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Motivations and aims
 Precision jet physics at c.o.m. energies of 14, 22 GeV needs full bottom mass dependence

JADE, TASSO

e.g.       determinations or bottom mass determinations↵s

[See talk by VM on Friday,	


Parallel II: light quarks]
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e.g.       determinations or bottom mass determinations↵s

Accurate top mass predictions at Tevatron and LHC, but unknown scheme

what is             ? Does it correspond to a reach scheme? mPythia
t

Additional “conceptual” uncertainty of ~              … respect to what?

mPythia

t ⇠ mshort�distance

t +O(1GeV)

what scheme	


exactly??

conservative enough??is this really a	


scheme??

We are able to do hadron level predictions with our formalism, allowing for a direct 
comparison to Pythia: fit      and a short distance top-mass from Pythia ↵s

O(1GeV)
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[See talk by J. Erler,	


this morning, plenary 3]
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Event shapes characterize in a 
geometrical way the distribution of 

hadrons in the final state
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modification that enhances quark 
mass dependence
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Factorization for 
massless quarks



Resummation of large logarithms
Event shapes are not inclusive quantities

Invalidates perturbative 
expression for small

Counting more clear in the 
exponent of cumulant
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SCET in a nutshell

Loops and Legs in Quantum Field Theory, April 27 - Mai 2, 2014 

Massless Quark SCET 

→ consider: dijet in e+e- annihilation, all quarks are light (mq < Λ)  
 
 

Bauer, Fleming, Luke 
 
 

Bauer, Fleming, Pirjol, 
Stewart 

 
 

p2 = p�p+ + p2
?

pµ = p�
nµ

2
+ p+ n̄µ

2
+ p?

n̄µ = (1, 0, 0,�1)nµ = (1, 0, 0, 1)

Korchemsky, Sterman 
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Massless Quark SCET 

→ consider: dijet in e+e- annihilation, all quarks are light (mq < Λ)  
 
 

Bauer, Fleming, Luke 
 
 

Bauer, Fleming, Pirjol, 
Stewart 

 
 

p2 = p�p+ + p2
?

pµ = p�
nµ

2
+ p+ n̄µ

2
+ p?

n̄µ = (1, 0, 0,�1)nµ = (1, 0, 0, 1)

Korchemsky, Sterman 
 
 

consider case of dijet production in         annihilation (only light quarks)e+ e�

[Bauer, Fleming, Luke, Pirjol, 
Stewart]

QCD
SCET

µ p� = E + |~p |
p+ = E � |~p |
p? = |~pT |



Factorization theorem for event shapes

Universal Wilson 
Coefficient

Jet function Soft function Nonsingular terms, 
power corrections(

Calculable in perturbation theory

(

Perturbative and 
nonperturbative components

1

�0

d�

de
= HQ ⇥ Je ⌦ Se +O

⇣
e0,

⇤QCD

Q

⌘
[Bauer, Lee, Fleming, Sterman]
[Berger, Kuks, Sterman]



Universal Wilson 
Coefficient

Jet function Soft function Nonsingular terms, 
power corrections(

Calculable in perturbation theory

(

Perturbative and 
nonperturbative components

perturbative

Se = Ŝe ⌦ Fe

nonperturbative & 
perturbative [VM, Thaler, Stewart]

d�

de
=

d�̂

de
⌦ Fe

Leading power correction comes from soft function

Factorization theorem for event shapes
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e0,
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⌘
[Bauer, Lee, Fleming, Sterman]
[Berger, Kuks, Sterman]

[Korchemsky & Sterman]

[Korchemsky, Sterman, Tafat]



Renormalization group evolution

hard scale

jet scale

soft scale

⇤QCD

µH ⇠ Q

µJ ⇠ Q
p
⌧

µS ⇠ Q ⌧

The hierarchy among 
the scales depends 
on the position on 
the spectrum
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hard scale
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Renormalization group evolution

Loops and Legs in Quantum Field Theory, April 27 - Mai 2, 2014 

Factorization for Massless Quarks  

→ evolution with nl light quark flavors 
→ consistency conditions w.r. to   
 
 
 
 
 

different evolution choices  
 
 
 
 
 

→ top-down evolution considered  
 
 
 
 
 

in the following 
 
 
 
 
 

observable-dependent 
profile functions 

 
 
 
 
 

Schwartz 
 
 
Fleming, AH, Mantry, Stewart 
 
 
Bauer, Fleming, Lee, Sterman 
 
 

�d�

d⇥

⇥sing

part
⇥ �0 H(Q, µQ)UH(Q, µQ, µs)

⇤
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evolution factorsmatrix elements
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⇠ H(µQ)UH(µH , µS)⇥ J(µJ)⌦ US(µJ , µS)⌦ S(µS)



Secondary mass 
production



Case study: total hadronic cross section
VFNS for the hadronic R-ratio

Hadronic R-ratio for massless quark production

q
e�

e+

R =
�(e+e� ! hadrons)
�(e+e� ! µ+µ�)

⇠ Im

�i
Z

dx e�iqxh0|T [jµ(x)jµ(0)] |i
�

one relevant scale: c.o.m. energy q2 = Q2

current conservation
! UV divergences only related to strong coupling & field redefinitions
! only running structure: ↵s

perturbative expansion (with MS-renormalized ↵s with nf light flavors)

Rnf [↵
(nf )
s ] = Nc

X
e2

q

8
<

:1 +
↵(nf )

s (µ)
4⇡

r1 +

 
↵(nf )

s (µ)
4⇡

!2 
r (nf )
2 � �0r1 ln

✓
Q2

µ2

◆�9=

;

! log minimized for µ ⇠ Q

Piotr Pietrulewicz ( University of Vienna ) Variable flavor number schemes (VFNS) in QCD Wien, 05.06.2014 5 / 34
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e2q
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↵(nl)
s (µ)

⇡
+

✓
↵(nl)
s (µ)

⇡

◆2
r2 � �(nl)

0

4
ln

Q2

µ2

�
+ . . .

�
=

if only light quarks involved, only one characteristic scale,
no large logs if µ ⇠ Q

Q
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    dependence generated by 
vacuum polarization diagrams 
with massless quarks
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MS renormalization (“only” possibility if           ) produces     term in �0mq = 0 nl



Case study: total hadronic cross section

VFNS for the hadronic R-ratio

Renormalization of the strong coupling: Massive quark contributions

m

gg

⇧(0) = ↵sTF

3⇡


1
✏
+ ln

✓
µ2

m2

◆
� �E + ln(4⇡) +O(✏)

�

Renormalization for ↵s ⌘ g2/4⇡:

↵s = µ2✏Z MS
↵ ↵MS

s (µ) = µ2✏Z OS
↵ ↵OS

s (µ) = . . .

! MS renormalization: Z MS
↵ = 1 +

↵MS
s TF
3⇡

1
✏ + const + . . . (default for massless partons)

! OS (on-shell) renormalization: Z OS
↵ = 1 + ⇧(0) + . . .

Anomalous dimension for resummation of logarithms (RGE)

�MS =
d↵MS

s

d lnµ2 + ✏↵MS
s = �µ2✏↵MS

s
d ln Z MS

↵

d lnµ2 = �(nl+1) ! ↵MS
s ⌘ ↵(nl+1)

s (µ)

�OS =
d↵OS

s

d lnµ2 + ✏↵OS
s = �µ2✏↵OS

s
d ln Z OS

↵

d lnµ2 = �(nl ) ! ↵OS
s ⌘ ↵(nl )

s (µ)

Piotr Pietrulewicz ( University of Vienna ) Variable flavor number schemes (VFNS) in QCD Wien, 05.06.2014 7 / 34

Im

 �if heavy quarks are produced, another scale enters the game: mh

      can be subtracted:            scheme	


or        can be subtracted: OS scheme ⇧(0)

well defined for massive quarks

1/✏
⇧(q2) =

⇧(q2)�⇧(0) is    -independent, therefore does not contribute to �0µ

MS⇧(q2) in       scheme has same    dependence as for µ mq = 0

MS
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Im

 �if heavy quarks are produced, another scale enters the game: mh

      can be subtracted:            scheme	


or        can be subtracted: OS scheme ⇧(0)

well defined for massive quarks

1/✏
⇧(q2) =

⇧(q2)�⇧(0) is    -independent, therefore does not contribute to �0µ

MS⇧(q2) in       scheme has same    dependence as for µ mq = 0

MS

MS scheme: works for             and has smooth massless limit. Uses ↵(nl+1)
smh ⇠ Q

OS scheme: works for            and has smooth decoupling limit. Usesmh ⇠ Q ↵(nl)
s

large logs for              (no decoupling limit)mh � Q

large logs for               (no massless limit) mh ⌧ Q

Both schemes related by the decoupling relation between         and ↵(nl+1)
s↵(nl)

s



Case study: total hadronic cross section

Collins - Wilckek - Zee (CWZ) scheme

Exact mass dependence without approximations or large logs, massless and 
decoupling limit correctly reproduced. Introduces a matching scale

µ ⇠ Q � mh

µ ⇠ Q  mh

µ ⇠ Q ⇠ mh

OS scheme

MS scheme

matching at

µm ⇠ m

Loops and Legs in Quantum Field Theory, April 27 - Mai 2, 2014 

VFNS for the R-ratio 

Virtual quarks: 

R =

�(e+e� ! hadrons)

�(e+e� ! µ+µ�)

→ no hierarchy between m and √s         
→ approximations m�√s or m�√s not applicable 
→ full mass-dependent matrix elements and phase space 
→ renormalization scheme for the massive quark 
 
 
 
 

√s 
 
 

 
 
 

mlight 
 
 

mheavy 
 
 

m 
 
 

→ Choice 1 and choice 2 are equally good for µ ~ √s ~ m 
 → Scheme relation for the strong coupling: 
 

↵(nl)
s (µ) = ↵(nl+1)

s (µ)
⇣
1 +

Tf↵(nl+1)
s (µ)
3⇡

ln
m2

µ2
+ . . .

