ~ Y gp

E M M dN We
0%5%% “

2
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Multiple branchings

e Multiple ‘primary’ emissions with w < a”w, by the leading particle

M 7 AN o
Ua%a w

2

@ Each primary gluon develops its own gluon cascade

ngiw
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Multiple branchings

e Multiple ‘primary’ emissions with w < a”w, by the leading particle

M 7 AN o
Ua%a w

2

@ Each primary gluon develops its own gluon cascade

ngiw

1=
@ Their subsequent branchings are quasi—-democratic

o the daughter gluons carry comparable energy fractions: = ~ 1/2
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Quasi—democratic branchings

@ Non-trivial ! Not true for bremsstrahlung in the vacuum !

@ Bremsstrahlung in the vacuum : splittings are strongly asymmetric

® = X,
dN ~ ad—w ~ ad—x
w T
(1-x)wy
d 1
0 ANwa/xwaln
E x x

o probability of O(1) when aln(1/x) ~ 1 = favors z < 1
e argument independent of the parent energy wy
> all that matters is the splitting fraction x

e 'soft singularity’ (x — 0) of bremsstrahlung
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Quasi—democratic branchings

@ In—medium radiation : a consequence of the LPM effect

AN ~ o e
w w
(1-x)ay

N dz
~ X —
x

= X(l)o

We
TWo

e the rate also depends upon the parent gluon energy wy
e probability of O(1) when wy ~ a?w, for any value of

e the phase space favors generic values of z: ‘quasi—-democratic’
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Quasi—democratic branchings

@ In—medium radiation : a consequence of the LPM effect

® = X0,

dw |w
AN ~ a— /==

w w

(1-x)ay
N dr [ we
~ X —
E x Tw

e the rate also depends upon the parent gluon energy wy
e probability of O(1) when wy ~ a?w, for any value of

e the phase space favors generic values of z: ‘quasi—-democratic’

@ A similar scenario at strong coupling (Y. Hatta, E.I., Al Mueller '08)

@ ... but no other known example in a weakly coupled gauge theory
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Wave turbulence

e Democratic branchings imply an energy flux independent of w (or x)

o the energy flows from large = to small x w/o accumulating at any
intermediate value of z

o the cascade stops when w ~ T’

o gluons with w ~ T ‘thermalize’
(lose their energy towards the medium)

e since very soft, such gluons propagate
at very large angles w.r.t. jet axis
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Wave turbulence

e Democratic branchings imply an energy flux independent of w (or x)

o the energy flows from large = to small x w/o accumulating at any
intermediate value of z

Energy injection

/e/
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@ Uniform flux <= turbulent cascade (Kolmogorov, '41; Zakharov, '92)

o the prototype: Richardson cascade for breaking-up vortices
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Compare to DGLAP cascade (jet in the vacuum)

‘é DGLAP cascade
7 =InQ? (‘virtuality’)

in—medium cascade

@ The asymmetric splittings amplify the number of gluons at small z
@ Yet, the energy remains in the few partons with larger values of x

@ That is, the energy remains at small angles
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Compare to DGLAP cascade (jet in the vacuum)

‘é DGLAP cascade
7 =InQ? (‘virtuality’)

in—medium cascade

@ The asymmetric splittings amplify the number of gluons at small z
@ Yet, the energy remains in the few partons with larger values of x
@ That is, the energy remains at small angles

o Di-jet asymmetry strongly suggests a turbulent cascade
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The rate equation

e Multiple branching ~ a classical branching process (Markovian)

e independent splittings with the rate given by BDMPSZ

o interference effects are suppressed by scattering in the medium
Mehtar-Tani, Salgado, Tywoniuk; Casalderrey-Solana, E. I. (10 -11)
Blaizot, Dominguez, E.I., Mehtar-Tani (arXiv: 1209.4585)

e Evolution equation for the gluon spectrum (‘rate equation’)
dN w
D(z,t) = x— where z=— and t < L
(,0) = o5 Y <
@ Previously conjectured and used for phenomenological studies
Baier, Mueller, Schiff, Son '01 (‘bottom—up thermalization’);
Arnold, Moore, Yaffe, '03; Jeon, Moore '05; MARTINI (McGill)
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The rate equation

e Multiple branching ~ a classical branching process (Markovian)

e independent splittings with the rate given by BDMPSZ

e interference effects are suppressed by scattering in the medium
Mehtar-Tani, Salgado, Tywoniuk; Casalderrey-Solana, E. I. (10 -11)
Blaizot, Dominguez, E.l., Mehtar-Tani (arXiv: 1209.4585)

e Evolution equation for the gluon spectrum (‘rate equation’)

dN w

D(x,t) = x—— where == —

@ Turbulence aspects only recently recognized (exact solutions)
J.-P. Blaizot, E. I., Y. Mehtar-Tani, PRL 111, 052001 (2013)

and t < L
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Small times : the small-x region

e Initial condition: D(z,7 =0) = §(x — 1) (the leading particle)

@ At small times: just one branching = BDMPSZ spectrum :

q T . . o
DWD(z,7) ~ ay/~t = — (7 = dimensionless ‘time")
w NG
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Small times: the leading particle

@ Already for small times, multiple branchings are visible via the
broadening of the leading particle

T T
Va(l - )72

e
@ Multiple emissions of non—perturbatively soft primary gluons
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Larger times: suppression of the LP

@ The leading particle peak disappears when 7 ~ 1

o Naively : “the energy moves from the LP into the bins at small 2’

10°
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Larger times: suppression of the LP

@ The leading particle peak disappears when 7 ~ 1
o Naively : “the energy moves from the LP into the bins at small 2"

@ Not really ! The spectrum is suppressed at any x
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Larger times: suppression of the LP

