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Resummation of large logarithms
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Soft function Nonsingular terms, 
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Universal Wilson 
Coefficient

Soft function Nonsingular terms, 
power corrections(

Calculable in perturbation theory
Perturbative and 

nonperturbative components

perturbative

Se = Ŝe ⌦ Fe
nonperturbative & 
perturbative 

[VM, Thaler, Stewart]
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Jet function

Hadron mass effects taken into account, but no time to discuss them



Renormalization group evolution

hard scale
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Renormalization scale setting
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parameter default value range of values

µ
0

1.1GeV 1 to 1.3 GeV

R
0

0.7GeV 0.6 to 0.9 GeV

n
0

12 10 to 16

n
1

25 22 to 28

t
2

0.67 0.64 to 0.7

ts 0.83 0.8 to 0.86

r 0.33 0.26 to 0.38

eJ 0 � 0.5 to 0.5

eH 1 0.5 to 2.0

ns 0 � 1, 0, 1

�cusp

3

1553.06 � 1553.06 to +4659.18

s
2

� 43.2 � 44.2 to � 42.2

j
3

0 �3000 to +3000

s
3

0 �500 to +500

✏
2,low 0 � 1, 0, 1

✏
2,high 0 � 1, 0, 1

✏
3,low 0 � 1, 0, 1

✏
3,high 0 � 1, 0, 1

TABLE I. Theory parameters relevant for estimating the the-
ory uncertainty, their default values and range of values used
for the theory scan during the fit procedure.

the logs in the soft function small, we choose r ⇠ 1/6.
We are then left with 9 profile parameters to vary dur-
ing the theory scan, whose central values and variation
ranges used in our analysis are : �µ0 = 0.2 (2±1 � 1),
r = 1.25±1/6, n0 = 12± 2, n1 = 25± 3, t2 = 0.67± 0.03,
ts = 0.83 ± 0.03, eJ = 0 ± 0.5, eH = 2±1 and ns = 0±1.
The plot in Fig. 7 shows the scales for the default pa-
rameters. Also shown (in gray) are plots of QC/6 and
Q
p

C/6. In the tail region, these correspond fairly well
with the profile functions, indicating that in this region
our analysis will avoid large logarithms.

Since we have so many events in our EVENT2 runs,
the e↵ect of ✏low2 is completely negligible in the fits. Also,
there are some parameters whose variation do not a↵ect
the fit region (✏high2 , ✏high3 , t3, ts).

VIII. CONCLUSIONS
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Appendix A: Computation of 1-loop Soft Function

In this section we present a general computation of the
1-loop soft function for any event shape e which can be
expressed in the dijet limit as

e =
1

Q

X

i

p?i fe(yi) , (A1)

where the sum is over all particles in the final state, pi
is the magnitude of the transverse momentum and yi is
the rapidity of the particle, both measured with respect
to the thrust axis. For thrust one has f⌧ (y) = exp(�|y|),
for angularities one has f⌧a(y) = exp[�(1�a)|y| ] and for
C-parameter one has f eC(y) = 1/(2 cosh y).
One needs to compute the four diagrams in Fig. 1

in order to determine the soft function. The two dia-
grams on the bottom are scaleless and vanish in dimen-
sional regularization. They actually convert the IR di-
vergences in the two diagrams on the top into UV diver-
gences. We take the space-time number of dimensions to
be d = 4� 2✏. A direct computation in momentum space
gives
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Z
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After integrating the angular variables, it is convenient
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Using Eq. (A3) into (A2) and using the on-shell condition
p+p� = p2T we obtain
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Singular 
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nonsingular terms



Theoretical knowledge

Jn(s, µ)

H(Q,µ)

SC(`, µ)

same as 
thrust

Soft function known analytically at one loop, 
numerically at two loops	


Running known at three loops

Jet function known at two loops

Hard function known at 3 loops

Running known at three loops 



Theoretical knowledge

Jn(s, µ)

H(Q,µ)

SC(`, µ)

same as 
thrust

Soft function known analytically at one loop, 
numerically at two loops	


Running known at three loops

Fixed-order predictions known at three loops

Mass corrections known at N2LL and two loops

Jet function known at two loops

Hard function known at 3 loops

Running known at three loops 

FS QED corrections known at N3LL

[for more details see 
my talk on Tuesday, 
parallel III]



Analytic computation of soft 
function at 1-loop

[Kolodrubetz, Hoang, VM, Stewart]
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universal formula for all event shapes

C-parameter soft function computation



Analytic computation of soft 
function at 1-loop

Numerical determination at 2-loops using Event2

[Kolodrubetz, Hoang, VM, Stewart]
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universal formula for all event shapes
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Kinematic power corrections
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Kinematic power corrections
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For e � ⇤QCD

Q
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0(`)Shape function can be 
expanded in the tail

OPE for non-perturbative corrections
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For e � ⇤QCD

Q
Fe(`) ' �(`)� ⌦1�

0(`)Shape function can be 
expanded in the tail

OPE for non-perturbative corrections

[Lee & 
Sterman]Universality: ⌦e
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Leading power corrections 
proportional to each other, 
calculable coefficient
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We define the gap scheme for       in which it is renormalon-free⌦1

Hadron mass effect break this relation No time to discuss 
this in detail[VM, Stewart, Thaler]
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Cross section convergence
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Cross section convergence
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Cross section convergence
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determination: C-parameter tail fits↵s

We perform global fits for energies 
between 35 and 206 GeV.  We restrict 
ourselves to the tail of the distribution
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determination: C-parameter tail fits↵s
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determination: C-parameter tail fits↵s

all errors combined
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Universality: thrust vs C-parameter
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Conclusions & Outlook
Slightly less precision than thrust determination, but 

good consistency check of method + universality. 