⌘

→ Variable flavor number scheme:  Choice 1 for µ ~ √s  � m 
   
 

Choice 2 for µ ~ √s  � m 
   
 
Swap 1↔2 at  √s ~ µm ~ m 
   
 

Collins - Wilczek - Zee (CWZ) scheme 
   
 

→ Full m2/s dependence without approximations and w.o. any large logarithms 
 

(VFN) 
 

→ comes at the cost of 
additional µm-dependence  

 
 
 
 



Case study: total hadronic cross section

Collins - Wilckek - Zee (CWZ) scheme

Exact mass dependence without approximations or large logs, massless and 
decoupling limit correctly reproduced. Introduces a matching scale

We will use exactly this ideas in our SCET factorization theorem
Situation more involved because matrix element have explicit    dependenceµ

µ ⇠ Q � mh

µ ⇠ Q  mh

µ ⇠ Q ⇠ mh

OS scheme

MS scheme

matching at

m

mq

q

( )× k k=
q2
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Z 1

4m2

dM2

M2
Im

" #

k2 ! m2M

m

mq

q

( )× k k=
q2
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Z 1

4m2

dM2

M2
Im

" #

k2 ! m2M

dispersion 
relation

µm ⇠ m
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Secondary production of heavy quarks

Loops and Legs in Quantum Field Theory, April 27 - Mai 2, 2014 

VFN Scheme for Final State Jets 
→ consider: dijet in e+e- annihilation, nl light quarks � one massive quark 
  
 

“profile functions” 
 
 

m 
 
 

•  Full mass dependence (little room for any 
strong hierarchies): decoupling, massless limit 

•  Smooth connections between different EFTs 
•  Determination of flavor matching for current-, 

jet- and soft-evolution 
•  Reconcile problem of SCET2-type rapidity 

divergences 

nl + 1

nl

→ obvious: (nl+1)-evolution for µ � m  and (nl)-evolution for µ � m  
 
 
 
 

Aims: 

→ obvious: different EFT scenarios w.r. to mass vs. Q – J – S scales 
 

→ Deal with collinear and soft “mass modes” 
 → Additional power counting parameter 
 

Gritschacher, AH, 
Jemos, Pietrulewicz 
 
 

additional power counting parameter �m ⇠ m

Q

additional soft and collinear mass modes

[S.Gritschacher, A.Hoang, I.Jemos, P. Pietrulewicz (2013)]	
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tributions, which we do not further expand if the mass
becomes smaller than any of the other kinematic scales.
This yields a continuous description valid for any scaling
between the mass and the hard, jet or soft scales and is
important when scanning the thrust variable through the
entire allowed spectrum. At this point one might worry
whether the factorization theorems are subject to uncon-
trolled power corrections at the point where two scenarios
are patched together. We show below that this is not the
case and that there is no generic loss of precision where
the transition between different scenarios is carried out.

We stress that the notation, the formulation of the
factorization theorems and the organization of the RG
evolution we employ is associated to the “top-down” evo-
lution, where the scale µ is equal to the ultrasoft scale
µS . Thus only the current and the jet function evolution
factors UH and UJ , respectively, appear in the factor-
ization theorem. This also affects the interpretation and
association of the mass-shell contributions which enter in

the mass mode matching conditions discussed below. In
this RG setting the jet and the soft functions do not re-
ceive any massive quark effects when the jet and ultrasoft
scales, respectively, are below the mass mode matching
scale. Alternative ways to describe RG-evolution related
to different choices for µ are possible and have been dis-
cussed in Ref. [6]. There are consistency conditions that
relate the RG-evolution and the mass mode matching
factors for the different choices of µ. Since the mass M
appears as an additional scale in our mass mode setup,
there are even more possibilities to set up RG-evolution.
Therefore the consistency conditions become more in-
volved, as they also entail relations between mass mode
matching conditions and renormalization group evolution
with different anomalous dimensions and varying flavor
number. As an example, if µ is set to the hard scale,
the jet and soft functions have to be evolved upwards
to larger scales. In this RG setup the jet and soft func-
tions can pick up virtual mass-shell corrections in case
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tributions, which we do not further expand if the mass
becomes smaller than any of the other kinematic scales.
This yields a continuous description valid for any scaling
between the mass and the hard, jet or soft scales and is
important when scanning the thrust variable through the
entire allowed spectrum. At this point one might worry
whether the factorization theorems are subject to uncon-
trolled power corrections at the point where two scenarios
are patched together. We show below that this is not the
case and that there is no generic loss of precision where
the transition between different scenarios is carried out.

We stress that the notation, the formulation of the
factorization theorems and the organization of the RG
evolution we employ is associated to the “top-down” evo-
lution, where the scale µ is equal to the ultrasoft scale
µS . Thus only the current and the jet function evolution
factors UH and UJ , respectively, appear in the factor-
ization theorem. This also affects the interpretation and
association of the mass-shell contributions which enter in

the mass mode matching conditions discussed below. In
this RG setting the jet and the soft functions do not re-
ceive any massive quark effects when the jet and ultrasoft
scales, respectively, are below the mass mode matching
scale. Alternative ways to describe RG-evolution related
to different choices for µ are possible and have been dis-
cussed in Ref. [6]. There are consistency conditions that
relate the RG-evolution and the mass mode matching
factors for the different choices of µ. Since the mass M
appears as an additional scale in our mass mode setup,
there are even more possibilities to set up RG-evolution.
Therefore the consistency conditions become more in-
volved, as they also entail relations between mass mode
matching conditions and renormalization group evolution
with different anomalous dimensions and varying flavor
number. As an example, if µ is set to the hard scale,
the jet and soft functions have to be evolved upwards
to larger scales. In this RG setup the jet and soft func-
tions can pick up virtual mass-shell corrections in case
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VFN Scheme: Secondary Massive Quarks 

Scenario 1: λm > 1 > λ > λ2   ( m > Q > J > S )  

•  EFT only contains light quarks 
•  Massive quark only in current matching coeff. 
•  Decoupling for m/Q → ∞ 

Secondary production of heavy quarks
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tributions, which we do not further expand if the mass
becomes smaller than any of the other kinematic scales.
This yields a continuous description valid for any scaling
between the mass and the hard, jet or soft scales and is
important when scanning the thrust variable through the
entire allowed spectrum. At this point one might worry
whether the factorization theorems are subject to uncon-
trolled power corrections at the point where two scenarios
are patched together. We show below that this is not the
case and that there is no generic loss of precision where
the transition between different scenarios is carried out.

We stress that the notation, the formulation of the
factorization theorems and the organization of the RG
evolution we employ is associated to the “top-down” evo-
lution, where the scale µ is equal to the ultrasoft scale
µS . Thus only the current and the jet function evolution
factors UH and UJ , respectively, appear in the factor-
ization theorem. This also affects the interpretation and
association of the mass-shell contributions which enter in

the mass mode matching conditions discussed below. In
this RG setting the jet and the soft functions do not re-
ceive any massive quark effects when the jet and ultrasoft
scales, respectively, are below the mass mode matching
scale. Alternative ways to describe RG-evolution related
to different choices for µ are possible and have been dis-
cussed in Ref. [6]. There are consistency conditions that
relate the RG-evolution and the mass mode matching
factors for the different choices of µ. Since the mass M
appears as an additional scale in our mass mode setup,
there are even more possibilities to set up RG-evolution.
Therefore the consistency conditions become more in-
volved, as they also entail relations between mass mode
matching conditions and renormalization group evolution
with different anomalous dimensions and varying flavor
number. As an example, if µ is set to the hard scale,
the jet and soft functions have to be evolved upwards
to larger scales. In this RG setup the jet and soft func-
tions can pick up virtual mass-shell corrections in case

additional power counting parameter �m ⇠ m

Q

additional soft and collinear mass modes

possible hierarchies:

1 > �m > �

�m > 1

� > �m > �2

�2 > �m

scenario I

scenario II

scenario III

scenario IV

I II

III IV

Loops and Legs in Quantum Field Theory, April 27 - Mai 2, 2014 

VFN Scheme: Secondary Massive Quarks 

Scenario 2: 1> λm > λ > λ2   ( Q > m > J > S )  