@ The leading particle peak disappears when 7 ~ 1

o Naively : “the energy moves from the LP into the bins at small 2’

@ Not really ! The spectrum is suppressed at any x
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The Kolmogorov—Zakharov fixed point

@ The BDMPSZ-like spectrum is preserved by multiple branchings

—772

D(z,7) ~ e

S

@ KZ fixed point = energy flux uniform in w = turbulence
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The turbulent flow

@ The energy flows out from the spectrum ... exponentially fast :
1 2 2
/ deD(z,7) =" = Eow(T) = 1—€e "
0

@ Formally, it accumulates into a condensate at z =0
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The turbulent flow

@ The energy flows out from the spectrum ... exponentially fast :
1 2 2
/ deD(z,7) =" = Eow(T) = 1—€e "
0

o Physically, it goes below zy, = T/E < 1, meaning it thermalizes

10!
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Di—jet asymmetry: energy loss

e Jets at the LHC : high energy kinematics (‘small time 7")
o £=100+300 GeV > w, = ¢L? =10+ 50 GeV

2

Eow(T) = 7% = AFE = E&gow =~ vws

o ws = a’w, : characteristic scale for multiple branching

e v = 27 : average number of primary gluons with energy w,

e Typical energy loss (event by event): AE ~ 10 = 20 GeV v

@ Universality : the energy lost via turbulent flow is

independent of the energy E of the leading particle

independent of the details of the thermalization mechanism

carried by soft quanta with energies w ~ T < 1 GeV

e ... which propagate at large angles: 6 ~ k| /w ~ O(1)
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A typical gluon cascade

The leading particle emits mostly soft gluons: w < w, = a’w.

@ These primary gluons rapidly split into even softer ones.

The primary gluons propagate along typical angles 6, ~ 6./a* ~ 0.5

The final gluons (w ~ T') make even larger angles 0y, > 6, = 1
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Di—jet asymmetry: angular dependence

(L. Fister, E. I., september 2014, tomorrow on arXiv)

@ £(0 < 0y) : the energy contained within a jet with opening angle 6

blue : BOMPSZ | -

08} -

black: multiple branchings //—/_’(

g()bf
A~ 2 \/
G~ 1 GeV*/fm 2 oal
o
L~41fm
02+
we >~ 40 GeV, 65~ 0.5 ‘ ‘ ‘ ‘ ‘ ‘ ‘
0.0‘ ‘ ‘0.2‘ ‘ ‘0.4‘ ‘ ‘0.6‘ ‘ ‘0.8‘ ‘ ‘I.O‘ ‘ ‘1,2‘ ‘ ‘1,4‘
Jo

o offset at 0y ~ 7/2 : the energy Eqow taken away by the flow
o almost flat in 0y : energy is lost directly at large angles
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Angular distribution at the LHC

@ For each bin in 6 : energy difference between trigger jet and away jet

PbPb 150 b
100 %

pp 5.3 pb”

PbPb  \S=2.76 TeV.
CMS Preliminary K

0 %

g pp cumulative

— PbPb cumulative
-40

pT|>1 20, pT2>50 GeV/c
In‘l,lnzl<0.50, A¢1,2>57[/6
anti-k; Calo R=0.3
A,>0.22, hqwl<2.4

p'Trk (GeVic):
[Jo5-1.0[20-40

[J1.0-2.0M4.0-8.0
¢ >05 [H8.0-3000 ° 0.5 1 15 05 115 2

AR AR

o the offset in Pb+Pb is clearly visible (larger than for p+p)
e the AR dependence looks stepper ... but is exactly the same in p+p
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Results - Mlssmg pTvs AR
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Results - Mlssmg pTvs AR

Shape of the balancing
,. distribution in pp and PbPb
IS very similar
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Soft hadrons at large angles

@ The energy (im)balance for a jet with a wide opening : R = 0.8

oo Gl
© In-Cone @ Out-of-Cone |
CMS 0-30% AR<0.8 ] AR=0.8
. 20,
401 pb+Pb \s,=2.76 TeV T ]
Y 1 ]
f Ldt=6.7ub 1 iy a
20 £ . i
S 1 -
3 1 o = B
S o
A
+

® >05Gel/c
[CJ 05-1.0Gevic
1 1.0-20Gevic
[ 20-4.0Gevc
[ 4.0-8.0GeVic
) > 8.0 GeV/c

s e b b by

-20

-40

01 02 03 04 X 2
AJ AJ

@ Di—jet asymmetry : ET > EA

@ No missing energy : EE] +EL, = El‘f‘l + EOut
o The energy lost at large angles, 2, — EL . ...

. is carried mostly by soft hadrons with py < 2 GeV
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Jet quenching

@ Nuclear modification factor, di-hadron azimuthal correlations ...

A
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. ALICE Pb-Pb \[s, = 2.76 TeV (0 - 5%)
«  STARAU-AU \[5,, = 200 GeV (0 - 5%)
[l PHENIX Au-Au \[s, =200 GeV (0 - 10%)
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@ Energy loss & transverse momentum broadening by the leading particle
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Jets in peripheral Pb+Pb collisions

Run 168875, Event 1577540 \
Time 2010-11-10 01:27:38 CET :

EXPERIMENT

Calorimeter
|| Towers

Heavy lon Collision Event with 2 Jets’
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The formation time

@ The gluon must lose quantum coherence with respect to its source

o> the quark—gluon transverse separation b, at the formation time 74 must
be larger than the gluon transverse wavelength A\| ~ 1/k,

e High energy kinematics: w > k| = small angle: 0 ~ k&, /w

0
AL
Tf
W’J{TL
1 w
bJ_:Qsz)\J_:]./kJ_ = T X —s X
wh? k3

@ During formation, the gluon acquires a momentum kf_ ~qTy
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