First fits ever including hadron mass effects. 

Primary massive production computation (w.i.p.). 

QED effects can be easily added (w.i.p.). 

Fits to the first moment of C-parameter (w.i.p.). 

Close the picture with fits to HJM distribution (w.i.p.).
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Renormalization scale setting
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8

parameter default value range of values

µ
0

1.1GeV 1 to 1.3 GeV

R
0

0.7GeV 0.6 to 0.9 GeV

n
0

12 10 to 16

n
1

25 22 to 28

t
2

0.67 0.64 to 0.7

ts 0.83 0.8 to 0.86

r 0.33 0.26 to 0.38

eJ 0 � 0.5 to 0.5

eH 1 0.5 to 2.0

ns 0 � 1, 0, 1

�cusp

3

1553.06 � 1553.06 to +4659.18

s
2

� 43.2 � 44.2 to � 42.2

j
3

0 �3000 to +3000

s
3

0 �500 to +500

✏
2,low 0 � 1, 0, 1

✏
2,high 0 � 1, 0, 1

✏
3,low 0 � 1, 0, 1

✏
3,high 0 � 1, 0, 1

TABLE I. Theory parameters relevant for estimating the the-
ory uncertainty, their default values and range of values used
for the theory scan during the fit procedure.

the logs in the soft function small, we choose r ⇠ 1/6.
We are then left with 9 profile parameters to vary dur-
ing the theory scan, whose central values and variation
ranges used in our analysis are : �µ0 = 0.2 (2±1 � 1),
r = 1.25±1/6, n0 = 12± 2, n1 = 25± 3, t2 = 0.67± 0.03,
ts = 0.83 ± 0.03, eJ = 0 ± 0.5, eH = 2±1 and ns = 0±1.
The plot in Fig. 7 shows the scales for the default pa-
rameters. Also shown (in gray) are plots of QC/6 and
Q
p

C/6. In the tail region, these correspond fairly well
with the profile functions, indicating that in this region
our analysis will avoid large logarithms.

Since we have so many events in our EVENT2 runs,
the e↵ect of ✏low2 is completely negligible in the fits. Also,
there are some parameters whose variation do not a↵ect
the fit region (✏high2 , ✏high3 , t3, ts).

VIII. CONCLUSIONS
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Appendix A: Computation of 1-loop Soft Function

In this section we present a general computation of the
1-loop soft function for any event shape e which can be
expressed in the dijet limit as

e =
1

Q

X

i

p?i fe(yi) , (A1)

where the sum is over all particles in the final state, pi
is the magnitude of the transverse momentum and yi is
the rapidity of the particle, both measured with respect
to the thrust axis. For thrust one has f⌧ (y) = exp(�|y|),
for angularities one has f⌧a(y) = exp[�(1�a)|y| ] and for
C-parameter one has f eC(y) = 1/(2 cosh y).
One needs to compute the four diagrams in Fig. 1

in order to determine the soft function. The two dia-
grams on the bottom are scaleless and vanish in dimen-
sional regularization. They actually convert the IR di-
vergences in the two diagrams on the top into UV diver-
gences. We take the space-time number of dimensions to
be d = 4� 2✏. A direct computation in momentum space
gives

S1�loop
e (`) = 4g2sCF

Z
d3�2✏~p

(2⇡)3�2✏|~p |
�[`� p?fe(y)]

p+p�
. (A2)

After integrating the angular variables, it is convenient
to make a change of variables from p± to (p? , y) :

d3�2✏p

(2⇡)3�2✏|~p | =
2

(4⇡)2�✏

p1�2✏
T

�(1� ✏)
dp?dy . (A3)

Using Eq. (A3) into (A2) and using the on-shell condition
p+p� = p2T we obtain

S1�loop
e (`) = (A4)

2↵sCF e�✏�E

µ⇡ �(1� ✏)

Z
dpT dy

⇣pT
µ

⌘�1�2✏
�[`� p?fe(y)] =

2↵sCF e✏�E

µ⇡ �(1� ✏)

⇣ `

µ

⌘�1�2✏
Ie(✏) ,
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determination: C-parameter tail fits↵s
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Cross section components
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determination: C-parameter tail fits↵s
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many details in review	


[arXiv: 1110.0016]

Figures taken from PDG

Determinations are first “averaged” within a given process	



The various averages are later combined together for the final average

The world average

Completely dominated by lattice results !!!

look also [arXiv:1303.2262]

[More details on talk by J. 
Erler, tuesday, plenary 3]
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DIS analyses of ABM get similarly low and precise 
determinations (same true for GENEVA MC) 
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We need to analyze more event-shapes to validate our results.



determination: C-parameter tail fits↵s
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determination: C-parameter tail fits↵s
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