•  Massive modes only virtual 
•  Jet and soft function as in massless case  
•  Hard coefficient must have massless limit 
•  Known Sudakov problem for massive gauge 

boson 

Chiu, Golf, Kelley, Manohar 
 
 
Chiu, Führer, Hoang, Kelley 
 
 

Loops and Legs in Quantum Field Theory, April 27 - Mai 2, 2014 

VFN Scheme for Final State Jets 
→ consider: dijet in e+e- annihilation, nl light quarks � one massive quark 
  
 

“profile functions” 
 
 

m 
 
 

•  Full mass dependence (little room for any 
strong hierarchies): decoupling, massless limit 

•  Smooth connections between different EFTs 
•  Determination of flavor matching for current-, 

jet- and soft-evolution 
•  Reconcile problem of SCET2-type rapidity 

divergences 

nl + 1

nl

→ obvious: (nl+1)-evolution for µ � m  and (nl)-evolution for µ � m  
 
 
 
 

Aims: 

→ obvious: different EFT scenarios w.r. to mass vs. Q – J – S scales 
 

→ Deal with collinear and soft “mass modes” 
 → Additional power counting parameter 
 

Gritschacher, AH, 
Jemos, Pietrulewicz 
 
 

Secondary production of heavy quarks
[S.Gritschacher, A.Hoang, I.Jemos, P. Pietrulewicz (2013)]	


[S.Gritschacher, A.Hoang, I.Jemos, VM, P. Pietrulewicz (2014)]



m m

m

p p

p
′

p
′

7

p
2

usoft
M

L

hard

n
-c

o
ll

M
L

n̄-coll ML

p+

p−

QCDSCET

QQλ2 Qλ QλM

Q

Qλ2

Qλ

QλM M
M

(a)λM > 1 > λ > λ2

p
2

usoft
M

L

hard

n
-c

o
ll

M
L

n̄-coll ML

p+

p−

QQλ2 Qλ QλM

Q

Qλ2

Qλ

QλM

soft
M

M

n
-c

o
ll

M
M

n̄-coll MM

(b)1 > λM > λ > λ2

p
2

usoft
M

L

hard

n
-c

o
ll

M
,M

L

n̄-coll M,ML

p+

p−

QQλ2 Qλm Qλ

Q

Qλ2

Qλm

Qλ

soft
M

M

n
-c

o
ll

M
M

n̄-coll MM

(c)1 > λ > λM > λ2

p
2

usoft
M

,M
L

hard

n
-c

o
ll

M
,M

L

n̄-coll M,ML

p+

p−

QQλm Qλ2 Qλ

Q

Qλm

Qλ2

Qλ

soft
M

M

n
-c

o
ll

M
M

n̄-coll MM

(d)1 > λ > λ2 > λM

FIG. 4. Localization of massless (ML) and massive (M) modes together with their mass-shell fluctuations (MM) in the p+-
p−phase space according to their generic scaling for different hierarchies between λ and λM . Modes with the same invariant
mass are located on the same mass hyperbola. This is always the case for the collinear and soft mass-shell fluctuations.

tributions, which we do not further expand if the mass
becomes smaller than any of the other kinematic scales.
This yields a continuous description valid for any scaling
between the mass and the hard, jet or soft scales and is
important when scanning the thrust variable through the
entire allowed spectrum. At this point one might worry
whether the factorization theorems are subject to uncon-
trolled power corrections at the point where two scenarios
are patched together. We show below that this is not the
case and that there is no generic loss of precision where
the transition between different scenarios is carried out.

We stress that the notation, the formulation of the
factorization theorems and the organization of the RG
evolution we employ is associated to the “top-down” evo-
lution, where the scale µ is equal to the ultrasoft scale
µS . Thus only the current and the jet function evolution
factors UH and UJ , respectively, appear in the factor-
ization theorem. This also affects the interpretation and
association of the mass-shell contributions which enter in

the mass mode matching conditions discussed below. In
this RG setting the jet and the soft functions do not re-
ceive any massive quark effects when the jet and ultrasoft
scales, respectively, are below the mass mode matching
scale. Alternative ways to describe RG-evolution related
to different choices for µ are possible and have been dis-
cussed in Ref. [6]. There are consistency conditions that
relate the RG-evolution and the mass mode matching
factors for the different choices of µ. Since the mass M
appears as an additional scale in our mass mode setup,
there are even more possibilities to set up RG-evolution.
Therefore the consistency conditions become more in-
volved, as they also entail relations between mass mode
matching conditions and renormalization group evolution
with different anomalous dimensions and varying flavor
number. As an example, if µ is set to the hard scale,
the jet and soft functions have to be evolved upwards
to larger scales. In this RG setup the jet and soft func-
tions can pick up virtual mass-shell corrections in case
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tributions, which we do not further expand if the mass
becomes smaller than any of the other kinematic scales.
This yields a continuous description valid for any scaling
between the mass and the hard, jet or soft scales and is
important when scanning the thrust variable through the
entire allowed spectrum. At this point one might worry
whether the factorization theorems are subject to uncon-
trolled power corrections at the point where two scenarios
are patched together. We show below that this is not the
case and that there is no generic loss of precision where
the transition between different scenarios is carried out.

We stress that the notation, the formulation of the
factorization theorems and the organization of the RG
evolution we employ is associated to the “top-down” evo-
lution, where the scale µ is equal to the ultrasoft scale
µS . Thus only the current and the jet function evolution
factors UH and UJ , respectively, appear in the factor-
ization theorem. This also affects the interpretation and
association of the mass-shell contributions which enter in

the mass mode matching conditions discussed below. In
this RG setting the jet and the soft functions do not re-
ceive any massive quark effects when the jet and ultrasoft
scales, respectively, are below the mass mode matching
scale. Alternative ways to describe RG-evolution related
to different choices for µ are possible and have been dis-
cussed in Ref. [6]. There are consistency conditions that
relate the RG-evolution and the mass mode matching
factors for the different choices of µ. Since the mass M
appears as an additional scale in our mass mode setup,
there are even more possibilities to set up RG-evolution.
Therefore the consistency conditions become more in-
volved, as they also entail relations between mass mode
matching conditions and renormalization group evolution
with different anomalous dimensions and varying flavor
number. As an example, if µ is set to the hard scale,
the jet and soft functions have to be evolved upwards
to larger scales. In this RG setup the jet and soft func-
tions can pick up virtual mass-shell corrections in case

additional power counting parameter �m ⇠ m

Q

additional soft and collinear mass modes
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•  Hard coefficient, jet and soft function must have 

massless limit 
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Secondary production of heavy quarks
[S.Gritschacher, A.Hoang, I.Jemos, P. Pietrulewicz (2013)]	


[S.Gritschacher, A.Hoang, I.Jemos, VM, P. Pietrulewicz (2014)]
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Scenario 1: λm > 1 > λ > λ2   ( m > Q > J > S )  

•  EFT only contains light quarks 
•  Massive quark only in current matching coeff. 
•  Decoupling for m/Q → ∞ 
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FIG. 4. Localization of massless (ML) and massive (M) modes together with their mass-shell fluctuations (MM) in the p+-
p−phase space according to their generic scaling for different hierarchies between λ and λM . Modes with the same invariant
mass are located on the same mass hyperbola. This is always the case for the collinear and soft mass-shell fluctuations.

tributions, which we do not further expand if the mass
becomes smaller than any of the other kinematic scales.
This yields a continuous description valid for any scaling
between the mass and the hard, jet or soft scales and is
important when scanning the thrust variable through the
entire allowed spectrum. At this point one might worry
whether the factorization theorems are subject to uncon-
trolled power corrections at the point where two scenarios
are patched together. We show below that this is not the
case and that there is no generic loss of precision where
the transition between different scenarios is carried out.

We stress that the notation, the formulation of the
factorization theorems and the organization of the RG
evolution we employ is associated to the “top-down” evo-
lution, where the scale µ is equal to the ultrasoft scale
µS . Thus only the current and the jet function evolution
factors UH and UJ , respectively, appear in the factor-
ization theorem. This also affects the interpretation and
association of the mass-shell contributions which enter in

the mass mode matching conditions discussed below. In
this RG setting the jet and the soft functions do not re-
ceive any massive quark effects when the jet and ultrasoft
scales, respectively, are below the mass mode matching
scale. Alternative ways to describe RG-evolution related
to different choices for µ are possible and have been dis-
cussed in Ref. [6]. There are consistency conditions that
relate the RG-evolution and the mass mode matching
factors for the different choices of µ. Since the mass M
appears as an additional scale in our mass mode setup,
there are even more possibilities to set up RG-evolution.
Therefore the consistency conditions become more in-
volved, as they also entail relations between mass mode
matching conditions and renormalization group evolution
with different anomalous dimensions and varying flavor
number. As an example, if µ is set to the hard scale,
the jet and soft functions have to be evolved upwards
to larger scales. In this RG setup the jet and soft func-
tions can pick up virtual mass-shell corrections in case

µS

µJ

µm
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tributions, which we do not further expand if the mass
becomes smaller than any of the other kinematic scales.
This yields a continuous description valid for any scaling
between the mass and the hard, jet or soft scales and is
important when scanning the thrust variable through the
entire allowed spectrum. At this point one might worry
whether the factorization theorems are subject to uncon-
trolled power corrections at the point where two scenarios
are patched together. We show below that this is not the
case and that there is no generic loss of precision where
the transition between different scenarios is carried out.

We stress that the notation, the formulation of the
factorization theorems and the organization of the RG
evolution we employ is associated to the “top-down” evo-
lution, where the scale µ is equal to the ultrasoft scale
µS . Thus only the current and the jet function evolution
factors UH and UJ , respectively, appear in the factor-
ization theorem. This also affects the interpretation and
association of the mass-shell contributions which enter in

the mass mode matching conditions discussed below. In
this RG setting the jet and the soft functions do not re-
ceive any massive quark effects when the jet and ultrasoft
scales, respectively, are below the mass mode matching
scale. Alternative ways to describe RG-evolution related
to different choices for µ are possible and have been dis-
cussed in Ref. [6]. There are consistency conditions that
relate the RG-evolution and the mass mode matching
factors for the different choices of µ. Since the mass M
appears as an additional scale in our mass mode setup,
there are even more possibilities to set up RG-evolution.
Therefore the consistency conditions become more in-
volved, as they also entail relations between mass mode
matching conditions and renormalization group evolution
with different anomalous dimensions and varying flavor
number. As an example, if µ is set to the hard scale,
the jet and soft functions have to be evolved upwards
to larger scales. In this RG setup the jet and soft func-
tions can pick up virtual mass-shell corrections in case
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EFT matrix elements and 
running factors, same as in 
massless theory

SCET - QCD	


matching coefficient	


is mass-dependent(

all matching coefficients, matrix elements and running factors use ↵(nl)
s

1
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d⌧
⇠ H(nl)(µQ,m)U (nl)

H (µH , µS)⇥ J (nl)(µJ)⌦ U
(nl)
J (µJ , µS)⌦ S(nl)(µS)



Scenario I

EFT matrix elements and 
running factors, same as in 
massless theory

SCET - QCD	


matching coefficient	


is mass-dependent(

all matching coefficients, matrix elements and running factors use ↵(nl)
s

1

�0

d�

d⌧
⇠ H(nl)(µQ,m)U (nl)

H (µH , µS)⇥ J (nl)(µJ)⌦ U
(nl)
J (µJ , µS)⌦ S(nl)(µS)

H(nl)correct decoupling limit in         for m � Q

but large log for m ⌧ Q

whole distribution has a smooth decoupling limit

H(nl) computed in the OS scheme (full QCD massive form factor)

Loops and Legs in Quantum Field Theory, April 27 - Mai 2, 2014 

VFN Scheme: Secondary Massive Quarks 

Simplest non-trivial case to study: 
→ massless primary quark dijet production in e+e- annihilation:  
 nl light quarks � one massive quark arise only through secondary production 

  
 → field theory: close relation to the problem  

 of massive gauge boson radiation 
 

→ dispersion relation: massive quark results  
 can be obtained directly from massive gluon  

 calculations when quark pair treated inclusively  
 (e.g. hard coefficient, jet function) 
 

→ separation of conceptual issues to be resolved 
and calculations issues related to gluon splitting. 
 

→ explicit two-loop calculation needed when quarks  
 are treated exclusively 

(e.g. soft function  → hemisphere prescription) 
 Gritschacher, AH, Jemos, Pietrulewicz  2013 
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FIG. 4. Localization of massless (ML) and massive (M) modes together with their mass-shell fluctuations (MM) in the p+-
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mass are located on the same mass hyperbola. This is always the case for the collinear and soft mass-shell fluctuations.

tributions, which we do not further expand if the mass
becomes smaller than any of the other kinematic scales.
This yields a continuous description valid for any scaling
between the mass and the hard, jet or soft scales and is
important when scanning the thrust variable through the
entire allowed spectrum. At this point one might worry
whether the factorization theorems are subject to uncon-
trolled power corrections at the point where two scenarios
are patched together. We show below that this is not the
case and that there is no generic loss of precision where
the transition between different scenarios is carried out.

We stress that the notation, the formulation of the
factorization theorems and the organization of the RG
evolution we employ is associated to the “top-down” evo-
lution, where the scale µ is equal to the ultrasoft scale
µS . Thus only the current and the jet function evolution
factors UH and UJ , respectively, appear in the factor-
ization theorem. This also affects the interpretation and
association of the mass-shell contributions which enter in

the mass mode matching conditions discussed below. In
this RG setting the jet and the soft functions do not re-
ceive any massive quark effects when the jet and ultrasoft
scales, respectively, are below the mass mode matching
scale. Alternative ways to describe RG-evolution related
to different choices for µ are possible and have been dis-
cussed in Ref. [6]. There are consistency conditions that
relate the RG-evolution and the mass mode matching
factors for the different choices of µ. Since the mass M
appears as an additional scale in our mass mode setup,
there are even more possibilities to set up RG-evolution.
Therefore the consistency conditions become more in-
volved, as they also entail relations between mass mode
matching conditions and renormalization group evolution
with different anomalous dimensions and varying flavor
number. As an example, if µ is set to the hard scale,
the jet and soft functions have to be evolved upwards
to larger scales. In this RG setup the jet and soft func-
tions can pick up virtual mass-shell corrections in case
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VFN Scheme: Secondary Massive Quarks 

Scenario 2: 1> λm > λ > λ2   ( Q > m > J > S )  

•  Massive modes only virtual 
•  Jet and soft function as in massless case  
•  Hard coefficient must have massless limit 
•  Known Sudakov problem for massive gauge 
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FIG. 4. Localization of massless (ML) and massive (M) modes together with their mass-shell fluctuations (MM) in the p+-
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tributions, which we do not further expand if the mass
becomes smaller than any of the other kinematic scales.
This yields a continuous description valid for any scaling
between the mass and the hard, jet or soft scales and is
important when scanning the thrust variable through the
entire allowed spectrum. At this point one might worry
whether the factorization theorems are subject to uncon-
trolled power corrections at the point where two scenarios
are patched together. We show below that this is not the
case and that there is no generic loss of precision where
the transition between different scenarios is carried out.

We stress that the notation, the formulation of the
factorization theorems and the organization of the RG
evolution we employ is associated to the “top-down” evo-
lution, where the scale µ is equal to the ultrasoft scale
µS . Thus only the current and the jet function evolution
factors UH and UJ , respectively, appear in the factor-
ization theorem. This also affects the interpretation and
association of the mass-shell contributions which enter in

the mass mode matching conditions discussed below. In
this RG setting the jet and the soft functions do not re-
ceive any massive quark effects when the jet and ultrasoft
scales, respectively, are below the mass mode matching
scale. Alternative ways to describe RG-evolution related
to different choices for µ are possible and have been dis-
cussed in Ref. [6]. There are consistency conditions that
relate the RG-evolution and the mass mode matching
factors for the different choices of µ. Since the mass M
appears as an additional scale in our mass mode setup,
there are even more possibilities to set up RG-evolution.
Therefore the consistency conditions become more in-
volved, as they also entail relations between mass mode
matching conditions and renormalization group evolution
with different anomalous dimensions and varying flavor
number. As an example, if µ is set to the hard scale,
the jet and soft functions have to be evolved upwards
to larger scales. In this RG setup the jet and soft func-
tions can pick up virtual mass-shell corrections in case
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tributions, which we do not further expand if the mass
becomes smaller than any of the other kinematic scales.
This yields a continuous description valid for any scaling
between the mass and the hard, jet or soft scales and is
important when scanning the thrust variable through the
entire allowed spectrum. At this point one might worry
whether the factorization theorems are subject to uncon-
trolled power corrections at the point where two scenarios
are patched together. We show below that this is not the
case and that there is no generic loss of precision where
the transition between different scenarios is carried out.

We stress that the notation, the formulation of the
factorization theorems and the organization of the RG
evolution we employ is associated to the “top-down” evo-
lution, where the scale µ is equal to the ultrasoft scale
µS . Thus only the current and the jet function evolution
factors UH and UJ , respectively, appear in the factor-
ization theorem. This also affects the interpretation and
association of the mass-shell contributions which enter in

the mass mode matching conditions discussed below. In
this RG setting the jet and the soft functions do not re-
ceive any massive quark effects when the jet and ultrasoft
scales, respectively, are below the mass mode matching
scale. Alternative ways to describe RG-evolution related
to different choices for µ are possible and have been dis-
cussed in Ref. [6]. There are consistency conditions that
relate the RG-evolution and the mass mode matching
factors for the different choices of µ. Since the mass M
appears as an additional scale in our mass mode setup,
there are even more possibilities to set up RG-evolution.
Therefore the consistency conditions become more in-
volved, as they also entail relations between mass mode
matching conditions and renormalization group evolution
with different anomalous dimensions and varying flavor
number. As an example, if µ is set to the hard scale,
the jet and soft functions have to be evolved upwards
to larger scales. In this RG setup the jet and soft func-
tions can pick up virtual mass-shell corrections in case
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•  Known Sudakov problem for massive gauge 
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tributions, which we do not further expand if the mass
becomes smaller than any of the other kinematic scales.
This yields a continuous description valid for any scaling
between the mass and the hard, jet or soft scales and is
important when scanning the thrust variable through the
entire allowed spectrum. At this point one might worry
whether the factorization theorems are subject to uncon-
trolled power corrections at the point where two scenarios
are patched together. We show below that this is not the
case and that there is no generic loss of precision where
the transition between different scenarios is carried out.

We stress that the notation, the formulation of the
factorization theorems and the organization of the RG
evolution we employ is associated to the “top-down” evo-
lution, where the scale µ is equal to the ultrasoft scale
µS . Thus only the current and the jet function evolution
factors UH and UJ , respectively, appear in the factor-
ization theorem. This also affects the interpretation and
association of the mass-shell contributions which enter in

the mass mode matching conditions discussed below. In
this RG setting the jet and the soft functions do not re-
ceive any massive quark effects when the jet and ultrasoft
scales, respectively, are below the mass mode matching
scale. Alternative ways to describe RG-evolution related
to different choices for µ are possible and have been dis-
cussed in Ref. [6]. There are consistency conditions that
relate the RG-evolution and the mass mode matching
factors for the different choices of µ. Since the mass M
appears as an additional scale in our mass mode setup,
there are even more possibilities to set up RG-evolution.
Therefore the consistency conditions become more in-
volved, as they also entail relations between mass mode
matching conditions and renormalization group evolution
with different anomalous dimensions and varying flavor
number. As an example, if µ is set to the hard scale,
the jet and soft functions have to be evolved upwards
to larger scales. In this RG setup the jet and soft func-
tions can pick up virtual mass-shell corrections in case
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FIG. 4. Localization of massless (ML) and massive (M) modes together with their mass-shell fluctuations (MM) in the p+-
p−phase space according to their generic scaling for different hierarchies between λ and λM . Modes with the same invariant
mass are located on the same mass hyperbola. This is always the case for the collinear and soft mass-shell fluctuations.

tributions, which we do not further expand if the mass
becomes smaller than any of the other kinematic scales.
This yields a continuous description valid for any scaling
between the mass and the hard, jet or soft scales and is
important when scanning the thrust variable through the
entire allowed spectrum. At this point one might worry
whether the factorization theorems are subject to uncon-
trolled power corrections at the point where two scenarios
are patched together. We show below that this is not the
case and that there is no generic loss of precision where
the transition between different scenarios is carried out.

We stress that the notation, the formulation of the
factorization theorems and the organization of the RG
evolution we employ is associated to the “top-down” evo-
lution, where the scale µ is equal to the ultrasoft scale
µS . Thus only the current and the jet function evolution
factors UH and UJ , respectively, appear in the factor-
ization theorem. This also affects the interpretation and
association of the mass-shell contributions which enter in

the mass mode matching conditions discussed below. In
this RG setting the jet and the soft functions do not re-
ceive any massive quark effects when the jet and ultrasoft
scales, respectively, are below the mass mode matching
scale. Alternative ways to describe RG-evolution related
to different choices for µ are possible and have been dis-
cussed in Ref. [6]. There are consistency conditions that
relate the RG-evolution and the mass mode matching
factors for the different choices of µ. Since the mass M
appears as an additional scale in our mass mode setup,
there are even more possibilities to set up RG-evolution.
Therefore the consistency conditions become more in-
volved, as they also entail relations between mass mode
matching conditions and renormalization group evolution
with different anomalous dimensions and varying flavor
number. As an example, if µ is set to the hard scale,
the jet and soft functions have to be evolved upwards
to larger scales. In this RG setup the jet and soft func-
tions can pick up virtual mass-shell corrections in case
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Since F
(2,OS)
QCD and F

(2,OS)
SCET have been computed with the

subtracted dispersion relation they correspond to expres-
sions in the nl flavor scheme for the strong coupling.
To switch to the (nl + 1)-flavor scheme one has to add
the MS-subtracted vacuum polarization function at zero-
momentum times the corresponding one-loop form fac-
tor,

F
(2)
QCD(SCET)(Q, m, µ, �) = F

(2,OS)
QCD(SCET)(Q, m, µ)

�
✓

⇧(m2, 0) � ↵sTF
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F
(1)
QCD(SCET)(Q, µ, �) , (80)

where F
(1)
QCD (F (1)

SCET) is the massless gluon one-loop QCD
(SCET) form factor calculated with an IR regulator �.
To obtain the matching coe�cient we in principle have to
first renormalize both quantities and then calculate their
di↵erence where the dependence on � cancels. Since the
QCD current is UV finite, it is convenient to revert this
procedure, i.e. to first determine the di↵erence of the un-
renormalized quantities and renormalize the UV diver-
gences in the SCET contribution at the very end. The
di↵erence of the massless gluon one-loop QCD and SCET
form factors has the form 13

F
(1)
QCD(Q, µ) � F
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The additional term corresponding to the change from
the nl- to the (nl + 1)-flavor scheme thus reads
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Combining all contributions and including the MS cur-

rent counterterm contribution Z
(nl+1,2)
C,nf=1 given in Eq. (5),

13 Using dimensional regularization for both UV and IR divergences
the SCET form factor for massless gluons vanishes identically.

Ja JcJb

FIG. 8. Non-vanishing EFT diagrams for the computation of
the jet function. The required soft mass mode bin subtrac-
tions are implicit. Concerning Ja also the right-symmetric
diagram has to be taken into account.

the result for the O(↵2
sCF TF ) secondary massive quark

contributions to the hard current coe�cient in the
(nl + 1)-flavor scheme reads (↵s = ↵

(nl+1)
s (µ))

�C(nl+1)(Q, m, µ) = F
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C,nf=1 (Q, µ) , (83)

Inserting Eqs. (5), (79), (82) and subtracting from
Eq. (83) the massless limit of Eq. (4) for one single flavor
we obtain the mass corrections to the form factor given
in Eq. (35). We see from the result of Eq. (36) that the
SCET matching procedure in the (nl + 1)-flavor scheme
does in principle nothing else than exactly subtracting
the asymptotic massless limit from the full QCD on-shell
form factor correction.

C. Thrust Jet Function

The calculation of the O(↵2
sCF TF ) secondary massive

quark corrections to the jet function in the (nl +1)-flavor
scheme goes along the lines of the hard current coe�-
cient. The O(↵s) corrections to the jet function due to a
massive gauge boson with QCD vector coupling have the
form [15, 37] 14
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M,virt(s, M, µ) + �J
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M,real(s, M). (84)

The distributive part �J
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M,virt corresponds to virtual radi-

ation of the massive gauge boson and the full expression
in d-dimensions reads
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The UV- and IR-finite real radiation contribution
�J

(1)
M,real can for our purposes be evaluated for d = 4 since

14 We consider directly the corrections to the total thrust jet func-
tion, which are exactly twice the contributions for the function
of a single jet.
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FIG. 7. Non-vanishing EFT diagrams for the computation of
the hard matching coe�cient, soft mass mode bin subtrac-
tions are implied for the collinear diagrams.

respect to the e↵ects of the massive quark. So using
Eq. (72) implies that we employ the strong coupling in

the nl flavor scheme, i.e. ↵
(nl)
s . The subtracted dispersion

relation has the computational advantage that the inte-
gration over the virtual gluon mass is suppressed by an
additional inverse power of M2. This can make the dis-
persion integration UV finite and may allow us to carry
out the integral directly in d = 4 dimensions. Using the
full vacuum polarization insertion of Eq. (75) implies that
the strong coupling is still unrenormalized with respect
to the e↵ects of the massive quark flavor.

The relations in Eqs. (74) and (75) show explicitly that
we can obtain the result for the massive quark-antiquark
pair from a dispersion integral over the corresponding re-
sult for a gluon with mass M . We note that the disper-
sion relation method may not only be used to determine
the e↵ects of secondary virtual massive quarks, but also
for real radiation corrections as long as it is only the sum
of the quark and antiquark momenta (i.e. the momen-
tum of the gluon that splits into the massive quark pair)
that enters the phase space constraint in the computa-
tion. Even if this is not the case the dispersion integration
may be useful to determine the dominant corrections or
to the deal with singular or divergent parts of the result,
see e.g. Ref. [16] for such an application in the calcula-
tion of the O(↵2

sCF TF ) massive quark contributions to
the soft function.

B. Hard Current Matching Coe�cient for m < Q

Following Eq. (74) we can obtain the O(↵2
sCF TF ) sec-

ondary massive quark form factor corrections relevant for
the hard current matching calculation with the on-shell
subtraction for the strong coupling by the relation
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where F
(1)
M,QCD (F (1)

M,SCET) denotes the one-loop massive

gluon form factor in QCD (SCET). F
(2,OS)
QCD is both IR-

and UV-finite, has been computed in [30, 31] and is equiv-

alent to F
(nl,2)
QCD given in Eq. (30). The massive gluon form

factor diagrams in SCET are displayed in Fig. 7, have
been computed in [15, 37] and read in d dimensions12
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where Hn denotes the n-th Harmonic Number. To avoid
double counting and achieve gauge-invariance it is cru-
cial to subtract the soft-bin contributions, which arise
from the soft scaling regions of the collinear diagrams.
The collinear diagrams Vn, Vn̄, their soft-bin subtrac-
tions and the soft diagram Vs in Fig. 7 are for them-
selves not fully regularized in dimensional regularization
due to rapidity divergences. These cancel in the sum
of all diagrams and leave behind the rapidity logarithm
ln(M2/Q2). Due to the finite gluon mass the soft-bin
contributions are essential and non-vanishing for a gen-
eral regularization of the rapidity singularities. Interest-

ingly, this logarithm cancels in the di↵erence of F
(1)
M,QCD

and F
(1)
M,SCET so that there is no corresponding rapidity

logarithm in the O(↵2
sCF TF ) secondary massive quark

corrections to the hard current matching coe�cient at
the scale µH ⇠ Q. Thus the rapidity singularities that
arise in the SCET form factor computation do not leave
any trace in the hard current matching coe�cient.

Carrying out the convolution in Eq. (77) in
d = 4 � 2✏ dimensions and expanding in ✏ we ob-
tain (x2 ⌘ m2/(Q2 + i 0), L�Q ⌘ ln[�(Q2 + i 0)/µ2],
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12 Here we have corrected a typo in Eq. (71) of Ref. [15] concerning
the factor (�1)2�d/2 appearing in Eq. (78). For d ! 4 both
expressions give the same terms up to terms of O(✏).
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FIG. 4. Localization of massless (ML) and massive (M) modes together with their mass-shell fluctuations (MM) in the p+-
p−phase space according to their generic scaling for different hierarchies between λ and λM . Modes with the same invariant
mass are located on the same mass hyperbola. This is always the case for the collinear and soft mass-shell fluctuations.

tributions, which we do not further expand if the mass
becomes smaller than any of the other kinematic scales.
This yields a continuous description valid for any scaling
between the mass and the hard, jet or soft scales and is
important when scanning the thrust variable through the
entire allowed spectrum. At this point one might worry
whether the factorization theorems are subject to uncon-
trolled power corrections at the point where two scenarios
are patched together. We show below that this is not the
case and that there is no generic loss of precision where
the transition between different scenarios is carried out.

We stress that the notation, the formulation of the
factorization theorems and the organization of the RG
evolution we employ is associated to the “top-down” evo-
lution, where the scale µ is equal to the ultrasoft scale
µS . Thus only the current and the jet function evolution
factors UH and UJ , respectively, appear in the factor-
ization theorem. This also affects the interpretation and
association of the mass-shell contributions which enter in

the mass mode matching conditions discussed below. In
this RG setting the jet and the soft functions do not re-
ceive any massive quark effects when the jet and ultrasoft
scales, respectively, are below the mass mode matching
scale. Alternative ways to describe RG-evolution related
to different choices for µ are possible and have been dis-
cussed in Ref. [6]. There are consistency conditions that
relate the RG-evolution and the mass mode matching
factors for the different choices of µ. Since the mass M
appears as an additional scale in our mass mode setup,
there are even more possibilities to set up RG-evolution.
Therefore the consistency conditions become more in-
volved, as they also entail relations between mass mode
matching conditions and renormalization group evolution
with different anomalous dimensions and varying flavor
number. As an example, if µ is set to the hard scale,
the jet and soft functions have to be evolved upwards
to larger scales. In this RG setup the jet and soft func-
tions can pick up virtual mass-shell corrections in case

soft scale µS

µJ

µm
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tributions, which we do not further expand if the mass
becomes smaller than any of the other kinematic scales.
This yields a continuous description valid for any scaling
between the mass and the hard, jet or soft scales and is
important when scanning the thrust variable through the
entire allowed spectrum. At this point one might worry
whether the factorization theorems are subject to uncon-
trolled power corrections at the point where two scenarios
are patched together. We show below that this is not the
case and that there is no generic loss of precision where
the transition between different scenarios is carried out.

We stress that the notation, the formulation of the
factorization theorems and the organization of the RG
evolution we employ is associated to the “top-down” evo-
lution, where the scale µ is equal to the ultrasoft scale
µS . Thus only the current and the jet function evolution
factors UH and UJ , respectively, appear in the factor-
ization theorem. This also affects the interpretation and
association of the mass-shell contributions which enter in

the mass mode matching conditions discussed below. In
this RG setting the jet and the soft functions do not re-
ceive any massive quark effects when the jet and ultrasoft
scales, respectively, are below the mass mode matching
scale. Alternative ways to describe RG-evolution related
to different choices for µ are possible and have been dis-
cussed in Ref. [6]. There are consistency conditions that
relate the RG-evolution and the mass mode matching
factors for the different choices of µ. Since the mass M
appears as an additional scale in our mass mode setup,
there are even more possibilities to set up RG-evolution.
Therefore the consistency conditions become more in-
volved, as they also entail relations between mass mode
matching conditions and renormalization group evolution
with different anomalous dimensions and varying flavor
number. As an example, if µ is set to the hard scale,
the jet and soft functions have to be evolved upwards
to larger scales. In this RG setup the jet and soft func-
tions can pick up virtual mass-shell corrections in case

soft scale µS

µJ

µm
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p−phase space according to their generic scaling for different hierarchies between λ and λM . Modes with the same invariant
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tributions, which we do not further expand if the mass
becomes smaller than any of the other kinematic scales.
This yields a continuous description valid for any scaling
between the mass and the hard, jet or soft scales and is
important when scanning the thrust variable through the
entire allowed spectrum. At this point one might worry
whether the factorization theorems are subject to uncon-
trolled power corrections at the point where two scenarios
are patched together. We show below that this is not the
case and that there is no generic loss of precision where
the transition between different scenarios is carried out.

We stress that the notation, the formulation of the
factorization theorems and the organization of the RG
evolution we employ is associated to the “top-down” evo-
lution, where the scale µ is equal to the ultrasoft scale
µS . Thus only the current and the jet function evolution
factors UH and UJ , respectively, appear in the factor-
ization theorem. This also affects the interpretation and
association of the mass-shell contributions which enter in

the mass mode matching conditions discussed below. In
this RG setting the jet and the soft functions do not re-
ceive any massive quark effects when the jet and ultrasoft
scales, respectively, are below the mass mode matching
scale. Alternative ways to describe RG-evolution related
to different choices for µ are possible and have been dis-
cussed in Ref. [6]. There are consistency conditions that
relate the RG-evolution and the mass mode matching
factors for the different choices of µ. Since the mass M
appears as an additional scale in our mass mode setup,
there are even more possibilities to set up RG-evolution.
Therefore the consistency conditions become more in-
volved, as they also entail relations between mass mode
matching conditions and renormalization group evolution
with different anomalous dimensions and varying flavor
number. As an example, if µ is set to the hard scale,
the jet and soft functions have to be evolved upwards
to larger scales. In this RG setup the jet and soft func-
tions can pick up virtual mass-shell corrections in case

matching coefficient

soft scale µS

µJ

µm
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tributions, which we do not further expand if the mass
becomes smaller than any of the other kinematic scales.
This yields a continuous description valid for any scaling
between the mass and the hard, jet or soft scales and is
important when scanning the thrust variable through the
entire allowed spectrum. At this point one might worry
whether the factorization theorems are subject to uncon-
trolled power corrections at the point where two scenarios
are patched together. We show below that this is not the
case and that there is no generic loss of precision where
the transition between different scenarios is carried out.

We stress that the notation, the formulation of the
factorization theorems and the organization of the RG
evolution we employ is associated to the “top-down” evo-
lution, where the scale µ is equal to the ultrasoft scale
µS . Thus only the current and the jet function evolution
factors UH and UJ , respectively, appear in the factor-
ization theorem. This also affects the interpretation and
association of the mass-shell contributions which enter in

the mass mode matching conditions discussed below. In
this RG setting the jet and the soft functions do not re-
ceive any massive quark effects when the jet and ultrasoft
scales, respectively, are below the mass mode matching
scale. Alternative ways to describe RG-evolution related
to different choices for µ are possible and have been dis-
cussed in Ref. [6]. There are consistency conditions that
relate the RG-evolution and the mass mode matching
factors for the different choices of µ. Since the mass M
appears as an additional scale in our mass mode setup,
there are even more possibilities to set up RG-evolution.
Therefore the consistency conditions become more in-
volved, as they also entail relations between mass mode
matching conditions and renormalization group evolution
with different anomalous dimensions and varying flavor
number. As an example, if µ is set to the hard scale,
the jet and soft functions have to be evolved upwards
to larger scales. In this RG setup the jet and soft func-
tions can pick up virtual mass-shell corrections in case

matching coefficient
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Since F
(2,OS)
QCD and F

(2,OS)
SCET have been computed with the

subtracted dispersion relation they correspond to expres-
sions in the nl flavor scheme for the strong coupling.
To switch to the (nl + 1)-flavor scheme one has to add
the MS-subtracted vacuum polarization function at zero-
momentum times the corresponding one-loop form fac-
tor,

F
(2)
QCD(SCET)(Q, m, µ, �) = F

(2,OS)
QCD(SCET)(Q, m, µ)

�
✓

⇧(m2, 0) � ↵sTF

3⇡

1

✏

◆

F
(1)
QCD(SCET)(Q, µ, �) , (80)

where F
(1)
QCD (F (1)

SCET) is the massless gluon one-loop QCD
(SCET) form factor calculated with an IR regulator �.
To obtain the matching coe�cient we in principle have to
first renormalize both quantities and then calculate their
di↵erence where the dependence on � cancels. Since the
QCD current is UV finite, it is convenient to revert this
procedure, i.e. to first determine the di↵erence of the un-
renormalized quantities and renormalize the UV diver-
gences in the SCET contribution at the very end. The
di↵erence of the massless gluon one-loop QCD and SCET
form factors has the form 13

F
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The additional term corresponding to the change from
the nl- to the (nl + 1)-flavor scheme thus reads
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Combining all contributions and including the MS cur-

rent counterterm contribution Z
(nl+1,2)
C,nf=1 given in Eq. (5),

13 Using dimensional regularization for both UV and IR divergences
the SCET form factor for massless gluons vanishes identically.

Ja JcJb

FIG. 8. Non-vanishing EFT diagrams for the computation of
the jet function. The required soft mass mode bin subtrac-
tions are implicit. Concerning Ja also the right-symmetric
diagram has to be taken into account.

the result for the O(↵2
sCF TF ) secondary massive quark

contributions to the hard current coe�cient in the
(nl + 1)-flavor scheme reads (↵s = ↵

(nl+1)
s (µ))

�C(nl+1)(Q, m, µ) = F
(2,OS)
QCD (Q, m) � F

(2,OS)
SCET (Q, m, µ)

+ �FOS!MS(Q, m, µ) � Z
(nl+1,2)
C,nf=1 (Q, µ) , (83)

Inserting Eqs. (5), (79), (82) and subtracting from
Eq. (83) the massless limit of Eq. (4) for one single flavor
we obtain the mass corrections to the form factor given
in Eq. (35). We see from the result of Eq. (36) that the
SCET matching procedure in the (nl + 1)-flavor scheme
does in principle nothing else than exactly subtracting
the asymptotic massless limit from the full QCD on-shell
form factor correction.

C. Thrust Jet Function

The calculation of the O(↵2
sCF TF ) secondary massive

quark corrections to the jet function in the (nl +1)-flavor
scheme goes along the lines of the hard current coe�-
cient. The O(↵s) corrections to the jet function due to a
massive gauge boson with QCD vector coupling have the
form [15, 37] 14
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M,virt(s, M, µ) + �J

(1)
M,real(s, M). (84)

The distributive part �J
(1)
M,virt corresponds to virtual radi-

ation of the massive gauge boson and the full expression
in d-dimensions reads
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The UV- and IR-finite real radiation contribution
�J

(1)
M,real can for our purposes be evaluated for d = 4 since

14 We consider directly the corrections to the total thrust jet func-
tion, which are exactly twice the contributions for the function
of a single jet.
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FIG. 1. The types of Feynman diagrams for the O(↵2
sCFTF ) contributions to the soft function with corresponding symmetric

configurations. (a) and (b) are purely virtual, (c) and (d) contain the contributions to real gluon radiation and (e) and (f) the
contributions for the real radiation of a quark-antiquark pair. (a) and (d) vanish due to n · n = 0.

the gluon momenta weighted by the gluon virtuality. So
in the calculation the physical e↵ects associated to the
fact that a massive quark pair is produced from vir-
tual gluon decay can be separated from the computation
of the phase space. This makes the gluon hemisphere
prescription quite simple to compute because it allows
us to perform the computation with the help of disper-
sion integrations over the gluon virtuality as described in
Refs. [27–29]2: As a first step one calculates the O(↵s)
corrections to the partonic soft function coming from the
radiation of a “massive gluon” with momentum p = k+q.
Then, by convoluting the massive gluon result with the
imaginary part of the gluon vacuum polarization function
related to the massive quark cuts in diagrams (e) and (f)
one obtains the O(↵2

sCFTF ) massive quark corrections
in the gluon hemisphere prescription. The calculation is
very generic and it is trivial to determine the e↵ects of
gluon splitting into any other kind of final state, such as
gluino pairs, just to mention one example. Note that the
method applies regardless of whether the physical e↵ects
are related to virtual corrections or real radiation final
states.

To explain the dispersion method for an equal-mass
quark-antiquark pair we start with the gluonic vacuum
polarization ⇧(m2, p2) contribution arising from a mas-

2 The dispersion method is actually well known from numerous
previous multi-loop calculations and renormalon studies, as well
as in phenomenological applications such as the hadronic contri-
butions to g � 2.

sive quark-antiquark bubble,
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with the current JA
µ (x) = igsq̄(x)TA�µq(x), which can be

expressed through an integral over its absorptive part.
The unsubtracted (unrenormalized) dispersion integral
reads
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where the absorptive part in d dimensions reads
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We call this dispersion relation “unrenormalized” be-
cause it is related to the calculation where the strong
coupling is still unrenormalized (with respect to the ef-
fects of the massive quark flavor). At this point the stan-
dard scheme choices for the renormalization of the strong
coupling are the MS scheme involving the subtraction of
the 1/✏ divergence in ⇧(m2, p2) or the on-shell subtrac-
tion scheme involving the subtraction of ⇧(m2, p2 = 0).
Using the MS scheme means that the massive quark is
active concerning the renormalization group evolution, so
the strong coupling evolves with nf +1 active dynamical
flavors. Using on-shell subtractions means that that the
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FIG. 4. Localization of massless (ML) and massive (M) modes together with their mass-shell fluctuations (MM) in the p+-
p−phase space according to their generic scaling for different hierarchies between λ and λM . Modes with the same invariant
mass are located on the same mass hyperbola. This is always the case for the collinear and soft mass-shell fluctuations.

tributions, which we do not further expand if the mass
becomes smaller than any of the other kinematic scales.
This yields a continuous description valid for any scaling
between the mass and the hard, jet or soft scales and is
important when scanning the thrust variable through the
entire allowed spectrum. At this point one might worry
whether the factorization theorems are subject to uncon-
trolled power corrections at the point where two scenarios
are patched together. We show below that this is not the
case and that there is no generic loss of precision where
the transition between different scenarios is carried out.

We stress that the notation, the formulation of the
factorization theorems and the organization of the RG
evolution we employ is associated to the “top-down” evo-
lution, where the scale µ is equal to the ultrasoft scale
µS . Thus only the current and the jet function evolution
factors UH and UJ , respectively, appear in the factor-
ization theorem. This also affects the interpretation and
association of the mass-shell contributions which enter in

the mass mode matching conditions discussed below. In
this RG setting the jet and the soft functions do not re-
ceive any massive quark effects when the jet and ultrasoft
scales, respectively, are below the mass mode matching
scale. Alternative ways to describe RG-evolution related
to different choices for µ are possible and have been dis-
cussed in Ref. [6]. There are consistency conditions that
relate the RG-evolution and the mass mode matching
factors for the different choices of µ. Since the mass M
appears as an additional scale in our mass mode setup,
there are even more possibilities to set up RG-evolution.
Therefore the consistency conditions become more in-
volved, as they also entail relations between mass mode
matching conditions and renormalization group evolution
with different anomalous dimensions and varying flavor
number. As an example, if µ is set to the hard scale,
the jet and soft functions have to be evolved upwards
to larger scales. In this RG setup the jet and soft func-
tions can pick up virtual mass-shell corrections in case

soft scale µS

µJ

µm
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tributions, which we do not further expand if the mass
becomes smaller than any of the other kinematic scales.
This yields a continuous description valid for any scaling
between the mass and the hard, jet or soft scales and is
important when scanning the thrust variable through the
entire allowed spectrum. At this point one might worry
whether the factorization theorems are subject to uncon-
trolled power corrections at the point where two scenarios
are patched together. We show below that this is not the
case and that there is no generic loss of precision where
the transition between different scenarios is carried out.

We stress that the notation, the formulation of the
factorization theorems and the organization of the RG
evolution we employ is associated to the “top-down” evo-
lution, where the scale µ is equal to the ultrasoft scale
µS . Thus only the current and the jet function evolution
factors UH and UJ , respectively, appear in the factor-
ization theorem. This also affects the interpretation and
association of the mass-shell contributions which enter in

the mass mode matching conditions discussed below. In
this RG setting the jet and the soft functions do not re-
ceive any massive quark effects when the jet and ultrasoft
scales, respectively, are below the mass mode matching
scale. Alternative ways to describe RG-evolution related
to different choices for µ are possible and have been dis-
cussed in Ref. [6]. There are consistency conditions that
relate the RG-evolution and the mass mode matching
factors for the different choices of µ. Since the mass M
appears as an additional scale in our mass mode setup,
there are even more possibilities to set up RG-evolution.
Therefore the consistency conditions become more in-
volved, as they also entail relations between mass mode
matching conditions and renormalization group evolution
with different anomalous dimensions and varying flavor
number. As an example, if µ is set to the hard scale,
the jet and soft functions have to be evolved upwards
to larger scales. In this RG setup the jet and soft func-
tions can pick up virtual mass-shell corrections in case

soft scale µS

µJ

µm

nl + 1
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VFN Scheme: Secondary Massive Quarks 

Scenario 4: 1 > λ > λ2 > λm ( Q > J > S > m )  

•  Current evolution unchanged w.r. to Scen. 2 
•  Jet function and evolution as in Scen. 2 
•  Massive and massless coll. modes same sector 
•  Massive and massless soft modes same sector 
•  Hard coefficient, jet and soft function must have 

massless limit 
•  All RG-evolution for (nl+1) flavors  
 

no matching at the mass scale !



running factors, same as 
in massless theory

all matrix elements	


are mass-dependent

1

�0

d�

d⌧
⇠ H(nl+1)(µQ,m)U (nl+1)

H (µH , µS)⇥ J (nl+1)(µJ ,m)⌦ U
(nl+1)
J (µJ , µS)⌦ S(nl+1)(µS ,m)

(
all matching coefficients, matrix elements and running factors use ↵(nl+1)

s

Scenario IV
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�0
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d⌧
⇠ H(nl+1)(µQ,m)U (nl+1)

H (µH , µS)⇥ J (nl+1)(µJ ,m)⌦ U
(nl+1)
J (µJ , µS)⌦ S(nl+1)(µS ,m)

includes virtual heavy quark mass effects	


in       scheme and heavy quark real 
radiation

both contributions make for 
a smooth massless limit

full distribution has a smooth massless limit

running factors, same as 
in massless theory

all matrix elements	


are mass-dependent(

all matching coefficients, matrix elements and running factors use ↵(nl+1)
s
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FIG. 1. The types of Feynman diagrams for the O(↵2
sCFTF ) contributions to the soft function with corresponding symmetric

configurations. (a) and (b) are purely virtual, (c) and (d) contain the contributions to real gluon radiation and (e) and (f) the
contributions for the real radiation of a quark-antiquark pair. (a) and (d) vanish due to n · n = 0.

the gluon momenta weighted by the gluon virtuality. So
in the calculation the physical e↵ects associated to the
fact that a massive quark pair is produced from vir-
tual gluon decay can be separated from the computation
of the phase space. This makes the gluon hemisphere
prescription quite simple to compute because it allows
us to perform the computation with the help of disper-
sion integrations over the gluon virtuality as described in
Refs. [27–29]2: As a first step one calculates the O(↵s)
corrections to the partonic soft function coming from the
radiation of a “massive gluon” with momentum p = k+q.
Then, by convoluting the massive gluon result with the
imaginary part of the gluon vacuum polarization function
related to the massive quark cuts in diagrams (e) and (f)
one obtains the O(↵2

sCFTF ) massive quark corrections
in the gluon hemisphere prescription. The calculation is
very generic and it is trivial to determine the e↵ects of
gluon splitting into any other kind of final state, such as
gluino pairs, just to mention one example. Note that the
method applies regardless of whether the physical e↵ects
are related to virtual corrections or real radiation final
states.

To explain the dispersion method for an equal-mass
quark-antiquark pair we start with the gluonic vacuum
polarization ⇧(m2, p2) contribution arising from a mas-

2 The dispersion method is actually well known from numerous
previous multi-loop calculations and renormalon studies, as well
as in phenomenological applications such as the hadronic contri-
butions to g � 2.

sive quark-antiquark bubble,

� i
�
p2gµ⌫ � pµp⌫

�
⇧(m2, p2) �AB

⌘
Z

d4x eipx h0|T ⇥
JA
µ (x)JB

⌫ (0)
⇤ |0i , (10)

with the current JA
µ (x) = igsq̄(x)TA�µq(x), which can be

expressed through an integral over its absorptive part.
The unsubtracted (unrenormalized) dispersion integral
reads

⇧(m2, p2) = � 1

⇡

Z
dM2 Im

⇥
⇧(m2,M2)

⇤

p2 �M2 + i✏
, (11)

where the absorptive part in d dimensions reads

Im
⇥
⇧(m2, p2)

⇤
= ✓(p2 � 4m2) g2TF µ̃

2✏(p2)(d�4)/2

⇥ 23�2d⇡(3�d)/2

�
�
d+1
2

�
✓
d� 2 +

4m2

p2

◆✓
1� 4m2

p2

◆(d�3)/2

.

(12)

We call this dispersion relation “unrenormalized” be-
cause it is related to the calculation where the strong
coupling is still unrenormalized (with respect to the ef-
fects of the massive quark flavor). At this point the stan-
dard scheme choices for the renormalization of the strong
coupling are the MS scheme involving the subtraction of
the 1/✏ divergence in ⇧(m2, p2) or the on-shell subtrac-
tion scheme involving the subtraction of ⇧(m2, p2 = 0).
Using the MS scheme means that the massive quark is
active concerning the renormalization group evolution, so
the strong coupling evolves with nf +1 active dynamical
flavors. Using on-shell subtractions means that that the

Scenario IV



Theoretical remarks

• Secondary mass effects start at two loops	



• However matching coefficients suffer from rapidity logs	



• This logs exponentiate and can be summed up	



• This makes their effect effectively one loop



Theoretical remarks

• Secondary mass effects start at two loops	



• However matching coefficients suffer from rapidity logs	



• This logs exponentiate and can be summed up	



• This makes their effect effectively one loop

• The various scenarios join smoothly (by construction)	



• Full mass dependence kept in every scenario	



• All matrix elements for thrust computed at two loops	



• All ingredients known for a          analysisN3LL
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Numerical results
O(↵2

s) N3LLmatrix element and         resummation 
only secondary bottom and top mass effects (hadron level predictions)



Primary mass 
production



Primary production of heavy quarks
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→ primary massive 
 

→ primary massive 
 secondary massive 

 

•  Full N3LL’ (u.t. 4-loop cusp)+ 3-loop non-singular 
•  Gap scheme for soft function 

Becher, Schwartz,  
 
 

Fleming, AH, Mantry, Stewart 
 
 

Bauer, Fleming, Lee, Sterman 
 
 

        SCET authors:  
 
 

•  Full N2LL’/N3LL  
•  Four different physical situations 

Pietrulewicz, AH, Gritschacher, Jemos 2013+2014 
 
 

•  Full N2LL’/N3LL on the way 
•  Three different physical situations 

  

→ paper with all details very soon 
 
 

No details in this talk! 
 

 Fixed-order authors:  
 
 

Gehrmann etal, Weinzierl 
 
 

in scenarios III and IV one can also produce, 
primary quarks, starting at tree level

This only modifies the jet function, which	


becomes mass dependent (same hard and 
soft function, same running factors)

[Fleming, Mantry, Hoang Stewart]

Jet function for thrust (and C-parameter) known at one loop: enables a         analysisN2LL

The primary massive jet function has a smooth massless limit

One needs two loop massive jet function for a          analysis N3LL

Short distance mass has to be used to avoid renormalon.        does the jobMS



Primary production of heavy quarks

Kinematically power suppressed contributions necessary for a precision analysis

[Hoang, VM, Preisser, w.i.p.]

[Butenschön, Dehnadi, Hoang, VM, Stewart]Thrust

C-parameter

Primary mass effects introduce distributive terms in non-singular terms
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When                       a new hierarchy arises (together with new class of large logs)  

One has to match SCET to a boosted HQET theory to sum them up

In this framework one can also treat finite width effects (mandatory for top !!! )

Effectively one has a bHQET jet function (and an additional matching coefficient)

bHQET jet function known at two loops: enables a          analysisN3LL

b-HQET regime

[Jain, Scimemi, Stewart]

[Fleming, Mantry, Hoang Stewart]

µJ � µm ⌧ µm



When                       a new hierarchy arises (together with new class of large logs)  

One has to match SCET to a boosted HQET theory to sum them up

In this framework one can also treat finite width effects (mandatory for top !!! )

Effectively one has a bHQET jet function (and an additional matching coefficient)

bHQET jet function known at two loops: enables a          analysisN3LL

b-HQET regime

[Jain, Scimemi, Stewart]

[Fleming, Mantry, Hoang Stewart]

µJ � µm ⌧ µm

One needs to switch to a short-distance mass. 	


      does the job BUT breaks power countingMS

Jet mass: defined from the bHQET jet function [Jain, Scimemi, Stewart]

MSR mass: derived from      - pole relationMS [Jain, Hoang, Scimemi, Stewart]

Both remove the renormalon and respect the power counting.	


They depend on an infrared scale R



Conclusions & Outlook
Implemented Variable Flavor Number scheme for 

final-state jets 

Implemented primary massive quark effects 

Fast numerical fortran code already created 

1st step: fitting heavy quark masses to Pythia output 

2nd step: fitting bottom mass from low Q data 

Long range aim: top production at hadron collider


